IPCC 2019: IPCC Special Report on Climate Change and Land

IPCC 2019

Prof. Josep Peñuelas has participated in the IPCC Special Report on Climate Change and Land through the drafting of Chapter 2: Land-Climate Interactions.

Land and climate interact in complex ways through changes in forcing and multiple biophysical and biogeochemical feedbacks across different spatial and temporal scales. This chapter assesses climate impacts on land and land impacts on climate, the human contributions to these changes, as well as land-based adaptation and mitigation response options to combat projected climate changes.

IPCC press release

Chapter 2

Soil biota, antimicrobial resistance and planetary health

 

Soil_Pixabay_March2017b_500x500

In a new study in the journal Environmental International authors use the connection between antimicrobials and antimicrobial resistance as an example to demonstrate the complex feedbacks that occur when humans perturb environmental processes. Photo by: Pixabay.

Planetary health is a new field examining the links between human health and the natural environment. Planetary health acknowledges that human health and well-being are inextricably linked to planetary systems, and the integrity of the natural environment needs to be protected to ensure the long-term health of human populations. Soil is a critical component of the planetary health system, it plays a fundamental role in human health and well-being, primarily because most food is derived from soil but also through ecosystem services such as nutrient cycling, pollutant remediation and synthesis of bioactive compounds such as antimicrobials. Soil is also a natural source of antimicrobial resistance, which is often termed intrinsic resistance.

In a new review in the journal Environmental International authors use the nexus of antimicrobials and antimicrobial resistance as a focus to discuss the role of soil in planetary health and illustrate the impacts of soil microbiomes on human health and well-being. “This review examines the sources and dynamics of antimicrobial resistance in soils and uses the perspective of planetary health to track the movement of antimicrobial-resistance genes between environmental compartments, including soil, water, food and air”, said Prof. Yon-Guan Zhu from the State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China.

According to this review the increasing use and misuse of antimicrobials in humans and animals in recent decades has increased both the diversity and prevalence of antimicrobial resistance in soils, particularly in areas affected by human and animal wastes, such as organic manures and reclaimed wastewater, and also by air transmission. “Antimicrobials and antimicrobial resistance are two sides of the sword, while antimicrobials are essential in health care; globally, antimicrobial resistance is jeopardizing the effectiveness of antimicrobial drugs, thus threatening human health”, said Prof Josep Peñuelas from CREAF-CSIC.

In this review, authors highlight the role of soil and soil fauna microbiomes as source of bioactive compounds, including antibiotics, which have the diverse and abundant intrinsic resistome. Human activities (e.g. misuse of antibiotics) are increasing these resistome and promoting the dispersal of them at the global scale. The increasing abundance of antibiotic-resistance genes (ARGs) in the soil ecosystem has clear and direct implications for planetary health. Management of soil biota – both the microbiota and larger organisms – is vitally important for safeguarding planetary health.

“Soil is a crucial pathway through which humans are exposed to antimicrobial resistance determinants, including those harbored by human pathogens and it is urgent to develop frameworks of risk assessment for antibiotics and ARGs in soils, which should include human exposure pathways and risk quantification”, said Prof Josep Peñuelas from CREAF-CSIC.

Reference: Zhu, Y-G., Zhao, YI., Zhu, D., Gillings, M., Penuelas, J., Sik Ok, Y., Capon, A., Banwart, S. 2019. Soil biota, antimicrobial resistance and planetary health. Environmental International, 131, 105059. doi: 10.1016/j.envint.2019.105059..

Un treball pren 880 ciutats com a laboratoris naturals per preveure l’adaptació de la vegetació al canvi climàtic

Amb participació del CSIC i del CREAF, analitza nombroses dades via satèl·lit de les ciutats i les seves perifèries de les últimes tres dècades. Al centre de moltes ciutats ja s’estan donant condicions de CO2 i temperatura que corresponen a escenaris futurs de canvi climàtic. Els resultats revelen que l’activitat fotosintètica de la vegetació està augmentant, encara que no serà suficient per compensar les nostres emissions.

Els punts vermells indiquen les 880 ciutats i les seves perifèries en l'hemisferi nord. Els colors de fons indiquen el tipus de vegetació: boscos perennes de fulla ampla (EBF en les seves sigles en anglès), boscos caducifolis de fulla ampla (DBF), boscos perennes de coníferes (ENF) i boscos caducifolis de coníferes (DNF).

Les ciutats i les seves perifèries progressivament rurals, són excel·lents laboratoris naturals que emulen les condicions de temperatura i concentració de CO2 futures. I poden ajudar a preveure com s’adaptarà la vegetació del planeta als diferents escenaris futurs de canvi climàtic.

Així ho mostra una investigació internacional, que ha analitzat dades obtingudes via satèl·lit de 880 ciutats de l’hemisferi nord del planeta i de les seves perifèries.

Al centre de moltes ciutats ja s’estan donant condicions de CO2 i temperatura que corresponen a escenaris futurs de canvi climàtic.

El treball, que s’acaba de publicar a la revista Nature Ecology Evolution, està codirigit per Josep Peñuelas, professor d’investigació del CSIC al CREAF en col·laboració amb l’equip del Dr. Yongguang Zang, de la Universitat de Nanjing (Xina).

Els científics han estudiat l’activitat fotosintètica de la vegetació en l’hemisferi nord del planeta, en funció de la temperatura i la concentració de CO2, i han obtingut els gradients d’aquests tres factors, és a dir, com es corelacionan i com canvien progressivament, des cadascun dels centres urbans fins les seves perifèries. L’anàlisi s’ha realitzat a partir de nombroses dades via satèl·lit de les últimes tres dècades, com la fluorescència de clorofil·la induïda per llum solar (SIF en les seves sigles en anglès), l’índex de vegetació o EVI, la temperatura de l’aire, la temperatura del sòl, dades de precipitació o l’altitud, entre d’altres variables.

Tal com explica Josep Peñuelas, si es pren l’exemple de Xangai, “hi té una concentració de 450 ppm de CO2 al centre urbà, que és el que podríem tenir de mitjana a l’atmosfera en uns 15-20 anys. En canvi, a mesura que un s’allunya del centre, les concentracions de CO2 van baixant a 430 ppm, 380 ppm i fins a menys de 380 ppm”.

És a dir, en el centre de moltes ciutats ja s’estan donant condicions de CO2 i temperatura més elevades que la mitjana i que corresponen a possibles escenaris futurs de canvi climàtic, explica aquest expert. Actualment, la concentració mitjana de CO2 és d’uns 400 ppm.

Els científics han emprat totes aquestes dades per projectar com pot variar l’activitat de fotosíntesi en funció de diferents escenaris climàtics, des dels que contemplen increments de temperatura de 2,6 ºC de mitjana fins als que contemplen augments de fins a 8,5 ºC. Els resultats revelen que en tots els escenaris, les fulles de la vegetació brollen abans (s’avancen una mitjana de 5 dies) i cauen més tard (uns 10 dies). I que el pic de màxima activitat fotosintètica es dóna abans (uns 5 dies abans).

En conjunt, la temporada en què les plantes tenen vegetació i absorbeixen CO2 es perllonga, el que significa que les plantes augmenten la seva capacitat de segrestar CO2, especialment, remarca Peñuelas, “a les zones on hi ha recursos hídrics”.

Tot això és una bona notícia, diu aquest investigador, perquè significa que les plantes ens estan ajudant contra el canvi climàtic. Però, adverteix, no és la solució, perquè no és en absolut suficient per compensar totes les emissions que estem generant.

Article de referència

Urban−rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Songhan Wang, Weimin Ju, Josep Peñuelas, Alessandro Cescatti, Yuyu Zhou, Yongshuo Fu, Alfredo Huete, Min Liu, Yongguang Zhang. Nature Ecology and Evolution, https://www.nature.com/articles/s41559-019-0931-1

Font: CREAF 

880 ciudades actúan de laboratorios naturales para prever la adaptación de la vegetación al cambio climático

Ciudad de Nueva York

 

Las zonas urbanas y sus periferias progresivamente rurales son excelentes laboratorios naturales que emulan las condiciones de temperatura y concentración de CO2 futuras y pueden ayudar a prever cómo se adaptará la vegetación del planeta a los diferentes escenarios futuros de cambio climático. Así lo muestra una investigación internacional que ha analizado datos obtenidos vía satélite de 880 ciudades del hemisferio norte del planeta y de sus periferias.

El trabajo se acaba de publicar en la revista Nature Ecology Evolution y está codirigido por Josep Peñuelas, investigador del Consejo Superior de Investigaciones Científicas (CSIC) en el CREAF, en colaboración con el equipo del investigador Yongguang Zang, de la Universidad de Nanjing (China).

Los científicos han estudiado la actividad fotosintética de la vegetación en el hemisferio norte del planeta en función de la temperatura y la concentración de CO2 y han obtenido los gradientes de estos tres factores, es decir, cómo se correlacionan y cómo cambian progresivamente desde cada uno de los centros urbanos hasta sus periferias. El análisis se ha realizado a partir de numerosos datos obtenidos vía satélite durante las últimas tres décadas, como la fluorescencia de clorofila inducida por luz solar, el índice de vegetación, la temperatura del aire, la temperatura del suelo, datos de precipitación y la altitud, entre otras variables.

Tal como explica Josep Peñuelas, si se toma el ejemplo de Shangai, “esta tiene una concentración de 450 ppm de CO2 en el centro urbano, que es lo que podríamos tener de media en la atmósfera en unos 15 a 20 años.  En cambio, a medida que uno se aleja del centro, las concentraciones de CO2 van bajando a 430 ppm, 380 ppm y hasta menos de 380 ppm”.

Es decir, en el centro de muchas ciudades ya se están dando condiciones de CO2 y temperatura más elevadas que la media y que corresponden a posibles escenarios futuros de cambio climático, explica este experto. Actualmente, la concentración media de CO2 es de unos 400 ppm.

Los científicos han usado todos estos datos para proyectar cómo puede variar la actividad de fotosíntesis en función de diferentes escenarios climáticos desde los que contemplan incrementos de temperatura de 2,6 ºC de media hasta los que contemplan aumentos de hasta 8,5 ºC. Los resultados revelan que en todos los escenarios las hojas de la vegetación brotan antes (se adelantan una media de 5 días)  y caen  más tarde (unos 10 días). Además, el pico de máxima actividad fotosintética se da antes (unos 5 días antes).

En conjunto, la temporada en la que las plantas tienen vegetación y absorben CO2 se prolonga, lo que significa que las plantas aumentan su capacidad de secuestrar CO2, especialmente, remarca Peñuelas, “en las zonas donde hay recursos hídricos”.

Según el investigador, todo esto es una buena noticia porque significa que las plantas nos están ayudando contra el cambio climático. Pero, advierte, no es la solución porque no es en absoluto suficiente para compensar todas las emisiones que estamos generando.

Referencia científica:
Songhan Wang, Weimin Ju, Josep Peñuelas, Alessandro Cescatti, Yuyu Zhou, Yongshuo Fu, Alfredo Huete, Min Liu & Yongguang Zhang. Urban−rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nature Ecology & Evolution. DOI: https://doi.org/10.1038/s41559-019-0931-1
Fuente: CSIC 

Prof. Penuelas has visited India and Nepal in the frame of the ERC Imbalance-P project

Prof. Penuelas had been on tour during May visiting India and Nepal to stablish new projects and research lines on phosphorus limitation and climate change impacts in these locations.

In India he visited several research centers to conduct meetings with local scientis from:

  • National Institute of Plant Genome Research (NIPGR). Scientists discussed about the limited stock of this vital macronutrient in nature and its Increasing limitation in an increasingly fertilized world with N and C.
    • Principal investigators
      • Dr. Ayay Parida. Director of the Institute of Life Sciences
      • Dr. Ramesh V. Sonti. Director of the National Institute of Plant Genome Research
      • Dr. Jitender Giri.
      • Dr. Raman Meenakshi Sundaram. PhD. Fellow-NAAS, ISGPB and IUSSTF
      • Dr. Jitendra Thakur.
      • Dr. Amar Pal Singh.
      • Dr. Ananda Sarkar
    • Postdoc researchers
    • PhD students
    • Technicians
  • Indian Institute of Technology, Roorkee
    • Dr. Harsh Chauhan
    • Dr. Jitender Giri from the National Institute of Plant Genome Research
  • Jawaharlal Nehru University. School of Environmental Sciences. Scientists discussed about antibiotic resistance and air pollution.
    • Postdoc researchers
    • PhD students
    • Technicians

 

During the stay Prof Penuelas held seminars and conferences in the research centers listed above.

 

Dr. Jitender Giri and colleagues from the NIPGR
Dr. Jitender Giri, Prof Penuelas and colleagues from the NIPGR
xxx

IIT-2 (2)
Indian Institute of Technology, Roorkee

 

During his visit to Nepal he conducted meetings and fiels trips on research on treeline shifts, nutrients and emergent pollutants in response to global warming and global eutophication and pollution in the Himalayas of Nepal.

This research involved scientists from:

  •  Chinese Academy of Sciences (CAS) – Institute of Tibetan Plateau Research:
    • Prof. Eryuan Liang
    • Dr. Shalik Ram Sigdel
    • Dr.  Haifeng Zhu
  • Nanjing Forestry University – College of Biology and the Environment:
    • Dr. Yafeng Wang
  • Tribhuvan University, Nepal
    • Prof. Binod Dawadi (Central Department of Hydrology and Meteorology)
    • Prof. Ram Kailash Prasad Yadav (Central Department of Botany)
    • Dr. Chitra Bahadur Baniya  (Central Department of Botany)

 

During the stay Prof Penuelas held seminars and conferences and visit selected treeline plots across the central Himalayas in Nepal.

 

Tribhuvan University_30052019
Tribhuvan University, Nepal
xxx 

Tribhuvan University_talk_30052019
Prof. Penuelas seminar at Tribhuvan University, Nepal

Treeline central Himalayas_30052019b
Visit to selected treeline plots across the central Himalayas
xxx IMG_8243_JPenuelas_Nepal

 

Prof. Penuelas has visited India and Nepal in the frame of the ERC Imbalance-P project

Prof. Penuelas had been on tour during May visiting India and Nepal to stablish new projects and research lines on phosphorus limitation and climate change impacts in these locations.

In India he visited several research centers to conduct meetings with local scientis from:

  • National Institute of Plant Genome Research (NIPGR). Scientists discussed about the limited stock of this vital macronutrient in nature and its Increasing limitation in an increasingly fertilized world with N and C.
    • Principal investigators
      • Dr. Ayay Parida. Director of the Institute of Life Sciences
      • Dr. Ramesh V. Sonti. Director of the National Institute of Plant Genome Research
      • Dr. Jitender Giri.
      • Dr. Raman Meenakshi Sundaram. PhD. Fellow-NAAS, ISGPB and IUSSTF
      • Dr. Jitendra Thakur.
      • Dr. Amar Pal Singh.
      • Dr. Ananda Sarkar.
    • Postdoc researchers
    • PhD students
    • Technicians

 

  • Indian Institute of Technology, Roorkee
    • Dr. Harsh Chauhan
    • Dr. Jitender Giri from the National Institute of Plant Genome Research

 

  • Jawaharlal Nehru University. School of Environmental Sciences. Scientists discussed about antibiotic resistance and air pollution.
    • Postdoc researchers
    • PhD students
    • Technicians

 

During the stay Prof Penuelas held seminars and conferences in the research centers listed above.

 

Dr. Jitender Giri and colleagues from the NIPGR
Dr. Jitender Giri, Prof Penuelas and colleagues from the NIPGR
xxx

IIT-2 (2)
Indian Institute of Technology, Roorkee

 

 

During his visit to Nepal he conducted meetings and fiels trips on research on treeline shifts, nutrients and emergent pollutants in response to global warming and global eutophication and pollution in the Himalayas of Nepal.

Thisresearch involved scientists from:

  •  Chinese Academy of Sciences (CAS) – Institute of Tibetan Plateau Research:
    • Prof. Eryuan Liang
    • Dr. Shalik Ram Sigdel
    • Dr.  Haifeng Zhu

 

  • Nanjing Forestry University – College of Biology and the Environment:
    • Dr. Yafeng Wang

 

  • Tribhuvan University, Nepal
    • Prof. Binod Dawadi (Central Department of Hydrology and Meteorology)
    • Prof. Ram Kailash Prasad Yadav (Central Department of Botany)
    • Dr. Chitra Bahadur Baniya  (Central Department of Botany)

 

During the stay Prof Penuelas held seminars and conferences and visit selected treeline plots across the central Himalayas in Nepal.

Tribhuvan University_30052019
Tribhuvan University, Nepal
xxx   

Tribhuvan University_talk_30052019
Prof. Penuelas seminar at Tribhuvan University, Nepal

Treeline central Himalayas_30052019b
Visit to selected treeline plots across the central Himalayas
xxx IMG_8243_JPenuelas_Nepal

 

Different effects of alpine woody plant expansion on domestic and wild ungulates

Evolution of the landscape-use efficiencies (LUE) of Pyrenean chamois and seasonal livestock along different scenarios of woody plant expansion. Slopes of the linear regression are also reported for each species. Figure: Espunyes et al, 2019.

 

Climatic and land‐use changes are leading to shrub expansion in alpine grasslands. In this work, we address whether wild and domestic herbivores under varying conditions of resource availability will be able to use efficiently their foraging landscape.

In a new study plublished in the journal Global Change Biology authors found that “shrubification” affects herbivores differently depending on their feeding preferences and plasticity. Mixed feeders will manage better in fallow landscapes but free‐ranging livestock will be less efficient, highlighting a growing economic risk for mountain livestock farmers worldwide.

Reference: Johan Espunyes, Miguel Lurgi, Ulf Büntgen, Jordi Bartolomé, Juan Antonio Calleja, Arturo Gálvez‐Cerón, Josep Peñuelas, Bernat Claramunt-López, Emmanuel Serrano. 2019. Different effects of alpine woody plant expansion on domestic and wild ungulates. Global Change Biology (2019), 808-1819 | First Published: 08 February 2019

The bioelements, the elementome and the “biogeochemical niche”

Biogeochemical niches_Elementome_2019_1000x
Possible responses of species biogeochemical niches to long-term changes in the abiotic and biotic environmental conditions (possible evolutionary changes in the elementome of species). Authors hypothesize that each species has an optimal function related with its niche traits and thus an optimal content of the distinct bioelements. Figure: Peñuelas, J. et al. Ecology 2019.

 

Every living creature on Earth is made of atoms of the various bioelements (elements used by living organisms) that are harnessed in the construction of molecules, tissues, organisms and communities, as we know them. The most common bioelements are: hydrogen (H) 59%, oxygen (O) 24%, carbon (C) 11%, nitrogen (N) 4%, phosphorus (P) 1% and sulfur (S) 0.1-1% (percentages of total number of atoms in organisms), but there are other bioelements, normally present in low concentrations such as potassium (K), magnesium (Mg), iron (Fe), calcium (Ca), molybdenum (Mo), manganese (Mn) and zinc (Zn). Organisms need these bioelements in specific quantities and proportions to survive and grow.

Distinct species have different functions and life strategies, and have therefore developed distinct structures and adopted a certain combination of metabolic and physiological processes. Each species is thus also expected to have different requirements for each bioelement andbe characterized by an specific bio-elemental composition.

In a new study published in the journal Ecology authors propose that a “biogeochemical niche” can be associated with the classical ecological niche of each species. Authors show from field data examples that a biogeochemical niche is characterized by a particular elementome defined as the content of all (or at least most) bioelements. “The differences in elementome among species are a function of taxonomy and phylogenetic distance, sympatry (the bioelemental compositions should differ more among coexisting than among non-coexisting species to avoid competitive pressure), and homeostasis with a continuum between high homeostasis/low plasticity and low homeostasis/high plasticity”, explains Prof. Josep Penuelas from CREAF-CSIC Barcelona.

The biogeochemical niche hypothesis proposed in this paper has the advantage relative to other associated theoretical niche hypotheses that it can be easily characterized by actual quantification of a measurable trait: the elementome of a given organism or a community, being potentially applicable across taxa and habitats. The changes in bioelemental availability can determine genotypic selection and therefore have a feedback on ecosystem function and organization.

“Further studies are warranted to discern the ecological and evolutionary processes involved in the biogeochemical niche of all types of individuals, taxa and ecosystems. The changes of bioelements availability and use at long timescales should determine phenotypic selection and therefore also ecosystem function and organization, and, at the end, the evolution of life and the environment”, says Prof. Jordi Sardans from CREAF-CSIC.

Reference: Peñuelas, J., Fernández-Martínez, M., Ciais, P., Jou, D., Piao, S., Obersteiner, M., Vicca, S., Janssens, I.A., Sardans, J. 2019. The bioelements, the elementome and the “biogeochemical niche”. Ecology 2019. DOI: 10.1002/ecy.2652

URL: https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecy.2652

Kick off meeting of the Ecometabolomics project

Promising kick off meeting of the Ecometabolomics project at Ecological and Forestry Applications Research Centre (CREAF),  Bellaterra, Catalonia (March 18-19, 2019).

The Ecometabolomics project deals with the global linkages between plant metabolism, functioning and life history and includes participants from ETH Zürich, Université de Genève, Universität Wien, Université de Toulouse, University of Manchester, Oxford University and CSIC-CREAF.

Ecometabolomics team_2019
Ecometabolomics team.

Kick off meeting of the FutureArtic project

Great kick off meeting of the FutureArtic project in Sitges. Interesting presentations that guarantee a promising development of this project.

The main aims of the Sitges workshop were to:

  • Create a platform to get an in depth overview on the past and ongoing research activities within ForHot (the previous experiment at the site).
  • Have an official kick-off meeting for the FutureArctic ITN project.

 

FutureArtic team_2019
FutureArtic team in Sitges, March 2019.

 

Climate change will affect arctic and subarctic ecosystems more than other ecosystems worldwide, with temperature increases expected up to 4-6°C. Overarching and basic questions remain unanswered, partially due to limited access of these remote areas and technological limitations: How much carbon will escape from the Arctic under a future climate? How do the multitude of ecosystem processes, driven by plant growth, microbial activities and soil characteristics, interact to determine soil carbon storage capacity?. The H2020 ITN ‘FutureArctic’ aims to pave the way for generalized permanently connected data acquisition systems for key environmental variables and processes.

For more information consult the website FutureArtic