The bioelements, the elementome and the “biogeochemical niche”

Biogeochemical niches_Elementome_2019_1000x
Possible responses of species biogeochemical niches to long-term changes in the abiotic and biotic environmental conditions (possible evolutionary changes in the elementome of species). Authors hypothesize that each species has an optimal function related with its niche traits and thus an optimal content of the distinct bioelements. Figure: Peñuelas, J. et al. Ecology 2019.


Every living creature on Earth is made of atoms of the various bioelements (elements used by living organisms) that are harnessed in the construction of molecules, tissues, organisms and communities, as we know them. The most common bioelements are: hydrogen (H) 59%, oxygen (O) 24%, carbon (C) 11%, nitrogen (N) 4%, phosphorus (P) 1% and sulfur (S) 0.1-1% (percentages of total number of atoms in organisms), but there are other bioelements, normally present in low concentrations such as potassium (K), magnesium (Mg), iron (Fe), calcium (Ca), molybdenum (Mo), manganese (Mn) and zinc (Zn). Organisms need these bioelements in specific quantities and proportions to survive and grow.

Distinct species have different functions and life strategies, and have therefore developed distinct structures and adopted a certain combination of metabolic and physiological processes. Each species is thus also expected to have different requirements for each bioelement andbe characterized by an specific bio-elemental composition.

In a new study published in the journal Ecology authors propose that a “biogeochemical niche” can be associated with the classical ecological niche of each species. Authors show from field data examples that a biogeochemical niche is characterized by a particular elementome defined as the content of all (or at least most) bioelements. “The differences in elementome among species are a function of taxonomy and phylogenetic distance, sympatry (the bioelemental compositions should differ more among coexisting than among non-coexisting species to avoid competitive pressure), and homeostasis with a continuum between high homeostasis/low plasticity and low homeostasis/high plasticity”, explains Prof. Josep Penuelas from CREAF-CSIC Barcelona.

The biogeochemical niche hypothesis proposed in this paper has the advantage relative to other associated theoretical niche hypotheses that it can be easily characterized by actual quantification of a measurable trait: the elementome of a given organism or a community, being potentially applicable across taxa and habitats. The changes in bioelemental availability can determine genotypic selection and therefore have a feedback on ecosystem function and organization.

“Further studies are warranted to discern the ecological and evolutionary processes involved in the biogeochemical niche of all types of individuals, taxa and ecosystems. The changes of bioelements availability and use at long timescales should determine phenotypic selection and therefore also ecosystem function and organization, and, at the end, the evolution of life and the environment”, says Prof. Jordi Sardans from CREAF-CSIC.

Reference: Peñuelas, J., Fernández-Martínez, M., Ciais, P., Jou, D., Piao, S., Obersteiner, M., Vicca, S., Janssens, I.A., Sardans, J. 2019. The bioelements, the elementome and the “biogeochemical niche”. Ecology 2019. DOI: 10.1002/ecy.2652


Kick off meeting of the Ecometabolomics project

Promising kick off meeting of the Ecometabolomics project at Ecological and Forestry Applications Research Centre (CREAF),  Bellaterra, Catalonia (March 18-19, 2019).

The Ecometabolomics project deals with the global linkages between plant metabolism, functioning and life history and includes participants from ETH Zürich, Université de Genève, Universität Wien, Université de Toulouse, University of Manchester, Oxford University and CSIC-CREAF.

Ecometabolomics team_2019
Ecometabolomics team.

Kick off meeting of the FutureArtic project

Great kick off meeting of the FutureArtic project in Sitges. Interesting presentations that guarantee a promising development of this project.

The main aims of the Sitges workshop were to:

  • Create a platform to get an in depth overview on the past and ongoing research activities within ForHot (the previous experiment at the site).
  • Have an official kick-off meeting for the FutureArctic ITN project.


FutureArtic team_2019
FutureArtic team in Sitges, March 2019.


Climate change will affect arctic and subarctic ecosystems more than other ecosystems worldwide, with temperature increases expected up to 4-6°C. Overarching and basic questions remain unanswered, partially due to limited access of these remote areas and technological limitations: How much carbon will escape from the Arctic under a future climate? How do the multitude of ecosystem processes, driven by plant growth, microbial activities and soil characteristics, interact to determine soil carbon storage capacity?. The H2020 ITN ‘FutureArctic’ aims to pave the way for generalized permanently connected data acquisition systems for key environmental variables and processes.

For more information consult the website FutureArtic

7th ForHot annual meeting

Excellent working sessions at the 7th ForHot annual meeting in Sitges. Interesting and valuable presentations that will enable to advance in the study of how various ecosystem processes are affected by temperature.

The ForHot project is based on the study of a natural soil warming generated by the earth-quake that shocked S-Iceland in May 2008.

ForHot Team_2019
ForHot team in Sitges, March 2019.


On May 29, 2008, there was an earthquake in S-Iceland that measured 6.3 on the Richter scale. One of its many implications was that geothermal systems close to its epicentre were disturbed. At Reykir, one of the campuses of the Agricultural University of Iceland, one such geothermal system moved from its previous location, to a new and previously “cold” area. The new belowground geothermal channels (in the bedrock) resulted in soil temperature to increase in the new area that is ca. 4 ha in size.

For more information consult the website ForHot