Los bosques retienen el carbono cada vez durante menos tiempo

La mayor concentración de CO2 y los aumentos de temperatura y las sequías aceleran la mortalidad vegetal

Los tiempos de permanencia del carbono en la vegetación se están acortando por factores como el calentamiento y las sequías./ PIXABAY

Una investigación internacional con participación de científicos del Consejo Superior de Investigaciones Científicas (CSIC) ha confirmado que los bosques retienen carbono cada vez durante menos tiempo. Las conclusiones, publicadas en el último número de la revista Proceedings of the National Academy of Sciences (PNAS), se han obtenido tras analizar datos de entre los años 1955 y 2018 de 695 bosques de tres zonas climáticas: tropical, templada y fría, y compararlos con modelos de simulación ESM (Earth System Model).

Los bosques juegan un papel esencial en la retención de carbono. ¿Pero durante cuánto tiempo pueden retenerlo? En las proyecciones de escenarios de cambio climático se tiene en cuenta la capacidad de la vegetación para secuestrar dióxido de carbono (CO2), pero una vez el CO2 (y con él, el carbono) ha quedado retenido, es una incógnita durante cuánto tiempo puede permanecer ahí antes de volver al medio ambiente (a causa de la muerte y descomposición de las plantas).

Los resultados revelan que el aumento de CO2 atmosférico está inversamente relacionado con estos tiempos de residencia del carbono, que, por tanto, se reducen a medida que el CO2 atmosférico sigue aumentando.  En tres décadas, ese tiempo de residencia del carbono en la vegetación se ha reducido a razón de entre un 0,2% y un 0,3% anual.

Josep Peñuelasinvestigador del CSIC en el Centro de Investigación Ecológica y Aplicaciones Forestales (CREAF), y coautor del trabajo, explica: “Los tiempos de permanencia del carbono en la vegetación se están acortando por factores como el calentamiento y las sequías. La temperatura aumenta el metabolismo de los organismos, así como el aumento de precipitaciones en algunas zonas, pero las sequías hacen que la mortalidad aumente y, por tanto, que el tiempo de residencia disminuya. En general, hay un incremento de la mortalidad de los árboles en todas las zonas climáticas estudiadas”.

La disminución en los tiempos de residencia de carbono en los bosques es “significativa”, destaca Peñuelas, “porque supone una disminución de hasta el 9% en tres décadas”.  Los resultados sugieren que los sumideros de carbono se van a ver limitados probablemente por un descenso en la capacidad de retención de los bosques. 

Los tiempos de permanencia del carbono en la vegetación se están acortando por factores como el calentamiento y las sequías./ PIXABAY

Material de descarga

Referencia científica: 
Kailiang Yu, William K. Smith, Anna T. Trugman, Richard Condit, Stephen P. Hubbell, Jordi Sardans, Changhui Peng, Kai Zhu, Josep Peñuelas, Maxime Cailleret, Tom Levanic, Arthur Gessler, Marcus Schaub, Marco Ferretti, and William R. L. Anderegga. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. PNAS. DOI: 10.1073/pnas.1821387116
CSIC Comunicación

 

Los árboles sacan las hojas en momentos diferentes en toda Europa marcados por el clima donde viven

Estas semanas los árboles caducifolios de toda Europa están acabando de perder las hojas. ¿Cuando volverán a salir? Hoy, un estudio publicado en Nature Communications ha demostrado que el clima condiciona este momento clave y que esto se debe a la adaptación de los árboles caducifolios su clima local.

Bosque de Moravia, República Checa. Autor: Adrià Descals.

Estas semanas las hojas de los árboles caducifolios comienzan a caer pero, ¿cuando volverán a salir? ¿Como saben los árboles cuando les toca brotar después del invierno? Hoy, un artículo publicado en Nature Communications ha demostrado que el clima local es en parte responsable de que las hojas de los árboles caducifolios salgan antes o después. Factores climáticos como la luz que reciben, la temperatura y la aridez juegan un papel importante en el momento del inicio de estación. Esto explica que una misma especie, como por ejemplo el haya, saque las hojas en momentos diferentes dependiendo del lugar donde crece de Europa. En otras palabras, el clima de cada zona hace que el haya brote en un momento o en otro, como si fuera un director de orquesta independiente en cada lugar.

“Un abedul de Noruega saca las primeras hojas en cuanto llegue el buen tiempo, porque sabe que la ventana de buen tiempo durante el verano es corta”.

Si miramos por ejemplo cuando salen las hojas de los abedules toda Europa veremos que un abedul de Noruega saca las primeras hojas en cuanto llegue el buen tiempo, porque sabe que la ventana de buen tiempo durante el verano es corta y que debe ir al grano. Por otra parte, un abedul del mediterráneo saca las hojas más tarde aunque el tiempo sea adecuado, esperando así que los brotes tiernos no coincidan con las heladas tardías del inicio de la primavera, las cuales podrían afectar el crecimiento de la hoja.

Hasta ahora se sabía que los árboles tenían que recibir unas determinadas horas de calor para empezar a sacar las hojas y que si esto variaba de un año a otro, el momento de brotar también variaba. Pero para explicar porque un árbol brota un día diferente aquí que en Noruega, también se utilizaba la misma hipótesis. Ahora, se ha demostrado que el calor acumulado durante el inicio de la primavera explica las variaciones en el tiempo, sin embargo no es suficiente cuando queremos entender las variaciones en el territorio. “Con este estudio hemos comprobado que si en lugar de mirar los cambios en los años miramos los cambios en el espacio, observamos que el clima es uno de los promotores principales de la variación espacial de la fenología”, comenta Adrià Descals, investigador pre-doctoral del CREAF que está haciendo la tesis en este tema, “una misma especie brota en momentos diferentes en un lugar o en otro, en parte porque se ha adaptado a las características climáticas del lugar donde vive”.

El estudio, liderado por investigadores del CREAF Marco Peaucelle, Adrià Descals; Roberto Molowny Josep Peñuelas, este último también profesor del CSIC, ha usado una base de datos mundial que ha proporcionado los datos sobre los cambios que ha habido en los ritmos de la naturaleza desde el 1970 y hasta la actualidad. Estos datos, junto con mapas climáticos de Europa, han servido para ver qué variables regulan el inicio de la primavera fenológica. El estudio se ha hecho con ocho especies de árboles diferentes, entre ellas el haya, el abedul, y dos especies de robles.

 

Artículo de referencia: Peaucelle, M., Janssens, I. A., Stocker, B. D., Descals Ferrando, A., Fu, Y. H., Molowny-Horas, R., Ciais, P., Peñuelas, J. (2019). Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nature Communications10(1), 5388. https://doi.org/10.1038/s41467-019-13365-1

Fuente: http://blog.creaf.cat/es/noticias/los-arboles-sacan-las-hojas-en-momentos-diferentes-en-toda-europa-marcados-por-el-clima-donde-viven/

Els arbres treuen les fulles en moments diferents arreu d’Europa marcats pel clima on viuen

Aquestes setmanes els arbres caducifolis d’arreu d’Europa estan acabant de perdre les fulles. Quan tornaran a sortir? Avui, un estudi publicat a Nature Communications ha demostrat que les hores de calor acumulada durant abans de la primavera expliquen les varacions d’un any a un altre, però que si volem entendre les variacions en l’espai hem de fixar-nos en el clima. Els arbres s’han adaptat al seu clima loca per rebortar en el moment òptim.

Bosc de Moràvia, República Txeca. Autor: Adrià Descals.

Aquestes setmanes les fulles dels arbres caducifolis comencen a caure però, quan tornaran a sortir? Com saben els arbres quan els hi toca brotar després de l’hivern? Avui, un article publicat a Nature Communications ha demostrat que el clima local és en part responsable de que les fulles dels arbres caducifolis surtin abans o després. Factors climàtics com la llum que reben, la temperatura i l’aridesa juguen un paper important en el moment de l’inici d’estació. Això explica que una mateixa espècie, com per exemple el faig, tregui les fulles en moments diferents depenent del lloc on creix d’Europa. En altres paraules, el clima de cada zona fa que el faig broti en un moment o en un altre, com si fos un director d’orquestra independent a cada lloc.

“Un bedoll de Noruega treu les primeres fulles tan bon punt arriba el bon temps, perquè sap que la finestra de bon temps durant l’estiu és curta”

Si mirem per exemple quan surten les fulles dels bedolls arreu d’Europa veurem que un bedoll de Noruega treu les primeres fulles tan bon punt arribi el bon temps, perquè sap que la finestra de bon temps durant l’estiu és curta i que ha d’anar per feina. D’altra banda, un bedoll del mediterrani treu les fulles més tard encara que el temps sigui adient, esperant així que els brots tendres no coincideixen amb les glaçades tardanes de l’inici de la primavera, les quals podrien afectar el creixement de la fulla.

Fins ara se sabia que els arbres havien de rebre unes determinades hores de calor per començar a treure les fulles, i que si això variava d’un any a l’altre, el moment de brotar també variava. Per explicar per què un arbre brota un dia diferent aquí que a Noruega, també es feia servir la mateixa hipòtesi. Ara però, s’ha demostrat que la calor acumulada durant l’inici de la primavera ens explica només les variacions en el temps, tanmateix no és suficient quan volem entendre les variacions en el territori. “Amb aquest estudi hem comprovat que si enlloc de mirar els canvis en els anys mirem els canvis en l’espai, observem que el clima és un dels promotors principals de la variació espacial de la fenologia”, comenta Adrià Descals, investigador pre-doctoral del CREAF que està fent la tesis en aquest tema, “una mateixa espècie brota en moments diferents en un lloc o en un altre, en part perquè s’ha adaptat a les característiques climàtiques del lloc on viu”.

L’estudi, liderat pels investigadors del CREAF Marc Peaucelle, Adrià Descals; Roberto Molowny Josep Peñuelas, aquest últim també professor del CSIC, ha fet servir una base de dades mundial que ha proporcionat les dades sobre els canvis que hi ha hagut en els ritmes de la natura des del 1970 i fins l’actualitat. Aquestes dades, juntament amb mapes climàtics d’Europa, han servit per veure quines variables regulen l’inici de la primavera fenològica. L’estudi s’ha fet amb vuit espècies d’arbres diferents, entre elles el faig, el bedoll, i dues espècies de roures.

 

Article de referència: Peaucelle, M., Janssens, I. A., Stocker, B. D., Descals Ferrando, A., Fu, Y. H., Molowny-Horas, R., Ciais, P., Peñuelas, J. (2019). Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nature Communications10(1), 5388. https://doi.org/10.1038/s41467-019-13365-1

Font: http://blog.creaf.cat/noticies/els-arbres-treuen-les-fulles-en-moments-diferents-arreu-deuropa-marcats-pel-clima-viuen/

Spatial variance of spring phenology depends not only on meteorology but also on climate

Leaf_pixabay_Nov2019
In a new study in the journal Nature Communications authors study the spatial heterogeneities of leaf unfolding and its controls. Photo by: Pixabay.

 

Leaf unfolding (LU) determines the restart of the growing season. LU in temperate forests is driven by spring temperature, but the spatial heterogeneities of LU, and especially of its controls, have been much less studied.

In a new study published in the journal Nature Communications, authors used in situ LU observations for eight deciduous tree species to show that the two factors that control chilling (number of cold days) and heat requirement (growing degree days at LU, GDDreq) only explain 30% of the spatial variance of LU. Radiation and aridity differences among sites together explained 10% of the spatial variance of LU date, and up to 40% of the variation in GDDreq. Radiation intensity was positively correlated with GDDreq and aridity was negatively correlated with GDDreq spatial variance. Assessing the long-term spatial variance of LU and GDDreq is a first step in developing a unified framework that will allow an understanding of the multiple controls of climate on plant phenology.

“Our study provides evidence for a significant control of leaf unfolding by long-term background climatic conditions across sites, potentially representing long-term adaptation of species”, said Dr. Marc Peaucelle from CREAF-CSIC Barcelona, now in the Department of Environment of the University of Ghent. According to the authors, these findings show that at least two mechanisms influence spring phenology: i) the direct sensing of meteorological conditions during spring to optimize the restart of plant activity and ii) the long-term adjustment of bud sensitivity to spring meteorological conditions in order to cope with growing season pressures at sites.

The results presented in the study show that LU of temperate deciduous trees is adapted to local mean climate, including water and light availability, through altered sensitivity to spring temperature. This adaptation of GDDreq to background climate implies that models using constant temperature response are inherently inaccurate at local scale.

“Future research on the importance of plant phenology on ecosystem functioning should focus on space-time interactions with environmental conditions specifically to address: 1) the effects of light and aridity on bud sensitivity to temperature, and 2) the potential coordination between plant processes and phenology that could account for a co-limitation by temperature and the availability of light and water”, said Prof Josep Peñuelas from CREAF-CSIC.

Reference: Peaucelle, M., Janssens, I.A., Stocker, B.D., Descals Ferrando, A., Fu, Y.H., Molowny-Horas, R., Ciais, P., Peñuelas, J. 2019. Spatial variance of spring phenology in temperate deciduous forests is constrained by biogeographical conditions of temperature, light and aridity. Nature Communications, (2019) 10:5388. Doi: 10.1038/s41467-019-13365-1.

IPCC 2019: IPCC Special Report on Climate Change and Land

IPCC 2019

Prof. Josep Peñuelas has participated in the IPCC Special Report on Climate Change and Land through the drafting of Chapter 2: Land-Climate Interactions.

Land and climate interact in complex ways through changes in forcing and multiple biophysical and biogeochemical feedbacks across different spatial and temporal scales. This chapter assesses climate impacts on land and land impacts on climate, the human contributions to these changes, as well as land-based adaptation and mitigation response options to combat projected climate changes.

IPCC press release

Chapter 2

Soil biota, antimicrobial resistance and planetary health

 

Soil_Pixabay_March2017b_500x500

In a new study in the journal Environmental International authors use the connection between antimicrobials and antimicrobial resistance as an example to demonstrate the complex feedbacks that occur when humans perturb environmental processes. Photo by: Pixabay.

Planetary health is a new field examining the links between human health and the natural environment. Planetary health acknowledges that human health and well-being are inextricably linked to planetary systems, and the integrity of the natural environment needs to be protected to ensure the long-term health of human populations. Soil is a critical component of the planetary health system, it plays a fundamental role in human health and well-being, primarily because most food is derived from soil but also through ecosystem services such as nutrient cycling, pollutant remediation and synthesis of bioactive compounds such as antimicrobials. Soil is also a natural source of antimicrobial resistance, which is often termed intrinsic resistance.

In a new review in the journal Environmental International authors use the nexus of antimicrobials and antimicrobial resistance as a focus to discuss the role of soil in planetary health and illustrate the impacts of soil microbiomes on human health and well-being. “This review examines the sources and dynamics of antimicrobial resistance in soils and uses the perspective of planetary health to track the movement of antimicrobial-resistance genes between environmental compartments, including soil, water, food and air”, said Prof. Yon-Guan Zhu from the State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China.

According to this review the increasing use and misuse of antimicrobials in humans and animals in recent decades has increased both the diversity and prevalence of antimicrobial resistance in soils, particularly in areas affected by human and animal wastes, such as organic manures and reclaimed wastewater, and also by air transmission. “Antimicrobials and antimicrobial resistance are two sides of the sword, while antimicrobials are essential in health care; globally, antimicrobial resistance is jeopardizing the effectiveness of antimicrobial drugs, thus threatening human health”, said Prof Josep Peñuelas from CREAF-CSIC.

In this review, authors highlight the role of soil and soil fauna microbiomes as source of bioactive compounds, including antibiotics, which have the diverse and abundant intrinsic resistome. Human activities (e.g. misuse of antibiotics) are increasing these resistome and promoting the dispersal of them at the global scale. The increasing abundance of antibiotic-resistance genes (ARGs) in the soil ecosystem has clear and direct implications for planetary health. Management of soil biota – both the microbiota and larger organisms – is vitally important for safeguarding planetary health.

“Soil is a crucial pathway through which humans are exposed to antimicrobial resistance determinants, including those harbored by human pathogens and it is urgent to develop frameworks of risk assessment for antibiotics and ARGs in soils, which should include human exposure pathways and risk quantification”, said Prof Josep Peñuelas from CREAF-CSIC.

Reference: Zhu, Y-G., Zhao, YI., Zhu, D., Gillings, M., Penuelas, J., Sik Ok, Y., Capon, A., Banwart, S. 2019. Soil biota, antimicrobial resistance and planetary health. Environmental International, 131, 105059. doi: 10.1016/j.envint.2019.105059..

Un treball pren 880 ciutats com a laboratoris naturals per preveure l’adaptació de la vegetació al canvi climàtic

Amb participació del CSIC i del CREAF, analitza nombroses dades via satèl·lit de les ciutats i les seves perifèries de les últimes tres dècades. Al centre de moltes ciutats ja s’estan donant condicions de CO2 i temperatura que corresponen a escenaris futurs de canvi climàtic. Els resultats revelen que l’activitat fotosintètica de la vegetació està augmentant, encara que no serà suficient per compensar les nostres emissions.

Els punts vermells indiquen les 880 ciutats i les seves perifèries en l'hemisferi nord. Els colors de fons indiquen el tipus de vegetació: boscos perennes de fulla ampla (EBF en les seves sigles en anglès), boscos caducifolis de fulla ampla (DBF), boscos perennes de coníferes (ENF) i boscos caducifolis de coníferes (DNF).

Les ciutats i les seves perifèries progressivament rurals, són excel·lents laboratoris naturals que emulen les condicions de temperatura i concentració de CO2 futures. I poden ajudar a preveure com s’adaptarà la vegetació del planeta als diferents escenaris futurs de canvi climàtic.

Així ho mostra una investigació internacional, que ha analitzat dades obtingudes via satèl·lit de 880 ciutats de l’hemisferi nord del planeta i de les seves perifèries.

Al centre de moltes ciutats ja s’estan donant condicions de CO2 i temperatura que corresponen a escenaris futurs de canvi climàtic.

El treball, que s’acaba de publicar a la revista Nature Ecology Evolution, està codirigit per Josep Peñuelas, professor d’investigació del CSIC al CREAF en col·laboració amb l’equip del Dr. Yongguang Zang, de la Universitat de Nanjing (Xina).

Els científics han estudiat l’activitat fotosintètica de la vegetació en l’hemisferi nord del planeta, en funció de la temperatura i la concentració de CO2, i han obtingut els gradients d’aquests tres factors, és a dir, com es corelacionan i com canvien progressivament, des cadascun dels centres urbans fins les seves perifèries. L’anàlisi s’ha realitzat a partir de nombroses dades via satèl·lit de les últimes tres dècades, com la fluorescència de clorofil·la induïda per llum solar (SIF en les seves sigles en anglès), l’índex de vegetació o EVI, la temperatura de l’aire, la temperatura del sòl, dades de precipitació o l’altitud, entre d’altres variables.

Tal com explica Josep Peñuelas, si es pren l’exemple de Xangai, “hi té una concentració de 450 ppm de CO2 al centre urbà, que és el que podríem tenir de mitjana a l’atmosfera en uns 15-20 anys. En canvi, a mesura que un s’allunya del centre, les concentracions de CO2 van baixant a 430 ppm, 380 ppm i fins a menys de 380 ppm”.

És a dir, en el centre de moltes ciutats ja s’estan donant condicions de CO2 i temperatura més elevades que la mitjana i que corresponen a possibles escenaris futurs de canvi climàtic, explica aquest expert. Actualment, la concentració mitjana de CO2 és d’uns 400 ppm.

Els científics han emprat totes aquestes dades per projectar com pot variar l’activitat de fotosíntesi en funció de diferents escenaris climàtics, des dels que contemplen increments de temperatura de 2,6 ºC de mitjana fins als que contemplen augments de fins a 8,5 ºC. Els resultats revelen que en tots els escenaris, les fulles de la vegetació brollen abans (s’avancen una mitjana de 5 dies) i cauen més tard (uns 10 dies). I que el pic de màxima activitat fotosintètica es dóna abans (uns 5 dies abans).

En conjunt, la temporada en què les plantes tenen vegetació i absorbeixen CO2 es perllonga, el que significa que les plantes augmenten la seva capacitat de segrestar CO2, especialment, remarca Peñuelas, “a les zones on hi ha recursos hídrics”.

Tot això és una bona notícia, diu aquest investigador, perquè significa que les plantes ens estan ajudant contra el canvi climàtic. Però, adverteix, no és la solució, perquè no és en absolut suficient per compensar totes les emissions que estem generant.

Article de referència

Urban−rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Songhan Wang, Weimin Ju, Josep Peñuelas, Alessandro Cescatti, Yuyu Zhou, Yongshuo Fu, Alfredo Huete, Min Liu, Yongguang Zhang. Nature Ecology and Evolution, https://www.nature.com/articles/s41559-019-0931-1

Font: CREAF 

880 ciudades actúan de laboratorios naturales para prever la adaptación de la vegetación al cambio climático

Ciudad de Nueva York

 

Las zonas urbanas y sus periferias progresivamente rurales son excelentes laboratorios naturales que emulan las condiciones de temperatura y concentración de CO2 futuras y pueden ayudar a prever cómo se adaptará la vegetación del planeta a los diferentes escenarios futuros de cambio climático. Así lo muestra una investigación internacional que ha analizado datos obtenidos vía satélite de 880 ciudades del hemisferio norte del planeta y de sus periferias.

El trabajo se acaba de publicar en la revista Nature Ecology Evolution y está codirigido por Josep Peñuelas, investigador del Consejo Superior de Investigaciones Científicas (CSIC) en el CREAF, en colaboración con el equipo del investigador Yongguang Zang, de la Universidad de Nanjing (China).

Los científicos han estudiado la actividad fotosintética de la vegetación en el hemisferio norte del planeta en función de la temperatura y la concentración de CO2 y han obtenido los gradientes de estos tres factores, es decir, cómo se correlacionan y cómo cambian progresivamente desde cada uno de los centros urbanos hasta sus periferias. El análisis se ha realizado a partir de numerosos datos obtenidos vía satélite durante las últimas tres décadas, como la fluorescencia de clorofila inducida por luz solar, el índice de vegetación, la temperatura del aire, la temperatura del suelo, datos de precipitación y la altitud, entre otras variables.

Tal como explica Josep Peñuelas, si se toma el ejemplo de Shangai, “esta tiene una concentración de 450 ppm de CO2 en el centro urbano, que es lo que podríamos tener de media en la atmósfera en unos 15 a 20 años.  En cambio, a medida que uno se aleja del centro, las concentraciones de CO2 van bajando a 430 ppm, 380 ppm y hasta menos de 380 ppm”.

Es decir, en el centro de muchas ciudades ya se están dando condiciones de CO2 y temperatura más elevadas que la media y que corresponden a posibles escenarios futuros de cambio climático, explica este experto. Actualmente, la concentración media de CO2 es de unos 400 ppm.

Los científicos han usado todos estos datos para proyectar cómo puede variar la actividad de fotosíntesis en función de diferentes escenarios climáticos desde los que contemplan incrementos de temperatura de 2,6 ºC de media hasta los que contemplan aumentos de hasta 8,5 ºC. Los resultados revelan que en todos los escenarios las hojas de la vegetación brotan antes (se adelantan una media de 5 días)  y caen  más tarde (unos 10 días). Además, el pico de máxima actividad fotosintética se da antes (unos 5 días antes).

En conjunto, la temporada en la que las plantas tienen vegetación y absorben CO2 se prolonga, lo que significa que las plantas aumentan su capacidad de secuestrar CO2, especialmente, remarca Peñuelas, “en las zonas donde hay recursos hídricos”.

Según el investigador, todo esto es una buena noticia porque significa que las plantas nos están ayudando contra el cambio climático. Pero, advierte, no es la solución porque no es en absoluto suficiente para compensar todas las emisiones que estamos generando.

Referencia científica:
Songhan Wang, Weimin Ju, Josep Peñuelas, Alessandro Cescatti, Yuyu Zhou, Yongshuo Fu, Alfredo Huete, Min Liu & Yongguang Zhang. Urban−rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nature Ecology & Evolution. DOI: https://doi.org/10.1038/s41559-019-0931-1
Fuente: CSIC 

Prof. Penuelas has visited India and Nepal in the frame of the ERC Imbalance-P project

Prof. Penuelas had been on tour during May visiting India and Nepal to stablish new projects and research lines on phosphorus limitation and climate change impacts in these locations.

In India he visited several research centers to conduct meetings with local scientis from:

  • National Institute of Plant Genome Research (NIPGR). Scientists discussed about the limited stock of this vital macronutrient in nature and its Increasing limitation in an increasingly fertilized world with N and C.
    • Principal investigators
      • Dr. Ayay Parida. Director of the Institute of Life Sciences
      • Dr. Ramesh V. Sonti. Director of the National Institute of Plant Genome Research
      • Dr. Jitender Giri.
      • Dr. Raman Meenakshi Sundaram. PhD. Fellow-NAAS, ISGPB and IUSSTF
      • Dr. Jitendra Thakur.
      • Dr. Amar Pal Singh.
      • Dr. Ananda Sarkar
    • Postdoc researchers
    • PhD students
    • Technicians
  • Indian Institute of Technology, Roorkee
    • Dr. Harsh Chauhan
    • Dr. Jitender Giri from the National Institute of Plant Genome Research
  • Jawaharlal Nehru University. School of Environmental Sciences. Scientists discussed about antibiotic resistance and air pollution.
    • Postdoc researchers
    • PhD students
    • Technicians

 

During the stay Prof Penuelas held seminars and conferences in the research centers listed above.

 

Dr. Jitender Giri and colleagues from the NIPGR
Dr. Jitender Giri, Prof Penuelas and colleagues from the NIPGR
xxx

IIT-2 (2)
Indian Institute of Technology, Roorkee

 

During his visit to Nepal he conducted meetings and fiels trips on research on treeline shifts, nutrients and emergent pollutants in response to global warming and global eutophication and pollution in the Himalayas of Nepal.

This research involved scientists from:

  •  Chinese Academy of Sciences (CAS) – Institute of Tibetan Plateau Research:
    • Prof. Eryuan Liang
    • Dr. Shalik Ram Sigdel
    • Dr.  Haifeng Zhu
  • Nanjing Forestry University – College of Biology and the Environment:
    • Dr. Yafeng Wang
  • Tribhuvan University, Nepal
    • Prof. Binod Dawadi (Central Department of Hydrology and Meteorology)
    • Prof. Ram Kailash Prasad Yadav (Central Department of Botany)
    • Dr. Chitra Bahadur Baniya  (Central Department of Botany)

 

During the stay Prof Penuelas held seminars and conferences and visit selected treeline plots across the central Himalayas in Nepal.

 

Tribhuvan University_30052019
Tribhuvan University, Nepal
xxx 

Tribhuvan University_talk_30052019
Prof. Penuelas seminar at Tribhuvan University, Nepal

Treeline central Himalayas_30052019b
Visit to selected treeline plots across the central Himalayas
xxx IMG_8243_JPenuelas_Nepal