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Abstract 

Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. 

The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and 

temperature are the main cues controlling leaf senescence in winter deciduous species, with water 

stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at 

latitudes where winters are severe and temperature gains importance in the regulation as winters 

become less severe. On average, climatic warming will delay and drought will advance leaf 

senescence, but at varying degrees depending on the species. Warming and drought thus have opposite 

effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on 

the relative importance of each factor in specific regions. Warming is not expected to have a strong 

impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could 

facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves 

senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient 

resorption will depend on the contrasting effects of warming and drought. Changes in nutrient 

resorption and proficiency will impact production in the following year, at least in early spring, 

because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage 

during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon 

uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. 
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Climates outside the equatorial belt alternate between seasons having conditions favorable for 

biological activity and seasons having limiting conditions. Perennial plants have adapted their life 

cycles to this seasonality, developing an activity-dormancy cycle that alternates an active period for 

growth and photosynthesis with a dormant period for survival through unfavorable conditions. Woody 

plants in temperate and boreal ecosystems, having winter as the unfavorable season, manage their 

foliage differently during dormancy: evergreen species maintain their leaves whereas deciduous 

species shed all foliage.  

The transitions between active and dormant stages are easily recognizable in deciduous species 

because of greening during budburst and because of leaf yellowing or coloring and leaf fall. Leaf 

senescence is the last stage in the lives of leaves and is visually identified by a change in the color of 

leaves from green to yellow or red. The date of leaf coloring is used to quantify the phenology of leaf 

senescence; leaf senescence and change in color are commonly synonymous in the literature and in 

this article. When quantification of date is not the issue, leaf senescence can also refer to the entire 

process. The process of leaf senescence includes several physiological changes that will be described 

later. We use “process of leaf senescence” and “to progress” when referring to the dynamic aspects of 

leaf senescence. Leaf fall is the next step after leaf senescence and in most cases is tightly related to it 

to such an extent that it can be used as a proxy of leaf senescence, assuming a certain delay in time. 

 

Alteration of phenology in winter deciduous species by climate change 

The conspicuous events of greening and coloring of the foliage have facilitated the collection of long-

term phenological records that, together with satellite records, have allowed the study of trends in plant 

and vegetation phenology. Evidence is accumulating that the timing of the transitions between active 

and dormant stages has been changing, and the changes are assumed to be a consequence of climate 

change. Phenological records indicate that leaf unfolding has advanced an average of 2-3 days per 

decade for the last five decades (Peñuelas & Filella, 2001, Peñuelas et al., 2002, Menzel et al., 2006, 

Gordo & Sanz, 2009) and that leaf senescence or fall has been delayed by 1-2.5 days per decade 

(Menzel & Fabian 1999; Peñuelas et al., 2002; Matsumoto et al., 2003; Gordo & Sanz, 2009). Changes 
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in the dates of leaf senescence and fall in the phenological records, however, are slower, more 

heterogeneous and less consistent than those for leaf unfolding (Peñuelas et al., 2002; Gordo & Sanz, 

2009; Menzel et al., 2006).  

Spring and autumnal phenologies impact forest productivity because they define the length of 

the growing season. Longer growing seasons are a consequence of advanced budburst or/and delayed 

leaf senescence. The analyses of 20-25 years of satellite observations from the 1980s to the 2000s have 

shown that the start of the growing season has advanced by 5.4 days, and the end of the growing 

season has been delayed by 6.6 days in the temperate vegetation of the Northern Hemisphere (Jeong et 

al., 2011), and that the end of the growing season has been delayed by an average of 0.4 d y
-1
 in the 

deciduous forests of eastern USA (Dragoni & Rahman, 2012) and by 0.42 d y
-1
 in Europe (Stöckli & 

Vidale, 2004). The longer the period with green foliage, the larger the C uptake and productivity of 

forests. For example, in a 10-year record of net ecosystemic exchange in a deciduous forest, a delay of 

3 d y
-1
 in leaf senescence paralleled an increase in net ecosystemic productivity of 5 g C m

-2
 y

-1
 in late 

summer (Dragoni et al., 2011). 

Ecosystemic productivity is key for the functioning of the Earth system, as demonstrated by the 

coordination of alternating climatic seasons with the annual dynamics of increases and decreases in 

atmospheric CO2 levels (Keeling et al., 1996). Efforts to disentangle the effects of climate change on 

the phenology of the vegetation have been mostly motivated by the implications of productivity on the 

C cycle and, hence, on global climate. Modeling predicts advances in leaf appearance of 5-9 days 

during this century (Morin et al., 2009). The modeling of leaf senescence in winter deciduous species 

is less satisfactory, and the results are good for some species but not for others (Vitasse et al., 2010). 

Models predict a delay of circa 1.5-2.5 days per decade in the current century (Delpierre et al., 2009; 

Lebourgeois et al., 2010; Dragoni et al., 2011; Archetti et al., 2013), although no changes are 

predicted for some individual species (Archetti et al., 2013). 

At the individual level, longer seasons improve competitive ability if C uptake is not 

compromised by the potential damage of frosts. Advancing leaf unfolding increases the risk of late-

spring frosts that could kill new tissues and further affect production. Delaying leaf senescence 
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increases the risk of early-autumnal frosts that could kill leaves before the completion of nutrient 

resorption during senescence and could reduce the nutrient reserves that support growth in the next 

season (e.g. Frachenoud et al., 2009, Schreiber et al., 2013). Indeed, the main function of the process 

of leaf senescence is the recovery of nutrients before leaves detach from the perennial organs of the 

plant. 

 

Aspects of the physiology of leaf senescence and of leaf biochemistry relevant to nutrient 

resorption  

Leaf senescence consists of the orderly degradation of the cells of the leaf, leading to cell death and 

ultimately to leaf fall. The degradation of the cells is a prerequisite step required for the resorption of 

nutrients. Nutrient resorption is not absolute, and falling leaves retain a certain amount of nutrients, 

whose concentrations represent the proficiency of nutrient resorption (Killingbeck, 1996). The 

proportion of the nutrients in green leaves prior to senescence that are resorbed before abscission is 

known as the nutrient-resorption efficiency (Aerts, 1996; Killingbeck, 1996). 

Senescence implies a radical change in foliar metabolism that shifts from assimilation to the 

remobilization of resources, as shown by the dynamics of the transcriptomes, proteomes, and 

metabolomes of foliar cells. The onset of leaf senescence, the tipping point in the transition from 

anabolism to catabolism, manifests before the mentioned external signals are visible. The onset begins 

with the down-regulation of genes associated with photosynthesis and with the up-regulation of genes 

associated with senescence (Breeze et al., 2011; Guo, 2013). 

By the end of the process of leaf senescence, a large fraction of the mobile nutrients have been 

transferred to the perennating organs. The recovery of nutrients is a complex challenge given the 

variety of nutrient-containing molecules and the compartmentalization in organelles. Leaf senescence 

proceeds sequentially beginning with the disassembly of the chloroplast, while mitochondria and 

nuclei remain functional (Inada et al., 1998; Keech et al., 2007). The degradation of chlorophyll, the 

cause of the characteristic leaf yellowing, occurs early to prevent the formation of oxygen radicals that 

could disturb the activity of enzymes (Hortensteiner, 2006). Mitochondria maintain integrity until the 
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last stages of senescence, with respiration supplying the ATP and C skeletons needed for nutrient 

resorption (Keech et al., 2007). 

The main nutrients withdrawn from senescent leaves are N, P, K, and S, the macronutrients that 

are mobile in the phloem, whereas Ca and Mg, the other two macronutrients, are less mobile and are 

often accreted rather than resorbed at the end of the process (Vergutz et al., 2012; see review in 

Killingbeck, 2004). 

Proteins are abundant N-containing macromolecules. Chloroplasts contain 50-60% of the N in 

leaves (Mostowska, 2005), half of which is in Rubisco. Nucleic acids contain 10-15% of the foliar N 

(Chapin & Kedrowski, 1983; Evans & Seemann, 1989), and minor amounts are found in cytosolic 

proteins, chlorophyll, and amino acids (Fischer, 2007). Up to 9% of the foliar N is in proteins attached 

to cell walls (Onoda et al., 2004). S is found in the amino acids cysteine and methionine and therefore 

has the same distribution as N in proteins. 

Most plant P, circa 58%, is in inorganic forms, and the remainder is distributed among RNA 

(18%), lipids (13%), and esters (9%), with only 2% found in DNA (Sanchez, 2006). The proportion of 

P in RNA has notably sometimes been overestimated because of its importance in protein synthesis 

(see Matzek & Vitousek, 2009). K does not occur in macromolecules but is found as soluble ions. K is 

thus highly mobile and can potentially be leached, which accounts for the uncertainties in the exact 

proportion of K actually resorbed.  

Nutrient-containing macromolecules are degraded and transformed into molecules suitable for 

transport from the leaf. A plethora of hydrolases (proteases, ribonucleases, and lipases) is required for 

the degradation of the wide variety of macromolecules (for a review see Mostowska, 2005). Enzymes 

involved in N metabolism are also required for the deamination of nucleotides and proteins to liberate 

free ammonia, which is needed for the synthesis of glutamine and asparagine. These two amino acids 

are preferred for N transport in the phloem, whereas P is transported mostly in inorganic form, 

although organic P compounds are also found in the phloem (Peng & Li, 2005).  

Nutrient-resorption efficiencies in woody deciduous plants were considered to average 54% for 

N and 50% for P (Aerts, 1996), but more realistic values obtained after correction for the mass lost 
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during the process raise the efficiencies to 62% for N, 65% for P, and 70% for K (Vergutz et al., 

2012). Resorption efficiencies for N may be as high as 90%, as described for Populus tremula 

(Keskitalo et al., 2005). 

Nutrient-resorption efficiency and nutrient proficiency, the nutrient concentration in falling 

leaves, are not constant across years (Killingbeck, 1996). For example, N concentrations in the falling 

leaves of Acer saccharum over a 15-year period ranged from 6.3 to 10.8 mg N g
-1
 DW in a natural 

forest and from 6.7 to 14.3 mg N g
-1
 DW in a forest with N deposition (Pregitzer et al., 2010) (Fig. 1). 

The minimum concentration that can be reached after resorption is the limit for potential resorption 

and indicates the maximum proficiency. Resorption in deciduous species is generally considered 

complete when N and P concentrations are below 0.7 and 0.05%, respectively (Killingbeck, 1996). 

Incomplete resorption occurs when the degradation of macromolecules or the export of mobile 

compounds containing nutrients is not completed. Potential resorption depends on foliar characteristics 

and on the amounts of nutrients in macromolecules not suitable for degradation (Killingbeck & 

Costigan, 1988; Killingbeck, 2004). Foliar N, for example, is found in pools associated with the 

metabolic machinery and with structural components (Charles-Edwards et al., 1987). The structural 

pool is considered unsuitable for resorption (Anten & Werger, 1996; Hikosaka, 2003), at least the 

fractions embedded in cell walls (Yasumura et al., 2005). 

 

Significance of nutrient resorption for winter deciduous plants and ecosystems: the case of N  

The nutrient content of green foliage represents a large fraction of the total nutrient content in plants. 

The resorption of nutrients implies important annual fluxes, e.g. 47 kg N ha
-1
 (about 56% of the total 

N) in a stand of Quercus serrata (Migita et al., 2007) or 7-27 kg N ha
-1
, 0.5-1.8 kg P ha

-1
, and 1.8- 5.3 

kg K ha
-1
 in several coppices of Q. pyrenaica (Gallardo et al., 1999). Changes in the flux of resorbed 

nutrients are accompanied by symmetrical changes in the flux of nutrients returned to the soil with the 

fallen leaves.  

Perennial plants contain a pool of mobilizable N that in deciduous plants is alternatively located 

in leaves or woody tissues following the seasonal cycle (Fig. 2) and that in evergreens is mobilized 
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from old to new leaves. During the dormant season, woody tissues of deciduous plants, but especially 

one-year-old twigs, store N mainly as storage proteins in the bark but also as amino acids. When the 

active season resumes, N flows toward newly formed tissues. Large amounts of N go to Rubisco in the 

leaves, a protein that, in addition to its key role in C fixation, has been considered to also have a 

storage function (Cooke & Weih, 2005; Millard et al., 2007). When the active season ends, leaf 

senescence remobilizes a large proportion of the N back to the woody tissues. In Prunus persica, for 

example, at an N-resorption efficiency of 50%, resorption from foliage could provide an estimated 

80% of the N stored in overwintering organs (Niederholzer et al., 2001).  

The internal cycling of N improves resource economy because it saves plants from devoting 

resources and energy to acquire new N. The importance of internal cycling, however, is more strategic 

because it allows intense growth at the beginning of the season. The flush of new biomass in spring is 

supported, at least initially, almost exclusively by N already stored in the plant (Neilsen et al., 1997; 

Ueda et al., 2009; Pregitzer et al., 2010; Jordan et al., 2012). Stored N enables early spring growth 

independent of potentially unfavourable soil temperatures, although newly acquired N can later be 

supplemented for newer growth (Rennenberg et al., 2010). For example, remobilized N in Q. petraea 

contributes circa 90% of the total N in growing leaves and twigs in the first two weeks following 

budburst, but later newly absorbed N progressively increases, reaching 27% in fully expanded leaves 

and 18% in developed twigs (El Zein et al., 2011). Moreover, shoots of A. saccharum are constructed 

with N taken up in previous years, in contrast to fine roots that are constructed from newly absorbed N 

(Pregitzer et al., 2010). Enhancing C uptake in early season thus depends not only on early budburst, 

but also on the appropriate supply of nutrients for the formation and functioning of new leaves. Plants 

can optimize this early supply by adjusting the timing of leaf senescence to optimize nutrient 

resorption. 

 

Getting ready for overwintering 

Leaf senescence is one among many successive functional and structural changes that prepare plants 

adapted to climates with cold seasons for survival in winter. The preparations start long before the 
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arrival of the unfavorable conditions. The first change is the cessation of growth in the middle of the 

active season in species with free growth for avoiding the presence of active tissues, which are 

inadequate for overwintering (e.g. Petterle et al. 2013). It is followed by bud set to protect meristems 

with bud scales. Concomitantly with these morphogenetic changes, biochemical changes occur at the 

cellular level, such as starch catabolism for supplying C skeletons for the synthesis of cryoprotectants 

(Keskitalo et al., 2005; Druart et al., 2007) or the accumulation of bark storage proteins (Clausen & 

Apel, 1991; Resman et al., 2010). At this stage, plants have acquired endodormancy and do not 

respond to signals that promote growth (for details see Rohde & Bhalerao, 2007; Campoy et al., 2011; 

Cooke et al., 2012). Leaf senescence occurs near the end of this succession of events leading to the 

dormant stage, but later cellular changes can still occur to further increase frost hardiness.  

Plants adapt to climate with an optimal phenological calendar, maximizing competitive ability 

by adjusting the phenologies of leaf unfolding and senescence but also by maximizing winter survival 

by adjusting the phenology of the events that prepare plants for overwintering to avoid injures to the 

perennating organs. Populations at different latitudes differ in their response to environmental cues, 

most notably to photoperiod, suggesting selection pressure on autumnal phenology. Such 

differentiation has been described for phenological events such as growth cessation 

(Soolanayakanahally et al., 2013), bud set (Ingvarsson et al., 2006; Friedman et al., 2011; 

Soolanayakanahally et al., 2013), leaf senescence (Pudas et al., 2008; Fracheboud et al., 2009; 

Friedman et al., 2011; Soolanayakanahally et al., 2013), cold hardiness (Friedman et al., 2011), and 

dormancy (Ruuhola et al., 2011). 

The predictability of photoperiodic dynamics makes day length a reliable signal for anticipating 

cold and frosts before they occur, whereas temperature is reliable for confirming the arrival of warmth. 

Budburst is not triggered until a sufficient accumulation of warm days, indicating that frosts have 

become unlikely and preventing responses to occasional warm spells that can be followed by frosts. 

Preparations for winter dormancy, though, are largely triggered by photoperiod: experimentally 

transferring plants to shorter days elicits growth cessation (Resman et al., 2010) and bud set 
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(Ingvarsson et al., 2006), the up-regulation of genes for starch catabolim (Resman et al., 2010), and 

increase the transcription and accumulation of bark storage proteins (Wildhagen et al., 2013).  

 

Environmental controls of leaf senescence and fall and the effects of climate change 

Photoperiod versus temperature. Leaf senescence has been associated with other phenological 

events, as shown by intra- and inter-year correlations with growth cessation and cold hardiness in 

Populus (Friedman et al., 2011). Leaf senescence can thus be expected to also be under photoperiodic 

control to a certain degree, similarly to other events that prepare plants for overwintering. Accordingly, 

multiyear records for P. tremuloides (Barr et al., 2004) and P. tremula (Fracheboud et al., 2009), 

showing consistent leaf senescence dates, and experiments with P. balsamifera in which leaf 

senescence was not responsive to temperature (Soolanayakanahally et al., 2013), suggest a strong 

photoperiodic regulation of leaf senescence at latitudes with severe winters. Additionally, P. deltoides 

along a latitudinal gradient and growing in common gardens displayed a strong genetic component 

associated with latitudinal origin, associating variation in the phenology of leaf fall with photoperiod 

(Friedman et al., 2011).  

Many reports show that the photoperiodic control of the phenology of preparation for 

overwintering can be modulated by temperature at varying intensities (see review by Tanino et al., 

2010), and temperature can similarly modulate and even be the main control of leaf senescence (Fig. 

3a). At lower latitudes where winters are less severe, temperature exerts a certain amount of control on 

autumnal phenology, likely allowing plants to benefit from additional C uptake in warm autumns. For 

example, warmer temperatures delay leaf senescence in populations of Betula pubescens in the south 

but not in the north of Finland, where photoperiodic control is not relaxed (Pudas et al., 2008). 

Thermal control has been demonstrated by delays in leaf senescence or fall for single species in a 

single year across altitudinal gradients with uniform photoperiods (Richardson et al., 2006; Vitasse et 

al., 2009, 2011; Cufar et al., 2012). At a particular location, where photoperiod dynamics remain 

unchanged across years, thermal control has been demonstrated by positive correlations between the 

timing of leaf senescence or fall and the temperatures in preceding periods of variable length (Peñuelas 
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et al., 2002; Doi & Takahashi, 2008; Gordo and Sanz, 2010; Ibañez et al., 2010; Lebourgeois et al., 

2010; Matsumoto, 2010; Cufar et al., 2012; Archetti et al., 2013; ) and by models of accumulated cold-

degree days adjusted with data for leaf senescence (Richardson et al., 2006; Archetti et al., 2013). At a 

larger scale, an increasing influence of temperature on the leaf fall phenology of the deciduous forests 

at lower latitudes has been recently described across the latitudinal gradient in eastern USA where the 

responsiveness to accumulated cold-degree days at the end of the season is nearly three times higher at 

lower (31ºN) than at higher (48ºN) latitudes (Dragoni & Rahman, 2012). 

Many observational studies thus support the importance of temperature on the control of leaf 

senescence and subsequent leaf fall. A special case is represented by the Rosacea family, several of 

whose species respond strongly to temperature but not to photoperiod for growth cessation, bud set, 

dormancy, and leaf senescence (Heide & Prestrud, 2005; Heide 2011). Malus domestica, for example, 

sheds its leaves nearly a month earlier in a cold than in a warm year (Wibbe et al., 1994). This null 

control by photoperiod of the events related to overwintering has been hypothesized to be a 

consequence of a deficiency in signal transduction rather than in photoperiodic sensitivity (Heide, 

2011). How the control of leaf senescence is split between photoperiod and temperature, however, is 

not known for many important species. 

A delay in leaf senescence and fall is the most common response in experiments of warming 

(Chung et al., 2013). The average leaf fall was delayed by 8 and 13 days with 2 and 4 ºC warmer 

temperatures, respectively, in four species (Gunderson et al., 2012) and by averages of 7.5 and 13 days 

with a warming of 4 ºC in two species of Acer (Norby et al., 2003). Similar delays have been reported 

for other species (Nakamura et al., 2010; Xu et al., 2012). Different results, however, have also been 

reported, such as a 15-day delay in leaf senescence with a warming of 1.5 ºC in one winter deciduous 

species of Quercus, but not in another (Morin et al., 2010). A lack of an effect of experimental 

warming on yellowing has also been described in three Arctic species of Salix subjected to warmer air 

and soil temperatures of 1-4 ºC in open-top chambers (Jones et al., 1997).  

The reported lack of changes in leaf senescence in an Artic warming experiment described by 

Jones et al. (1997) supports photoperiod as the main control where winters are severe. The absence of 
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thermal controls on leaf senescence, however, is not restricted to high latitudes. In an altitudinal 

gradient in southern France, the lack of a correlation between the timing of leaf senescence and 

temperature in Fraxinus excelsior and A. pseudoplatanus, in contrast to the correlations found for 

Fagus sylvatica and Q. petraea (Vitasse et al., 2009), suggests that leaf senescence in the former 

species is controlled by photoperiod. Leaf fall was also not correlated with temperature in 5 of the 25 

Mediterranean species monitored over a 50-year period in Catalonia (Peñuelas et al., 2002), but this 

observation could be due to the inter-year variability in water stress, which may also affect the timing 

of leaf senescence and can mask the effects of temperature. 

Leaf senescence advanced by 20 days in seedlings of F. sylvatica and Q. robur subjected to 6 

ºC warmer temperatures during winter and before leaf flushing in early spring, which was attributed to 

a legacy of much earlier spring flushing in leaves of warmed saplings (Fu et al., 2014). The timing of 

leaf senescence was positively correlated with previous flushing dates in the long-term European 

phenological records of both species, indicating that even though recent environmental cues dominated 

the variability in the phenology of leaf senescence, they could not fully account for it, which led to the 

hypothesis that leaf senescence could be triggered by the sink limitation that indicates the 

accumulation of non-structural carbohydrates in the leaves. Some long-term records indicate a 

negative correlation between the dates of leaf senescence or leaf fall in the autumn and temperatures in 

May and June (Estrella & Menzel, 2006; Gordo & Sanz, 2010; Gunderson et al., 2012; Archetti et al., 

2013), indicating that conditions experienced by the leaves long before leaf senescence may impact the 

timing of senescence. Efforts are needed to determine the relevance of this possibility for evaluating its 

inclusion in models and for discarding possible relationships with water stress.  

Senescence in individual leaves has a marked onset and progresses until completed after the 

several steps that lead to nutrient resorption. Metabolism generally increases with temperature, but the 

few available data suggest that the progression of senescence in leaves is regulated by temperature, 

with slower, and thus longer, leaf senescence under warmer conditions. For example, higher 

temperature was assumed to slow senescence in the leaves of the upper crown exposed to the sun 

compared to the shaded leaves of the lower crown (Staaf & Stjernquist, 1986), and colder temperatures 
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may also account for the trend toward the faster progression of leaf senescence at higher latitudes (Doi 

& Takahashi, 2008). Similarly, the time between leaf coloring and leaf fall was extended by two days 

in a 50-year record of Tilia cordata and Betula pendula (Juknys et al., 2012), suggesting that the 

duration of the process is affected by climatic warming. A lack of data prevents an evaluation of the 

importance of the speed of leaf senescence on the timing of leaf senescence, and whether the speed 

will or not be involved in a slight advancement of leaf senescence and fall (grey line in Fig. 3a). 

Accumulated evidence supports the projection that climatic warming will delay the onset of 

leaf senescence and fall (orange line in Fig. 3a) in many regions and species, but this projection can 

not be generalized. The magnitude of the delay will depend on the degree of photoperiodic control for 

particular species, with members of the Rosacea family experiencing the largest effect, and species and 

populations suffering severe winter conditions being unresponsive to the warming. The contributions 

of photoperiod and temperature to the control of leaf senescence need to be resolved to meet the 

challenges of projecting the direct effects of warming on the phenology of leaf senescence, but also for 

projecting the indirect effects in plants coping with altered photoperiods under the likely changes in 

species distribution induced by climate change. The delay in leaf fall expected toward the end of the 

century may have a component related to a slower leaf senescence under warmer temperatures, a 

component that may also be present in species whose onset of leaf senescence is under strict 

photoperiodic control.  

 

Water stress and premature leaf senescence. The importance of water stress in leaf senescence is 

evident in drought-deciduous species of tropical dry forests (Murphy & Lugo, 1986), and water stress 

is also important for other leaf habits and biomes. Earlier leaf fall in Mediterranean ecosystems is 

correlated with the onset of water deficit, both in evergreens and winter deciduous plants (Escudero & 

del Arco, 1987). Evergreens have higher annual litter falls in years of summer drought (Pedersen & 

Bille-Hansen, 1999) or have advanced leaf senescence and fall. For example, stands of Pinus tadea 

have an earlier peak of needle fall in dry years (Hennessey et al., 1992; Dougherty et al., 1995). 
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Environmental stresses may cause leaves of winter deciduous plants to prematurely senesce 

before autumn in what is considered accelerated cellular senescence, in contrast to autumnal ontogenic 

senescence (Günthardt-Goerg & Vollenweider, 2007). Ontogenic senescence and accelerated cellular 

senescence may be differentiated microscopically (Günthardt-Goerg & Vollenweider, 2007), although 

they share many common steps. A large proportion of genes associated with senescence that are up-

regulated during ontogenic senescence (see Breeze et al., 2011) are also found in gene-expression 

profiles in response to hormone and stress treatments (Chen et al., 2002; Guo 2013). Oxidative stress, 

though, is more associated to accelerated cellular senescence than to ontogenic senescence (Günthardt-

Goergbut & Vollenweider, 2007; Juvany et al., 2013), and the accumulation of reactive oxygen species 

is known to be a regulator of the process of leaf senescence (Munné-Bosch & Alegre, 2004).  

Leaf loss is considered a mechanism for the avoidance of water stress in plant species adapted 

to drought, because it reduces the transpiring surface of the foliage and therefore reduces the water 

demand and the risks of xylem embolism and plant desiccation. Leaves of deciduous species not 

adapted to drought may desiccate under intense water stress without undergoing senescence and hence 

without resorbing nutrients (Marchin et al., 2010). For example, F. sylvatica intensely and prematurely 

shed non-senesced green leaves during the dry and warm summer of 2003, the only episode reported 

during a period of 30 years (Breda et al., 2006). 

Many species may present two peaks of leaf fall, a low peak in summer and the main peak in 

autumn (red line in Fig 3b), as described for two Populus species in forest patches on a Mediterranean 

floodplain (Gonzalez, 2012), for a Liquidambar plantation (Waren et al., 2011), and for saplings of B. 

pendula (Wendler & Millard, 1996). Species whose prematurely fallen leaves resorbed nutrients before 

falling are better adapted to drought. A fraction of the foliage in these species prematurely undergoes 

senescence during water stress, usually in summer, but once the soil water recovers, the remaining 

foliage senesces later, during autumnal ontogenic leaf senescence at the end of the active season. 

Examples of this pattern are included in the next section. 

Instead of early peaks, the effects of drought stress may also appear at the end of the cycle with 

an advance in seasonal leaf senescence. Logically, such an advance occurs in drought-deciduous plants 
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in tropical dry climates (Walter, 1971 as cited in Murphy & Lugo, 1986) and is easily explained by the 

advance of the unfavorable dry season. In temperate climates, however, drought in summer does not 

overlap with the cold season that triggers autumnal leaf senescence, but the effects of water stress may 

nonetheless be delayed by advances in leaf senescence at the end of the season that cannot easily be 

differentiated from ontogenic leaf senescence. Detailed observations are needed to determine whether 

the effects of drought promote a premature fall of the leaves more affected by drought, analogous to 

the early peak in summer, but delayed in time (blue line in Fig. 3b), with the unaffected leaves falling 

in autumn as though the drought had not occurred, or whether drought promotes a comprehensive shift 

in the dynamics of leaf fall toward early dates for all foliage, i.e. a general advance in the onset of 

senescence for all foliage (green line in Fig. 3b). Whichever is the case, several observations support 

an advance in senescence and fall of foliage due to drought and water stress, for example by positive 

correlations between the dates of leaf fall and precipitation in summer (Gordo & Sanz, 2010), by the 

negative relationship between summer rainfall and the percentage of senescent leaves in mid-October 

in one Quercus species (Montserrat-Martí et al., 2009), and by similar results for other Quercus 

species under experimental drought (Silla & Escudero, 2004; Günthardt-Goerg et al., 2011). 

Accordingly, the inconsistent trends in leaf fall across an altitudinal gradient in a montane watershed 

were due to an earlier leaf senescence under drier late seasons at low elevation that arose from the 

negative correlations with precipitation from July to October, with a sensitivity of an advance of 0.56 

days per 100-mm decrease in rain (Hwang et al., 2014). 

More focused studies are needed to complete our understanding of the different effects of 

drought stress on leaf senescence and fall, especially for the autumnal fall, but also to determine if the 

more gradual leaf fall of drought-adapted species under field conditions (del Arco et al., 1991) is 

regulated by external factors, i.e. drought induces either a premature summer peak (red line in Fig. 3b) 

or an earlier leaf senescence in autumn in the more damaged leaves (blue line in Fig. 3b), or if 

gradualness is a constitutive trait in drought-adapted species and can also partially manifest under 

conditions of no water stress.  
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Long-term records fail to show a clear relationship between precipitation and leaf senescence 

and fall. Estrella & Menzel (2006) found no overall correlations between the timing of leaf senescence 

and monthly precipitation. Precipitation also had no clear effect on the timing of leaf fall in the 

Mediterranean region, which is prone to drought (Peñuelas et al., 2002; Gordo & Sanz, 2010). Some 

weak correlations between leaf fall and monthly precipitation have been proposed by more elaborate 

modeling (Archetti et al., 2013). Partial support is provided by the positive, but very weak, relationship 

between the end of season estimated from satellite observations and precipitation from May to 

September in deciduous forests in the USA, but only within an interval of the latitudinal gradient 

studied (Dragoni & Rahman, 2012).  

The opposite effects of warming and water stress on the phenology of leaf senescence may 

contribute to the unclear relationship between previous temperatures and the timing of leaf senescence. 

Advanced, instead of delayed, leaf fall in B. pendula over a 50-year period was attributed to a decrease 

in soil moisture caused by a simultaneous rise in temperature and decrease in precipitation (Juknys et 

al., 2012). Similarly, the dates for offset of season usually tracked August and September temperatures 

in a 16-year period in deciduous forests, except when late summer drought caused premature leaf 

senescence (Gunderson et al., 2012). Accordingly, the interference of water stress prevented the 

patterns of leaf senescence from following the temperature gradient across an altitudinal gradient 

(Hwang et al., 2014). Interaction between warming and water stress may also explain the 22-day delay 

of leaf fall observed after an unusually low precipitation combined with a warm summer in 2003 in a 

mixed deciduous forest (Leuzinger et al., 2005).  

The projected increase in the number and intensity of droughts in many regions (IPCC, 2013) 

can potentially advance leaf senescence and fall due to either premature summer peaks caused by a 

more gradual leaf fall or simply due to earlier autumnal peaks. Whenever drought and warming 

coincide, the advancing effects of drought will counteract the delaying effects of the warming of the 

climate. Thereafter, the final effect at the end of the active season on the phenology of leaf fall will 

depend on the balance between the effects of warming and those of drought. In regions where water 

stress is likely to increase, either because of changes in precipitation or because of higher evaporative 
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demand due to warming, the phenologies of leaf senescence that can currently be projected are 

probably inaccurate, not only because the effect of drought on the phenology of many species is poorly 

known, but also because of the lack of observations on the interaction with temperature. 

 

Effects of climate change on nutrient concentrations of falling leaves 

Killingbeck (2004) identified several determinants of realized resorption including i) plant 

physiological status that depends on fertilization or radiation, i.e. available energy, nutrient 

concentration, or enzymatic activity; ii) existence of a sink demand for nutrients; iii) disturbances; iv) 

water stress during leaf senescence; and v) the timing of leaf senescence. Climate change may affect 

the proficiency of falling leaves through the direct impact of warmer temperatures and water stress on 

the phenology of leaf senescence and also on the other determinants of proficiency listed above. 

The timing or phenology of leaf fall, which reflects mostly that of leaf senescence, is 

considered a cause of altered nutrient resorption (Killingbeck, 2004), assuming that timing itself is the 

cause of incomplete resorption without considering why or how the mechanisms controlling the 

degradation and mobilization of macromolecules are affected by the timing. Lower proficiencies of 

resorption with early leaf senescence or fall have been found between species (del Arco et al., 1991; 

Milla et al., 2005), between leaves of individuals and between years differing in precipitation 

(Killingbeck et al., 1990) and in the progression of leaf fall within stands (Niinemets & Tamm, 2005). 

The effect of timing is supported by the chemical dynamics of falling leaves across the progression of 

leaf fall at the stand level in seven winter deciduous species (Niinements & Tamm, 2005). In this 

study, leaves that fell early contained more nutrients, and the nutrient concentrations decreased linearly 

with time to match the lower concentrations in the leaves that fell later. Similar results have been 

reported for B. pendula in a mixed forest (Staelens et al., 2011) and in a stand of F. sylvatica (Pedersen 

& Bille-Hansen, 1999). The progressive reduction in mobile nutrients in fallen leaves as leaf fall 

progresses within a stand suggests that an intraspecific delay in the onset of leaf senescence induced by 

climate change will cause an increase in nutrient resorption. Other than the above observations, 

however, we have no evidence that a shift in the onset of leaf senescence (i.e. the up-regulation of 
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genes associated with senescence and the down-regulation of genes associated with photosynthesis) 

affects the physiology and biochemistry of cells and leaves during senescence in a way that may alter 

the degree of nutrient resorption. The progressive increase in resorption as leaf senescence is delayed 

may have other causes. For example, leaves tend to fall earlier when affected by various stresses, such 

as water stress (Killingbeck, 2004), biotic stress (Waddell et al., 2001), or ozone stress (Kasurinen et 

al., 2012), and leaves are less proficient at resorption under water stress (Killingbeck, 2004) and 

herbivory (Silla et al., 2008), which may be the case for leaves falling early within a stand. We are of 

the opinion that nutrient resorption is not inherently determined by the date of leaf senescence and that 

the appropriate approach is to ascertain if the factor altering the phenology of leaf senescence affects 

any physiological step of the process of leaf senescence that regulates the resorption of nutrients. 

These considerations need to be addressed before the effects of climate change on nutrient proficiency 

can be determined. 

 

Warming. The effects of warming on nutrient proficiency will depend on whether leaf senescence is 

under strict photoperiodic control or is modulated by temperature. Species under strict photoperiodic 

control will not have an altered onset of leaf senescence but would likely have a slower speed rate of 

leaf senescence. The complex process of leaf senescence involves a coordinated sequence of steps that 

requires a certain amount of time to progress. For example, the complete resorption of N in P. tremula 

requires two weeks (Fracheboud et al., 2009). The mechanism of programmed cell death is much 

slower for leaf senescence than for other causes such as defense, indicating that time is required to 

complete the resorption of nutrients, (Lim et al., 2003). We hypothesize that a longer, i.e. slower, leaf 

senescence can allow a more thorough scouring of nutrients, so the realized resorption can approach 

the potential resorption. A longer duration of senescence may account, for example, for the higher 

efficiency of N resorption in leaves of the upper crown of F. sylvatica, in consonance with the slower 

senescence in the upper compared to the lower crown, and for the difference in efficiencies that was 

attributed to differences in temperatures (Staaf & Stjernquist, 1986). 
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A higher resorption of nutrients with longer senescence may also account for the higher 

nutrient proficiency of leaves falling later within a stand, given that late-falling leaves have likely 

senesced slowly and have had more time to achieve the most complete resorption from all foliage. This 

and the other arguments provided above suggest that the timing of leaf senescence is unlikely to be a 

determinant of nutrient resorption by itself but, should our reasoning be wrong, would imply that 

climatic warming would improve nutrient resorption in species with thermally modulated senescence, 

provided that resorption was not already maximal. As far as we know, however, the correct scenario 

has not been determined. 

Species whose leaf senescence will be delayed by warming will confront higher risks of 

occasional reductions in nutrient proficiency, because warming increases the risk that early frosts will 

kill the leaves before they complete, or even begin, senescence (Norby et al., 2003; Gunderson et al., 

2012). This possibility was experimentally supported in warmed Acer saplings whose leaves were 

killed by frosts and had higher N concentrations after falling than the leaves falling from saplings in 

the control, whose leaves were almost completely abscised and had completed resorption when the 

frosts occurred (Norby et al., 2003). 

 

Drought. The premature leaf senescence caused by water stress is associated with a reduction in 

nutrient resorption (Killingbeck, 2004). Milla et al. (2005) recognized some physiological traits 

associated with drought that may potentially affect nutrient resorption: accumulation of proline and 

other amino acids (Feller & Fischer, 1994), reduction in phloem loading due to the production of 

abscisic acid (Pugnaire & Chapin, 1992), or possible disruption in the flow of water caused by xylem 

cavitation (Silla & Escudero, 2004). 

The effects of water stress are microscopically visible at the subcellular level (Günthardt-

Goergbut & Vollenweider, 2007). Reports include increased thickness of the cell walls of the upper 

epidermis and pectinaceous projections in the cell walls of the mesophyll (Paakkonen et al., 1998) but 

also whorls in membranes, condensation of chromatin in the nuclear matrix and the nucleolus, swelling 

of chloroplasts, accumulation of plastoglobuli in the stroma, and apparent changes in the membrane 
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system (Munné-Bosch et al., 2001). Alterations of cellular structures induced by water stress may 

impede the activity of catabolic enzymes and may account for the differences among nutrients in the 

effects of drought on resorption, depending on the cellular structure where the nutrient-containing 

macromolecules are located. 

Species whose leaves are sensitive to intense water stress but do not undergo senescence shed 

all their nutrients when their leaves desiccate. A clear example was described during a drought in a 

mixed hardwood forest where N and P concentrations in fourteen species were the same in leaves that 

desiccated during the drought as in leaves that remained healthy, whereas leaves falling in the autumn 

after ontogenic senescence resorbed 35% of the N and 42% of the P (Marchin et al., 2010). In the same 

forest, the four species whose leaves underwent drought senescence resorbed nutrients from leaves 

falling in summer (50 and 12% for N and K, respectively) less efficiently than from leaves falling in 

autumn (64 and 51% for N and K, respectively), whereas P was resorbed equally (50%) in both 

seasons. Similarly, N concentrations in seedlings of Q. pyrenaica were 25% higher in drought-

senesced leaves falling in summer than in leaves falling in autumn (Silla & Escudero, 2006), and the 

same pattern was found in a Liquidambar plantation (Warren et al., 2011) and in seedlings of Q. 

faginea (Silla & Escudero, 2004). 

Drought increases the gradualness of leaf fall and reduces N resorption in drought-adapted 

species in semiarid climates, as described by del Arco et al. (1991), but this report did not say if the 

effects on resorption were constant throughout the period of leaf fall or if they were due to a 

combination of leaves falling early being less proficient than leaves falling late because the first had 

been more affected by drought. The second option was reported for a Mediterranean winter deciduous 

shrub with a very gradual leaf fall from summer to autumn, whose summer-senesced leaves were less 

proficient for N and P resorption than autumn-senesced leaves (Milla et al., 2005). 

Reports of the effects of drought on nutrient proficiency usually compare leaves that fall 

prematurely vs. those that fall in the autumn, or, when comparing treatments, use composite samples of 

both types of leaves. We are not aware of reports excluding prematurely fallen leaves and comparing 

only the ontogenically autumnal fallen leaves both in control and drought-stressed plants, but we find 
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that, as far as drought affects cellular structures, nutrient resorption will likely also be lower under 

drought even when leaf senescence proceeds ontogenically. We do have, however, clear evidence that 

nutrient proficiency is reduced when the phenology of leaf senescence is altered by drought and leaves 

senesce prematurely. Current knowledge suggests, therefore, that the share of nutrients lost to the litter 

compartment will increase in regions where drought will be increased by climate change. 

 

Concluding remarks 

Climatic warming will most likely delay leaf senescence and fall in the many species sensitive to 

temperature but will have a weak, if any, effect in non-sensitive species or in populations adapted to 

high latitudes. The importance of drought on the control of the phenology of leaf senescence will be 

intensified whenever droughts become more intense and frequent either due to lower precipitation or to 

increasing water demands caused by warmer temperatures. The effects of advances of leaf senescence 

will depend on the intensity of the drought. 

Advances or delays in leaf senescence and decreases or increases in the proficiency of nutrient 

resorption will depend on the species and on the site-specific counteracting effects of warmer 

temperatures and drought. Whenever the effects of warming dominate, leaf senescence will be 

delayed, and proficiency could slightly increase because of a slower speed of leaf senescence, but only 

if the potential resorption is not reached and in the absence of frosts that could disrupt leaf senescence. 

Whenever the effects of drought dominate, advanced leaf senescence and lower proficiency will occur 

in drought-senescent species as a function of the intensity of the drought. Under intense droughts, 

species not adapted to drought and unable to senesce in response to water stress will lose all the 

nutrients in desiccated leaves, whereas drought-adapted species will resorb nutrients from drought-

senesced leaves, although in lower amounts than in ontogenically senesced leaves. The contrast 

between the effects of warming and those of drought and the interspecific variability of the controls 

exerted by photoperiod hinder the projection of the effects of climate change on the timing and 

chemistry of leaf fall. 
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The effects of climate change on the phenology of leaf senescence may directly and indirectly 

affect plant economy. Direct effects will be through alterations in the length of the growing season that 

will modify C uptake. Indirect effects will result from alterations in nutrient resorption that modify the 

nutrient pool available for growth at the beginning of the new active period. The size of the pool of 

mobile nutrients affects the C economy of the next cycle due to the cost of de novo acquisition of 

nutrients from the soil to replace the unresorbed nutrients lost with leaf fall and because the capacity 

for C uptake in early spring, and perhaps beyond, depends on the allocation of nutrients to new tissues 

from the mobile pool stored in wood in winter. Beyond the plant functioning, alterations of the nutrient 

resorption from leaves will symmetrically alter the nutrient flow towards the soil mediated by the 

mostly synchronized falling of leaves of deciduous species. 
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Figure captions 

 

Fig. 1. Leaf-litter N concentration in a 15-year record of a natural forest of Acer saccharum, redrawn 

from Pregitzer et al., (2010). 

 

Fig 2. Location of the pool of mobile N throughout the annual cycle of a winter deciduous plant.  

a) During the dormant period, nutrients in woody tissues can be differentiated into a mobile and an 

immobile pool. b) At the beginning of the active part of the annual cycle, mobile nutrients are 

mobilized for the synthesis of new tissues, and the woody storage is depleted. c) During the active 

season, newly absorbed nutrients can be diverted to tissues of the current year and, in species with 

continuous growth, be allocated to late new tissues. d, e) During leaf senescence, resorbed nutrients 

are transported to the woody tissues before leaves are shed, and unresorbed nutrients are lost with the 

leaf litter. In d, species showing drought-senescence may undergo premature partial leaf senescence 

and shed a fraction of the leaves if the summer drought is sufficiently intense. In e, the leaves reaching 

the autumn undergo a synchronous autumnal ontogenic leaf senescence that replenishes the woody 

pool of mobile nutrients with the resorbed nutrients and returns the unresorbed nutrients to the soil 

through the production of leaf litter. 

 

Fig 3. The effects of a) warming and b) drought on the dynamics of leaf fall in canopies, represented 

as daily values (g m
-2
 d

-1
). In both a) and b), the black line is leaf fall under the current climate. In a), 

the effects of warming on leaf fall of a species sensitive to warming are represented by the orange line. 

A line in a) representing a species under strict control of photoperiod would not differ from the black 

line under current conditions, unless the speed of senescence is slowed by warming that would slightly 

delay senescence, as represented by the grey line. Three different effects of drought are represented in 

b): drought elicits a premature peak of leaf fall (red and blue lines) that occurs weeks before the 

autumnal fall (red line) or is delayed and is poorly differentiated from the autumnal fall (blue line), or 

the premature peak does not occur and there is and advancement of the dates of the autumnal fall 
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(green line). A case mixing a premature leaf fall peak and advanced autumnal fall is not represented in 

b), but we cannot discard its occurrence in nature. 
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