Temperature increase reduces global yields of major crops in four independent estimates

kornfeld / cornfield
Understanding climate change is critical to ensure global food security. In this study authors combine four analytical methods to assess the impact of increasing temperatures on yields of wheat, rice, maize and soybean. Photo by Pexels

 

All agricultural production is vulnerable to climate change including wheat, rice, maize and soybean that provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these major crops is therefore critical to maintain global food supply.

In a new study in the journal Proceedings of the National Academy of Sciences authors investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions and field-warming experiments.

“By combining four different methods, our comprehensive assessment of the impacts of increasing temperatures on major global crops shows substantial risks for agricultural production, already stagnating in some parts of the world”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona.

The study shows that results from the different methods consistently indicate negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation and genetic improvement, each degree Celsius increase in global mean temperature would on average reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4% and soybean by 3.1%. In any case, researchers point out that results are highly heterogeneous across crops and geographical areas with some positive impact estimates.

Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops, and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

Journal Reference: Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J-L., Elliott, L., Ewert, F., Janssens, I., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., Asseng, S. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences.