Microbial mass movements

Flying aircrafts_ESA_Sept2017
Global transport, tourism, waste disposal have changed biogeographic patterns for microorganisms. In this study authors point to the importance of the dispersal of cells and genes by human activities. The picture presents a flight map showing 15,000 simultaneously flying aircrafts based on 25 million positions (European Space Agency (ESA)).

 

For several billion years, microorganisms and the genes they carry have mainly been moved by physical forces such as air and water currents. These forces generated biogeographic patterns for microorganisms that are similar to those of animals and plants.

In a new study in the journal Science authors note that humans and animals now move on an unprecedented scale, and this movement actively transports and enriches a specific subset of microorganisms.

“Humans in the past 100 years have changed these natural dynamics by transporting large numbers of cells to new locations through waste disposal, tourism, and global transport and by modifying selection pressures at those locations. As a consequence, we are substantially altering microbial biogeography”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona.

Dissemination through wastewater

Wastewater carries high densities of microorganisms and their cargo genes. It should be noted that, globally, some 359,000 km2 of croplands depend on irrigation with urban wastewater, 80% of which undergoes little or no treatment. Therefore, the use of wastewater or manure in agriculture contaminates fruits, vegetables, and farm animals which in turn are distributed globally. Wastewater also contains pollutants with biological effects (as metals, antibiotics or disinfectants). These compounds stimulate bacterial stress response systems that increase mutation rates which, in turn, confer adaptive advantages on at least a subset of cells arriving at a new location.

For a sense of the importance of this adaptive advantage, authors consider the clinical class 1 integron. This DNA element acquires foreign genes from the environment and has played a central role in spreading antibiotic resistance among bacterial pathogens. DNA sequencing data show that it had the origin in a single cell, in the early 20th century. Millions to billions of copies of this element now exists in every gram of feces from human and domestic animals. This remarkable increase in its abundance and distribution has been driven by antibiotic selection, increases in human population, and dissemination via global transport.

The role of human and material movement

This study points out that humans and agricultural animals now comprise 35 times as much biomass as wild terrestrial mammals. The bacteria shed in feces, therefore, mainly represent the gut microbiota of humans and agricultural animals (cattle, sheep, goats, pigs, and chickens) and they have vastly increased in both abundance and distribution, particularly in the last century. “Efficiency of dispersal is enhanced by the 1.2 billion international tourist movements per year, as evidenced by the rapid spread of bacterial clones and antibiotic resistance genes between continents”, emphasizes Prof. Micahel Gillings from Macquarie University, Sydney .

The study also points out that humans additionally promote dispersal of microbial cells via mass movement of materials. In this regard it should be noted that human activities now move more soil, sand, and rock than all natural processes combined. As an example, natural fluvial erosion is 21 gigatons (Gt) per year, much lower than the75 Gt per year eroded by agriculture. “This erosion transports very large numbers of bacteria, given that soil can contain more than a billion microbial cells per gram. Movements on this scale have consequences for human health, agriculture, and ecosystem functions, such as increasing the spread of human pathogens and threatening sustainable food productivity”, said Prof. Yong-Guan Zhu from Chinese Academy of Science.

Changes to biogeochemical cycles

According to this study, changes in the distribution and abundance of microorganisms, and the resultant changes in microbial ecosystems will affect biogeochemical cycles driven by microbial activity. “Knowledge of the connections between microbial biodiversity and landscape-scale biogeochemical processes, as well as below-ground ecosystems, will be essential to predict the magnitude and direction of these changes”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona.

Linking the rapidly expanding databases generated by environmental genomics with biogeochemical models could reveal changes in nutrient cycles. “This fusion of genomics and Earth system science is a first step to understanding how the biochemical functions of microorganisms could be altered, temporally and spatially, by global change”, said Prof. Yong-Guan Zhu from Chinese Academy of Science.

Unlocking the complexity

There is a recent growing trend for monitoring the environmental dissemination of genes, particularly those that confer phenotypes of direct relevance to human and animal health. In this sense, Prof. Josep Peñuelas points to the high importance of understanding how human activities cause systematic changes in ecosystems and highlight the priority of investigating microbial invasions, microbial extinctions, and perturbations to microbial ecosystems.

 

Journal Reference: Zhu, Y.G., Gillings, M., Simonet, P., Stekel, D., Banwart, S., Penuelas, J. 2017. Microbial mass movements. Science 357 (6356), 1099-1100.

Nature Mentoring Awards for Mentoring in Science 2017 – Spain

The Jury for the Nature Mentoring Awards for Mentoring in Science 2017 has met in CREAF (Bellaterra, Catalonia, Spain) on Spetember 15th, 2017.

The jury, headed by Prof. Josep Penuelaswas made up for the following experts:

  • Alison Abbott, Senior European Correspondent of Nature journal, Munich
  • Emilia Solano, CIEMAT, Madrid, Spain
  • Pilar Ruiz Lapuente, Institute of Cosmos Sciences, University of Barcelona, Barcelona, Spain
  • Juan Lerma, Instituto de Neurociencias de Alicante – UMH, Alicante, Spain
  • Mariano Barbacid, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
  • Josep Penuelas, CSIC-CREAF, Barcelona, Spain

 

Meeting CREAF_15092017

Shifting from a fertilization-dominated to a warming-dominated period

Penuelas_Nature_Shifting_Sept2017
In a new study in the journal Nature Ecology and Evolution researchers argue that a slowdown of the CO2 and N fertilization effects on ecosystem carbon sequestration and the rapid emergence of negative ecosystem impacts from global climate change might drive a change from a fertilization-dominated to a warming-dominated period. Photos by Pixabay

 

Natural ecosystems currently remove on average each year an amount of carbon dioxide equivalent to about one third of human-caused carbon dioxide (CO2) emissions from fossil fuel burning and cement production. There are numerous evidences which show that the efficiency of natural land ecosystems to absorb the increasing fossil fuel and cement emissions does not keep their path.

In a new study in the journal Nature Ecology and Evolution authors hypothesize that the progressive long term weakening of the natural land sink relative to fossil fuel CO2 emissions marks the beginning of a transition from a vegetation fertilization-dominated period to a period dominated by nutrient and climate constraints on plant growth, and larger climate change impacts (e.g., heatwaves).

There are many unknowns in the timing of this transition, so in light of the recent Paris COP21 agreement, a better understanding of climate change impacts on carbon stocks remains paramount to understand the level of climate mitigation required to achieve agreed temperature goals, indicates Prof Josep Peñuelas from CREAF-CSIC Barcelona.

Human fertilization changes productivity and carbon residence in ecosystems

Human activities result in increasing atmospheric concentrations of CO2, N inputs to ecosystems and temperature. This leads to enhanced metabolism of organism and lengthening the growing seasons. Plants can consequently grow more. The magnitude of carbon sinks and their duration depend both on the rate of increase of carbon inputs and on the residence time of the carbon being taken up by ecosystems explain Drs Shilong Piao from Academy of Sciences in Pekin and Jordi Sardans from CREAF in Barcelona.

Authors point out that several studies realized at global scale, in all biomes, suggest that trends of increasing sinks may be slowing down. A remaining question is whether in regions where carbon sinks may be slowing down, this is due to stalling productivity or to reducing residence times.

Likely limitations for enhancement of carbon sinks

The anthropogenic increases in CO2 and atmospheric nitrogen deposition are not matched by a similar increase in the inputs of other key nutrients such as phosphorus (P) and/or potassium (K). Current evidence suggests an overall shortage of P which will act as a limiting factor to meet the increasing demand for plant growth. “A better understanding of the factors that regulate exchanges between pools of “available” and “unavailable” soil P is critically needed”, said Prof. Ivan Janssens from University of Antwerp.

The higher nocturnal temperatures enhance night respiration, Prof. Josep Canadell pointed out. Moreover, severe regional heatwaves are also likely to become more frequent in a changing climate, and their negative impact on terrestrial carbon sequestration may thus also become important. “For example, the 2003 heatwave decreased European gross primary productivity by 30%, which resulted in a strong anomalous net source of carbon dioxide to the atmosphere; this effect is the equivalent of reversing four years of net ecosystem carbon sequestration in the European continent”, said Prof. Philippe Ciais from LSCE Paris.

In recent decades large-scale droughts have reduced seasonal NPP in the Southern and Northern hemispheres and weakened the terrestrial carbon sink. However, as Drs Marcos Fernandez-Martinez and Jofre Carnicer from CREAF-CSIC Barcelona point out, there is an inherent difficulty in quantifying the response of NPP to drought because it depends on the timing of drought during the growing season, and on ecosystem properties of resistance to drought.

Furthermore, it should be taken into account that most land use changes, fires, and harvests, which are expected to increase in the future reduce residence times, thereby reducing the sink capacity of the land biosphere as noticed by Prof Michael Obersteiner from IIASA Vienna.

Due to the above, the potential saturation or slower increase of the sink capacity of terrestrial ecosystems, or even its transition into a source of CO2, could be expected. Moreover, for Prof. Josep Peñuelas from CREAF-CSIC Barcelona, current climate models do not necessarily well represent extreme events due to coarse resolution (eg. extreme precipitation, wind storms and tropical cyclones) or to insufficiently constrained soil-atmosphere interactions. At this point, authors point out that these models could improve its prediction capacity through the addition of factors outlined above. “Such improved models could then help understanding the responses to different levels of global warming (especially in the range 1.5-3°C according to the Paris agreement and current intended policies)”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona.

Shift from a fertilization to a warming period

This study presents multiple evidences suggesting limits to the buffering capacity of the biosphere. Thus, Prof. Josep Peñuelas indicates that a slowdown of the CO2 and N fertilization effects on ecosystem carbon sequestration and the rapid emergence of negative ecosystem impacts from global climate change might drive a shift from an Anthropocene period dominated by fertilization to another period characterized by saturated fertilization and strong climate change.

For Prof. Peñuelas, although the climate has not yet changed dramatically in the Anthropocene, the coming decades will undoubtedly be different. Prof. Vautard from LSCE Paris explains that “A warming of 2 °C would slightly increase the frequency of 2003-like heatwaves in Northern France, but a warming of 3 °C would instead produce very different conditions, with one summer like that of 2003 occurring every three or four years, which would therefore affect the forests carbon sink in Europe much more than in the past”.

There is also the possibility of low probability but high impact phenomena which would lead to rapid positive feedbacks to the climate system (e.g. massive dieback of Amazon rainforest because of reduced rainfall or a dramatic temperature drop in the North Atlantic because of the collapse of the ocean current). “The occurrence of this phenomena is highly uncertain, particularly for low temperature scenarios. However, it is much more certain that we are currently entering a new warming period where ecosystems are put under increasing stresses”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona.

This study was funded by the European Research Council Synergy grant ERC-2013-SyG-610028

Journal Reference: Peñuelas, P., Ciais, P., Canadell, J., Janssens, I., Fernandez-Martinez, M., Carnicer, J., Obersteiner, M., Piao, S., Vautard, R., Sardans, J. 2017. Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution.

Atmospheric deposition, CO2, and change in the land carbon sink

Fum_bosc_Marcos_Agost2017
The reduction in acidic deposition of nitrogen and Sulphur should lead to a slow recovery of forests to a pre-acid deposition state. Photo by Pixabay

 

Human activities result in increasing atmospheric concentrations of CO2 that affects the terrestrial biosphere in multiple ways: warming the climate, increasing photosynthesis (CO2 fertilization), decreasing transpiration by stimulating stomatal closure and changing the stoichiometry of carbon, nitrogen and phosphorus (C:N:P) in ecosystem carbon pools. Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas, due to air-quality policies, atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades.

Terrestrial ecosystems are key components of the global carbon cycle, as indicated by the fact that, since the 1960s, they have been sequestering an average of about 30% of the annual anthropogenic CO2 emitted into the atmosphere.

In a new study in the journal Scientific Reports authors used time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models to end up finding  that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011.

In this study, authors test the hypothesis that gross primary production, ecosystem respiration and the net C-sink strength (net land-atmosphere CO2 flux) or net ecosystem production (NEP), have accelerated during the last two decades because of the increased atmospheric CO2 concentrations and temperature, and because of the recovery from high loads of S deposition in Europe and North America. “We expected these deposition reductions to have modulated the biogeochemical effects of rising CO2” added Dr. Marcos Fernández-Martínez from CREAF-CSIC Barcelona

Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. Authors also found that the reduction of sulphur deposition in Europe and the USA led to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, the study shows that trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. “Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona

“Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling”, said Dr. Fernández-Martínez from CREAF-CSIC Barcelona

This study was funded by the European Research Council Synergy grant ERC-2013-SyG-610028, the Spanish Government project CGL2016-79835-P and the Catalan Government grant FI-2013

Journal Reference: Fernández-Martínez, M., Vicca, S., Janssens, I.A., Ciais, P., Obersteiner, M., Bartrons, M., Sardans, J., Verger, A., Canadell, J.G., Chevallier, F., Wang, X., Bernhofer, C., Curtis, P.S., Gianelle, D., Grünwald, T., Heinesch, B., Ibrom, A., Knohl, A., Laurila, T., Law, B.E., Limousin, J.M., Longdoz, B., Loustau, D., Mammarella, I., Matteucci, G., Monson, R.K., Montagnani, L., Moors, E.J., Munger, J.W., Papale, D., Piao, S.L., Peñuelas, J. 2017. Atmospheric deposition, CO2, and change in the land carbon sink. Scientific Reports.

Relative contribution of groundwater to plant transpiration estimated with stable isotopes

Pi_arrels_Barbeta_Agost2017
Water is generally taken up by roots (with important exceptions), so root structure and function should play a central role in research of plant-water relations. Photo by Pixabay

 

Water stored underground in the saturated and subsurface zones below the soil are important sources of water for plants in water-limited ecosystems. Arid and seasonally dry ecosystems contain the deepest root systems, and some species grow roots to depths of more than 4 m, even in temperate and tropical ecosystems. The presence of deep-rooted plants worldwide, however, suggests that the use of groundwater is not restricted to arid and seasonally dry ecosystems.

In a new study in the journal Scientific Reports authors compiled the available data (71 species) on the relative contribution of groundwater to plant water estimated using stable isotopes and mixing models, which provided information about relative groundwater use, and analysed their variation across different climates, seasons, plant types, edaphic conditions, and landscape positions.

Plant use of groundwater was more likely at sites with a pronounced dry season, and represented on average 49 per cent of transpired water in dry seasons and 28 per cent in wet seasons. The relative contribution of groundwater to plant-water uptake was higher on rocky substrates (saprolite, fractured bedrock), which had reduced groundwater uptake when this source was deep belowground.

Notably, authors found that the connectivity between groundwater pools and plant water is quantitatively larger and more widespread than reported by recent global estimations based on isotopic averaged values. Thus, “in order to improve the representation of groundwater-surface interactions in models, a quantification of the relative contribution of groundwater to transpiration and its variability across environmental gradients was required”, said Dr. Adrià Barbeta from CREAF-CSIC Barcelona, now in INRA Bourdeaux

Prof. Josep Peñuelas from CREAF-CSIC Barcelona claims also that “further research on plant-water sources in boreal, polar regions and tropical rainforests would help our understanding of the global patterns of groundwater uptake and may substantially improve the biosphere-atmosphere models by a realistic representation of this important component of the water cycle”.

This study was funded by the European Research Council Synergy grant ERC-2013-SyG-610028, the Spanish Government project CGL2016-79835-P and the Catalan Government grant FI-2013

Journal Reference: Barbeta, A., Peñuelas, J. 2017. Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Scientific Reports

β-Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions between Plants and Other Organisms

Farre_Armengol_PR_agost2017
Plants generally synthesize and emit species-specific floral volatile organic compounds (VOCs) mixtures to attract pollinators by mixing several of these common VOCs. Photo by Pexels

 

More than 1700 volatile organic compounds (VOCs) have been identified in the floral scents of flowering plants. These VOCs are not equally distributed across the phylogeny of flowering plants, so that the commonness and predominance of these compounds in floral scents varies widely among species. Common floral VOCs have a widespread phylogenetic distribution, which means that they are present in the floral scents of many species from different plant families. Instead, less common floral VOCs are only present in plants that are pollinated by specific pollinator groups with specific innate preferences for those VOCs.

β-Ocimene is a very common plant volatile released in important amounts from the leaves and flowers of many plant species. This acyclic monoterpene can play several biological functions in plants, by potentially affecting floral visitors and also by mediating defensive responses to herbivory.

In a new study in the journal Molecules authors indicated that the ubiquity and high relative abundance of β-ocimene in the floral scents of species from most plant families and from different pollination syndromes (ranging from generalism to specialism) strongly suggest that this terpenoid may play an important role in the attraction of pollinators to flowers.

In this study authors compiled abundant evidence from published studies that supports β-ocimene as a generalist attractant of a wide spectrum of pollinators. They found no studies testing behavioural responses of pollinators to β-ocimene, that could directly demonstrate or deny the function of β-ocimene in pollinator attraction; but “several case studies support that the emissions of β-ocimene in flowers of different species follow marked temporal and spatial patterns of emission, which are typical from floral volatile organic compound (VOC) emissions that are involved in pollinator attraction”, said Dr. Gerard Farré-Armengol from CREAF-CSIC Barcelona, now in the University of Salzburg.

Furthermore, important β-ocimene emissions are induced from vegetative plant tissues after herbivory in many species, which have relevant functions in the establishment of tritrophic interactions. Authors thus conclude that β-ocimene is a key plant volatile with multiple relevant functions in plants, depending on the organ and the time of emission.

Experimental behavioural studies on pure β-ocimene conducted with pollinating insects will be necessary to prove the assumptions made here. “In view of the presented indirect evidences, we strongly encourage the inclusion of β-ocimene alone or in combination with other floral volatiles in coupled gas chromatography electroantennographic detection (GC-EAD) analyses and behavioural tests when conducting future studies in order to provide a solid experimental proof for the assumptions made in the study”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona.

This study was funded by the European Research Council Synergy grant ERC-2013-SyG-610028, the Spanish Government project CGL2016-79835-P and the Catalan Government grant FI-2013

Journal Reference: Farré-Armengol, G., Filella, I., Llusià, J., Peñuelas, J. 2017. β-Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions between Plants and Other Organisms. Molecules 2017, 22, 1148; doi: 10.3390/molecules22071148.

Temperature increase reduces global yields of major crops in four independent estimates

kornfeld / cornfield
Understanding climate change is critical to ensure global food security. In this study authors combine four analytical methods to assess the impact of increasing temperatures on yields of wheat, rice, maize and soybean. Photo by Pexels

 

All agricultural production is vulnerable to climate change including wheat, rice, maize and soybean that provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these major crops is therefore critical to maintain global food supply.

In a new study in the journal Proceedings of the National Academy of Sciences authors investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions and field-warming experiments.

“By combining four different methods, our comprehensive assessment of the impacts of increasing temperatures on major global crops shows substantial risks for agricultural production, already stagnating in some parts of the world”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona.

The study shows that results from the different methods consistently indicate negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation and genetic improvement, each degree Celsius increase in global mean temperature would on average reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4% and soybean by 3.1%. In any case, researchers point out that results are highly heterogeneous across crops and geographical areas with some positive impact estimates.

Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops, and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

Journal Reference: Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J-L., Elliott, L., Ewert, F., Janssens, I., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., Asseng, S. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences.