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Abstract 

Functional diversity is critical for ecosystem dynamics, stability and productivity. However, 

dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem 

functions under global change, condense functional diversity to Plant Functional Types (PFTs) 

with constant parameters. Here, we develop an individual- and trait-based version of the dynamic 

global vegetation model (DGVM) LPJmL (Lund-Potsdam-Jena managed Land) called LPJmL-

FIT (LPJmL with Flexible Individual Traits) which we apply to generate plant trait maps for the 

Amazon basin. LPJmL-FIT incorporates empirical ranges of five traits of tropical trees extracted 

from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), 

leaf nitrogen content (Narea), the maximum carboxylation rate of RUBISCO per leaf area 

(Vcmaxarea), and wood density (WD). To scale the individual growth performance of trees, the 

leaf traits are linked by trade-offs based on the leaf economics spectrum, whereas wood density 

is linked to tree mortality. No pre-selection of growth strategies is taking place, because 

individuals with unique trait combinations are uniformly distributed at tree establishment. We 
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validate the modeled trait distributions by empirical trait data and the modeled biomass by a 

remote sensing product along a climatic gradient. Including trait variability and trade-offs 

successfully predicts natural trait distributions and achieves a more realistic representation of 

functional diversity at the local to regional scale. As sites of high climatic variability, the fringes 

of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, 

whilst lower plant trait diversity is found in the species-rich center of the region with relatively 

low climatic variability. LPJmL-FIT enables to test hypotheses on the effects of functional 

biodiversity on ecosystem functioning and to apply the DGVM to current challenges in 

ecosystem management from local to global scales, i.e. deforestation and climate change effects. 

Introduction 

The links between biodiversity effects and ecosystem functioning (hereafter BEF) (2012; Hooper 

et al., 2012; Naeem et al., 1994) are still insufficiently understood and are therefore in the 

spotlight of ecological research (Hooper et al., 2005; Loreau et al., 2001; Naeem & Wright, 

2003; Balvanera et al., 2006). In particular, functional diversity supports ecosystem functioning 

(Sterk et al., 2013; Suding et al., 2008; Violle et al., 2007), stability and productivity (McCann, 

2000; Morin et al., 2011; Diaz & Cabido, 2001), and resilience against disturbances and 

environmental variability (Mori et al., 2013). 

To predict ecosystem functioning at regional to global scales (Sitch et al., 2008), dynamic global 

vegetation models (DGVMs) (Prentice et al., 1992) simulate processes of vegetation dynamics 

and hydrology. However, most current DGVMs condense functional diversity to the smallest 

scale possible by using Plant Functional Types (PFT) (Woodward & Kelly, 1997) in a 

monoculture-like approach at the biome level (Poulter et al., 2011; Scheiter et al., 2013) with 
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fixed bioclimatic limits and often calibrated parameters which prescribe their simulated 

performance under varying environmental conditions. This reductionist PFT approach eliminates 

sources of natural trait variability which, at the time of model design, was inevitable due to the 

lack of plant trait data and computational power.  

With increased computational capabilities, the preconditions to better acknowledge natural 

functional diversity and plant trade-offs in DGVMs are generally fulfilled (Van Bodegom et al., 

2012). At the same time, there is a recent boost in trait-based ecology that aims to identify 

leading axes of plant strategy variation (Westoby & Wright, 2006), and a growing theoretical and 

empirical body on global plant trait spectra related to the economics of leaves and stems 

(Baraloto et al., 2010; Chave et al., 2009; Kattge et al., 2011; Wright et al., 2004). Bridging the 

gap between the research fields of DGVMs and functional ecology by modelling trait variability 

is crucial to disentangle the influence of abiotic factors from BEF in a spatio-temporally 

heterogeneous environment (Hector & Bagchi, 2007; Hillebrand & Matthiessen, 2009; Reiss et 

al., 2009). Such an approach would also take the empirical trait-based approach important steps 

further by 1) scaling up from individual tissue traits to whole-plant performance, ecosystem 

processes and services, and 2) providing a better predictive framework for ecological patterns 

and their societal consequences at larger spatial and temporal scales (Van Bodegom et al., 2012). 

We re-implemented the existing DGVM LPJmL (Lund-Potsdam-Jena managed Lands) 

(Bondeau et al., 2007; Sitch et al., 2003) with flexible individual traits (LPJmL-FIT) as an 

individual-based gap model (Bugmann, 2001; Taylor et al., 2009). This allows simulating 

individual trees with unique trait combinations which compete for resources within a distinctive 

patch. We applied LPJmL-FIT to generate plant trait maps for the Amazon region because the 

Amazon is the largest remaining forest with high tree functional diversity on Earth (Kraft et al., 
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2008) and of critical importance for the global carbon cycle and carbon-cycle-climate feedbacks 

(Cox et al., 2013). This is the first study, where detailed, basin-wide patterns in trait distributions 

and diversity of functional plant traits are quantified applying a trait-based DGVM. We 

conducted a series of simulation experiments to assess the effects of model complexity on the 

resulting trait distributions, diversity of plant traits, and vegetation carbon. 

LPJmL-FIT features 5 variable plant traits connected via trade-offs derived from global plant 

trait data. This opens up a realistic global trait space. We focus on the traits specific leaf area 

(SLA), leaf longevity (LL), leaf nitrogen content (Narea), the maximum carboxylation rate of 

RUBISCO per leaf area (Vcmaxarea) and wood density (WD) because these traits determine the 

individual performance of tree individuals through their effects on growth and mortality (Violle 

et al., 2007). The leaf traits are linked by empirically established trade-offs based on the leaf 

economics spectrum (LES) (Reich et al., 1997; Reich et al., 1999; Shipley et al., 2006; Wright et 

al., 2004) which describes a set of leaf trade-offs explaining worldwide leaf investment 

strategies. WD is linked to tree mortality following the idea of the stem economics spectrum 

(SES, Baraloto et al., 2010). 

The main objective of this study is to develop a generalizable approach which incorporates 

continuous plant traits and their respective trade-offs in DGVMs 1.) to add ecological realism to 

DGVMs by improving their representation of functional diversity by plant trait distributions, and 

2.) to predict observed plant trait distributions and biomass. This way, we lay the foundations to 

test BEF related hypotheses, e.g. the insurance hypothesis, by associating changes in trait means, 

ranges and trade-offs with their effect on functional diversity and ecosystem-level indicators of 

plant performance, e.g. biomass. Principally globally applicable, such a DGVM may 

complement the existing empirical knowledge of functional diversity and its relation to 
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ecosystem functions. 

Few other vegetation models such as the JEDI-DGVM (Pavlick et al., 2012; Reu et al., 2011a; 

Reu et al., 2011b), the aDGVM2 (Scheiter et al., 2013), the trait-based version of the JSBACH 

model (Verheijen et al., 2013), and most recently, the Traits-based Forest Simulator (TFS) 

(Fyllas et al., 2014) also build upon trait-based growth strategies. Our DGVM approach differs 

from those models or their specific components for several reasons: LPJmL-FIT establishes 

individual trees with a number of variable traits. These traits range within their globally observed 

boundaries in natural ecosystems because their ranges are constrained by empirically-derived 

trade-offs following the theory of LES and SES. This opens a multi-dimensional trait space 

including all ecologically reasonable trait combinations. Each of these trait combinations has the 

same probability to be assigned at tree establishment because no pre-selection (e.g. due to 

bioclimatic limits) is applied. During simulated vegetation dynamics, all possible trait 

combinations compete for light and water within the study area. The trait combinations which 

are best adapted to local environmental conditions survive and represent a subset of the 

initialized trait space which is then validated against observed trait data. 

We discuss the relevance of our findings for ecosystem theory and its applications, i.e. up-

scaling effects of continuous traits to whole plant-performance and their influence on trait 

distributions at the regional scale, thereby accounting for spatio-temporal heterogeneity, and 

conclude with an outlook on future DGVM applications in the prediction of future ecosystem 

transitions under global change such as the uncertain future of the Amazon rainforests (Cox et 

al., 2000; Cox et al., 2013; Rammig et al., 2010; Malhi et al., 2009). 
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Materials and methods 

LPJmL-FIT: a new gap model version of LPJmL with Flexible Individual 

Traits 

Standard LPJmL is a process-based dynamic global vegetation model (DGVM) with 9 generic 

plant functional types (PFTs) representing natural vegetation at the level of biomes (Gerten et al., 

2004; Schaphoff et al., 2013; Sitch et al., 2003), 12 crop functional types (CFTs) and managed 

grass (Bondeau et al., 2007). We re-implemented LPJmL in a gap model approach to account for 

the competitive effects between tree individuals with unique key trait combinations forming a 

highly diverse community of possible tree growth strategies. We deliberately model tree 

individuals with unique trait combinations, but not species, to elucidate how selective processes 

(i.e. environmental filtering and local competition) influence the performance of tree growth 

strategies. This level of abstraction allows to investigate how functional diversity influences 

community assembly, functional composition and ecosystem functioning in a computationally 

feasible and spatially scalable approach. 

To provide an overview about the structure of the new LPJmL-FIT model (cf. Fig. 1), we first 

discuss tree establishment (Section 1.1), vegetation dynamics (1.2) and model output (1.3), and 

then shortly describe the modelling protocol (1.4) and validation procedures (1.5). All data 

processing and statistical analysis described in the methods sections was done with the 

commercial software MATLAB® (MATLAB and Statistics Toolbox Release 2012b). 
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1.1 Tree establishment 

Selection of key plant traits to be diversified in LPJmL-FIT  

All empirical plant trait data were obtained from the global plant trait database TRY (Kattge et 

al., 2011) and were filtered for worldwide broadleaved tree entries to investigate worldwide tree 

trait interrelations. We used worldwide data to create a generalizable approach enabling to make 

worldwide simulations. Rather than using averaged species trait values, we used all observations 

of broadleaved trees recorded in the TRY data base to conserve the intraspecific variability of 

traits. We focused on 5 key traits that are thought to capture the major axes of strategy variation 

across land plants, as they are related to the leaf economics spectrum (LES, Wright et al. 2004) 

and the stem economics spectrum (SES, Baraloto et al., 2010). Traits included are specific leaf 

area (SLA, leaf area per unit leaf mass, mm2 mg-1), leaf longevity (LL, average lifespan of 

leaves, in months), leaf nitrogen content per leaf area (Narea, mg g-1), maximum carboxylation 

rate of RUBISCO enzyme per leaf area (Vcmaxarea, µmol CO2 m
-2 s-1) and wood density (WD, 

wood dry mass per unit of green volume, g cm-3). All TRY data we used relates to the following 

original references: (Atkin et al., 1999; Campbell et al., 2007; Castro-Diez et al., 1998; Chave et 

al., 2009; Cornelissen et al., 1996; Cornelissen, 1996; Cornelissen et al., 2003; Cornelissen et 

al., 2004; Cornwell et al., 2008; Diaz et al., 2004; Fonseca et al., 2000; Freschet et al., 2010; 

Fyllas et al., 2009; Garnier et al., 2007; Gutierrez & Huth, 2012; Kattge et al., 2009; Kleyer et 

al., 2008; Kurokawa & Nakashizuka, 2008; Laughlin et al., 2010; Loveys et al., 2003; Medlyn et 

al., 1999; Messier et al., 2010; Niinemets, 2001; Ogaya & Penuelas, 2003; Ordonez et al., 2010; 

Penuelas et al., 2010; Poorter et al., 2009; Preston et al., 2006; Quested et al., 2003; Reich et al., 

2008; Reich et al., 2009; Shiodera et al., 2008; Shipley & Vu, 2002; Shipley, 2002; Swaine, 

2007; Willis et al., 2010; Wright et al., 2004; Wright et al., 2007; Wright et al., 2010; Xu & 
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Baldocchi, 2003).  

Implementing trade-offs and diversifying model parameters  

LPJmL-FIT implements three trade-offs (a-c), two of which (a-b) are part of the LES (Wright et 

al., 2004). The third trade-off (c) is part of the SES and accounts for the empirically observed 

negative relationship between wood density and tree mortality (see e.g. Chave et al., 2009 and 

references below). Detailed information on all derived regression functions, underlying 

composition and geographical origin of data is given in Data S1 (Eq. 1-3; Fig. S1-S4). 

a.) The SLA-LL trade-off and its relation to Narea and tree phenology 

There is a spectrum in leaf traits, running from productive short-lived leaves with high carbon 

returns and nutrient investments, to conservative, long-lived leaves with slow returns on 

investments. This implies a trade-off between potential rates of carbon return and the respective 

duration of return along the SLA-LL spectrum (Kikuzawa, 1995; Reich et al., 1997; Westoby et 

al., 2000; Westoby et al., 2002). Thin and/or soft leaves (i.e. with a high SLA) generally require 

little carbon investment per unit leaf area and are physiologically more active. In contrast, leaves 

with low SLAs have higher LLs, because they invest more carbon per unit leaf area in defense 

structures making them more durable against physical stress and herbivory. This general pattern 

also holds for trees in the Amazon region (Poorter & Bongers, 2006; Reich et al., 1991; Reich et 

al., 2004), and scales up to a growth–survival trade-off at the whole-plant level (Kikuzawa & 

Lechowicz, 2011; Poorter & Bongers, 2006; Poorter et al., 2008; Ruger et al., 2012; Sterck et al., 

2006). 

In seasonal environments, periodical unfavorable conditions, e.g. drought or cold, force trees to 

shed their leaves, thereby setting an upper limit to LL. A high SLA is advantageous in such a 
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seasonal environment, as it optimizes carbon gain during the short growing season. However, a 

low LL is not only the result of climatic forcing, but also occurs due to the often higher 

palatability of high SLA leaves which tend to have high nutrient concentrations per unit leaf mass 

(Poorter & Evans, 1998) and smaller investments in leaf defenses (Kitajima & Poorter, 2010).  

A low SLA is usually the response to stable climatic conditions and shaded conditions as in 

tropical rainforests. Here, a low SLA can bear an advantage, because the nutrient-poor soils and 

low light environment of tropical rainforests favor leaves which store nutrients and carbon for a 

longer time period. A high LL increases the residence time of nutrients and carbon in the plant 

and therefore enhances the photosynthetic revenue stream of carbon and nutrient investment in 

leaves (Kikuzawa & Lechowicz, 2011).  

In standard LPJmL, LL is a fixed empirical parameter for each PFT from which the PFT’s SLA 

value is derived. In LPJmL-FIT, in contrast, we infer LLs from the empirical SLA range in the 

TRY database via regression functions (Data S1) to account for the continuum of LLs observed 

in nature (Chabot & Hicks, 1982; Kikuzawa & Lechowicz, 2011; van Ommen Kloeke et al., 

2012).  

Standard LPJmL describes two phenology types in the tropics, “evergreen” and “deciduous”. A 

fixed LL for evergreen and deciduous trees is accompanied by a PFT-specific minimum water 

stress scalar wscalmin. LPJmL-FIT simulates a large range of LLs as found in nature, and does not 

prescribe wscalmin to enforce a specific phenology. Instead, LPJmL-FIT assigns each individual 

tree a random wscalmin at establishment. This approach tests all conceivable wscalmin values and 

supports individuals with the best adapted wscalmin in a specific simulated environment (Data 

S1).  
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In conjunction with the SLA-LL trade-off, the effect of the randomized wscalmin is that deciduous 

behavior is advantageous in dry regions because trees which do not invest much carbon into their 

leaves per unit dry mass (higher SLA) may shed them (lower LL) during the dry season. 

Conversely, evergreen behavior is advantageous in wet regions since the longer LLs allow 

achieving a constant carbon gain from photosynthesis throughout the year. 

b.) The trade-off between SLA and the maximum carboxylation capacity of Rubisco 

(Vcmax) mediated by Narea 

Empirical evidence shows a strongly positive relationship between a leaf’s nitrogen content and 

its photosynthetic capacity (Field & Mooney, 1982; Reich et al., 1994). Interconnected with SLA 

these leaf traits are part of the LES (Wright et al., 2004) and introduce an additional source of 

variability in the spectrum of tree growth strategies of LPJmL-FIT.  

Trees with high SLA not only have higher nitrogen content per unit mass, but also a higher 

photosynthetic nitrogen use efficiency (PNUE = rate of photosynthesis/amount of leaf nitrogen) 

(Poorter & Evans, 1998) as relatively more leaf nitrogen is invested into the photosynthetically 

active molecular structures within the chloroplasts (Evans & Seemann, 1989). On an area basis, 

however, thicker leaves with lower SLA have a higher photosynthetic capacity per area than thin 

leaves with high SLA.  

Standard LPJmL ignores these functional relationships between SLA, nitrogen content and 

photosynthetic rates. Photosynthesis of PFTs is explicitly calculated depending on temperature, 

atmospheric CO2 concentration, photosynthetically active radiation (PAR) and water availability 

(Farquhar et al., 1980; Haxeltine & Prentice, 1996). One crucial variable in standard LPJmL’s 

photosynthesis calculation is the maximum carboxylation rate of RUBISCO per leaf area 

(Vcmaxarea),which is calculated on a daily basis (Sitch et al., 2003).  
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In LPJmL-FIT, we account for the influence of SLA on Narea and the influence of Narea on 

photosynthetic capacity by introducing an SLA dependent Narea and a Narea dependent Vcmaxarea 

(Data S1).  

c.) Trade-off between wood density (WD) and mortality 

Wood density (WD) is a species-specific key trait determining the carbon storage capacity per 

unit volume as tree stems constitute about 2/3 of the aboveground tree biomass (Segura & 

Kanninen, 2005). Apart from affecting vegetation carbon, WD also influences the forest’s age 

structure and maximum tree heights (Iida et al., 2012).  

In LPJmL standard, wood density (WD) is a constant parameter for all tree PFTs. LPJmL-FIT 

now varies WD because several mechanisms have been empirically established which link higher 

WD to higher construction costs and lower growth rates, but greater resistance against 

mechanical and drought stress (Baker et al., 2004; Chao et al., 2008; Chave et al., 2006; Kraft et 

al., 2008; Markesteijn et al., 2011) and therefore, overall lower mortality (Anten & Schieving, 

2010; Kraft et al., 2010; Niklas & Spatz, 2010; Swenson & Enquist, 2007). Analogously to the 

leaf economics spectrum (LES) (Wright et al., 2004), the stem economics spectrum (SES) links 

WD-dependent traits with particular growth strategies (Baraloto et al., 2010; Chave et al., 2009). 

WD is mechanistically separated in LPJmL-FIT  from the traits involved in the LES (Data S1), 

because leaf and stem trade-offs operate largely independently (Baraloto et al., 2010). We 

incorporated the WD-mortality trade-off using an equation derived by King et al. (2006) which 

assigns a WD-dependent annual mortality rate mortWD to each individual tree at tree 

establishment. mortWD is then used as the maximum of the growth efficiency dependent mortality 

from standard LPJmL (Data S1). Whilst a high WD decreases the growth rate of an individual, it 

also decreases the performance related mortality. Therefore a high WD tree generally grows 
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slower, but also lives longer. This trade-off enables many different WDs to establish and 

therefore balances the variety of coexisting WDs.  

Trait variability corridor 

To conserve the natural variability of plant trait interrelations, we introduce the novel concept of 

a trait variability corridor in LPJmL-FIT which we apply to the log-log-SLA-LL regression (Fig. 

S5). Each value of an independent variable can now yield a range of values for the dependent 

variable, and within this range each value is assigned a certain probability. The range and 

probabilities are determined by normal distributions with a mean µα equal to the outcome of the 

original regression function and a standard deviation σα equal to half of the 50% prediction 

bounds of the original regression (Fig. S5). This approach is used at tree establishment when 

each sapling is assigned parameters which are drawn from the trait space within the trait 

variability corridor (see next section). We only applied this approach to the SLA-LL regression, 

because the introduced variability propagates to the derived trait values under the assumption 

that SLA, LL, Narea and Vcmax are interconnected directly or indirectly via the trade-offs of the 

LES.  

Assignment of trait values to tree individuals 

Each individual tree obtains a unique set of the trait values for SLA, LL, WD, Narea, Vcmaxarea and 

wscalmin (Fig. 1). To obtain these sets, we first fit a probability density function (pdf) of a log-

normal distribution (Data S1; Fig. S6) to the worldwide SLA recordings of broadleaved trees in 

the TRY database (Kattge et al., 2011). The range between the 1 and 99% percentiles of this pdf 

determines the SLA range tested in LPJmL-FIT (SLA = 2.25-27mm2 mg-1). Within this range, 

100 uniformly distributed SLA values determine the spectrum of 100 possible plant types 

regarding SLA (Fig. S6). According to the empirically based regression functions, each SLA 
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value then leads to the calculation of a particular LL (Data S1 Eq. 1), Narea (Data S1 Eq. 2) and 

Vcmaxarea (Data S1 Eq. 3). We apply the trait variability corridor to the calculation of LL. 

Analogously to SLA, the potential range of WDs between 0.14 and 1.3g cm-3 was calculated from 

the PDF of the empirical WD distribution. Whereas the SLA and WD ranges were derived from 

empirically observed trait variation in the TRY database, the possible values of the minimum 

water scalar wscalmin fall between 0 and 1. From within this range wscalmin values are drawn 

randomly assuming a uniform distribution. The resulting 100 unique sets of trait values are 

assigned to respective 100 new tree saplings every 5 simulation years. 

1.2 Vegetation dynamics 

In LPJmL-FIT, 50 simulation patches each 100m² in size are introduced into each grid cell (Fig. 

S7). Within each patch individual trees are simulated. Each individual tree is a representative of 

a certain plant type. All plant types are allowed to grow in each patch. Resulting tree 

communities are scaled up to cover half-degree grid cells. 

Light competition of individual trees 

The basic light competition scheme is adapted from Smith et al. (2001) as in LPJ-GUESS. 

Within a patch, light competition occurs in distinct canopy layers each 100m² in size according 

to the patch area. The locations of these layers are prescribed starting at the maximum tree height 

(50m) followed by additional layers every 2m down to a height specific bole height, but not 

lower than 2m. Tree bole height is a yearly calculated variable depending on tree height 

(Thonicke et al., 2010). If a tree is smaller than 2m (e.g. true for saplings), a respective fraction 

of its leaf mass is transferred to the first leaf layer where photosynthesis is possible (Fig. 1). An 

additional bottom layer enables the C3- and C4-grass PFTs of standard LPJmL to establish. 

Trees pass through the canopy layers during growth and distribute their leaf mass equally to the 
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amount of layers they have reached above their bole height. The total amount of leaf area within 

each leaf layer determines the fraction of absorbed photosynthetic active radiation (fAPARLayer) 

according to the Lambert-Beers law (Data S1). 

1.3 Output 

Output trait distributions and trait maps  

For the key traits SLA, LL, and WD, we fitted log-normal probability density functions (PDFs) to 

the trait distributions simulated in each grid cell in the Amazon Region. The distributions were 

fitted with the same type of probability density function (log-normal distribution) as was used for 

fitting the empirical TRY histograms. The investigated model output comprises averaged data 

from the last 600 out of 900 simulation years, since a 300 year initial phase was sufficient for 

trait distributions to reach equilibrium. Trait and trait variability maps were compiled by plotting 

the expectation value E and scale parameter σ of each log-normal PDF within each grid cell in 

the Amazon Region (Data S1). 

For evaluation, E is the most common trait value, while σ is a measure of trait variability. We 

chose E, because trait expectation values are important for the magnitude of ecosystem 

processes, whereas σ determines the variety of viable growth strategies and may therefore be 

used as an indicator of the forest's capacity to adapt to environmental change (Isbell et al., 2011; 

Mori et al., 2013).   

Output vegetation carbon 

Carbon stored in the vegetation (gC m-2) for the Amazon region was derived from LPJmL-FIT 

output data by averaging vegetation carbon in each grid cell across all surviving tree individuals 

including the grass PFTs over the last 600 years of the simulation.  
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1.4 Modelling protocol 

Environmental drivers 

Simulations are carried out for the Amazon basin. The model is driven by monthly climate data 

(temperature, precipitation, cloudiness, and number of wet days) from the CRU TS 3.10 

compiled by the Climate Research Unit (Harris et al., 2013). These are calculated on high-

resolution (0.5° × 0.5°) grids which are based on an archive of monthly mean temperatures 

(Mitchell & Jones, 2005). To reach an equilibrium state of the vegetation, climate data from 

1961-1990, which are interpolated to a daily time step, are constantly repeated for 900 years. The 

interval of 1961-1990 is chosen because the accuracy of input data for the Amazon basin is better 

than in previous years. To exclude CO2-fertilization effects, the atmospheric CO2 concentration 

is kept constant at the pre-industrial level of 288 ppm. Soil input data is based on the updated 

hydrology scheme for standard LPJmL (Schaphoff et al., 2013). The soil types remain constant 

over time as we do not aim to disentangle climate and soil effects on trait distributions. 

Three modelling experiments A-C reveal the effects of different model complexity on trait 

distributions and vegetation carbon.  

Simulated experiments A-C 

Experiment A. This simulation includes all three trade-offs listed above. The trait variability 

corridor is applied to the SLA-LL trade-off. We hypothesize that incorporating key traits and their 

trade-offs in a mechanistic framework successfully predicts observed plant trait distributions 

along a climatic gradient of the Amazon region (e.g. precipitation patterns and seasonality; Fig. 

S9) as well as vegetation carbon stocks which should fall in the observed ranges. 

Experiment B. In this simulation we exclude the trait variability corridor of the SLA-LL trade-
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off, and use paired input values that were strictly derived from the SLA-LL regression function. 

We hypothesize that the resulting trait distributions should reflect a tree community with less 

diversity in functional traits because a large part of the natural variability is excluded from the 

trait space. 

Experiment C. In addition to the changes made in experiments A and B, this experiment 

excludes the trade-off between SLA and LL and each tree is assigned a random LL within the LL 

range resulting from Eq. 1. We expect that without this essential trade-off, the resulting SLA and 

LL trait distributions should be shifted towards the thinner leaves with high leaf longevities, 

because both features increase the competitiveness.  

Computational intensiveness 

Simulations of LPJmL-FIT have relatively high computational costs compared to standard 

LPJmL. LPJmL-FIT accounts for light competition within the canopy as a compromise between 

the traditional PFT-representation (average individual approach) and representing individual 

trees with single stems and leaves in a spatially explicit manner. Diversifying former constant 

plant traits requires simulating a high number of different individuals. Under the settings 

described in this work, 900 year simulation years of the Amazon region take 3-4 days on 256 

central processing units.  

1.5 Model validation 

Trait distributions 

Simulated local trait distributions are evaluated at 12 selected locations (Fig. S8) where sufficient 

TRY data is available. We compare the expectation value E and the scale parameter σ of the 

fitted probability density functions (log-normal) of TRY data vs. LPJmL-FIT output to determine 
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the difference between empirical vs. modeled trait distributions for SLA. Moreover, we calculate 

the percentage overlap (ov) of the two (empirical vs. modeled) probability density functions 

within the investigated SLA range (Data S1). This strategy has the advantage of comparing local 

distributions which contain information on both trait abundances and ranges instead of mean 

values. We focused on SLA, because this was the only trait where TRY offered sufficient 

empirical data for several locations in the Amazon region making location-specific model 

validation possible. Moreover, SLA distributions are representative for the other variable leaf 

traits as they are derived from SLA in LPJmL-FIT. 

Vegetation carbon 

Modeled vegetation carbon is compared to vegetation carbon estimates and associated 

uncertainties for the Amazon region based on remote sensing (Saatchi et al., 2011) corrected for 

vegetation carbon of herbaceous cover (Carvalhais et al., 2014). 

Results 

Comparing the experiments A-C at specific test locations  

We show detailed results for 4 (L1-L4) out of 12 (L1-L12) validation locations (cf. Methods, 

Fig. S8). The complete results for all 12 locations are given in the SI (Table S1-S2, Fig. S10-

S13). 

In experiment A with the trait variability corridor included, the empirical and modeled 

distributions of SLA (Fig. 2a-h, Fig. S10-11) and their fitted log-normal probability functions 

(Fig. 2i-m, Fig. S12) agree very well at all 4 locations. The 4 selected sites L1-L4 (all 12 sites 

L1-L12) show a mean overlap between the modeled and observed PDFs of 88% (83%) with a 
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0.3-12.6% (0.3-23.7%) and 2.6-30.1% (1.5-31.5%) range of absolute difference between 

modeled and observed values of E and the scale parameter σ, respectively (Table S1, S2). The 

variability in SLAs as indicated by σ is largest in experiment A. 

In experiment B the correlation corridor is not applied. Excluding the natural variability of the 

SLA-LL trade-off decreases the viable range of SLAs able to survive and compete successfully at 

a given location within a particular simulated environment. E values of SLA are shifted towards 

the lower SLA range and the respective distributions are narrower than in experiment A indicated 

by a smaller σ (Fig. 3, Fig. S13). The 4 selected sites L1-L4 (all 12 sites L1-L12) show a mean 

overlap of 63% (66 %) between the modeled and observed PDFs (Table S2, Fig. S13).   

In experiment C the SLA-LL trade-off is excluded. The resulting SLA distribution is shifted 

strongly towards an unrealistically high range. The resulting SLA histograms do not follow a log 

normal distribution. The fitted PDFs increase exponentially towards the higher SLAs (Fig. 3, Fig. 

S13). Consistently, the 4 selected sites L1-L4 (all 12 sites L1-L12) show a mean overlap of 4% 

(5 %) between the modeled and observed PDFs (Table S2, Fig. S13). 

Overall, the comparison of the experiments A-C indicates that the modeled SLA distributions 

strongly depend on the SLA-LL trade-off and the trait variability corridor (Fig. 3, S13). Whilst 

the trade-off itself constrains SLA distributions to the biological realistically range, the trait 

variability corridor ensures that establishing phenotypes cover this range. 

Trait maps simulated for the Amazon region 

The geographical pattern of specific leaf area (SLA) based on experiment A (Fig. 4) shows 

low expected SLA values in the North-Western wetter parts of the Amazon and high SLAs in the 
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South-Eastern drier parts of the Amazon region (Fig. 4a). This indicates that a combination of 

low SLA and high LL, which is characteristic for an evergreen phenology, is the most successful 

growth strategy in wet per-humid regions, whereas deciduous species with high SLA and low LL 

establish in dry regions with stronger rainfall seasonality. The variability in SLA (as indicated by 

the σ of the SLA probability density functions) is higher in drier and more seasonal areas (Fig. 

4b). This indicates higher trait diversity in dry areas because of greater environmental variability. 

The geographical patterns of leaf longevity (LL) (Fig. 4c) and SLA (Fig. 4a) are approximately 

inverted because SLA and LL are negatively correlated by the SLA-LL trade-off. Higher LLs are 

found in wetter per-humid areas because evergreen trees do not suffer from water stress (Fig. 

4c). Such trees have LLs > 14 months, while deciduous trees in dry regions have LLs < 12 

months, because they drop their leaves during the dry season. As for SLA, the σ of the LL 

distribution (Fig. 4d) is higher in the drier, more seasonal areas.  

The geographical pattern of wood density (WD) (Fig. 4e) differs from the other two traits in 

that it does not represent a clear North-West to South-East gradient, but rather shows a crescent-

shaped distribution. Highest WD values are found in the driest, most seasonal regions at the 

fringes of the Amazon, e.g. in the South, but also in wet regions in the Northwest with low intra-

annual variability in precipitation (Fig. 4e).  

Carbon stocks in the vegetation  

In experiment A, vegetation carbon (Fig. S14) of 79% (41%) of all grid cells falls within the 5-

95% (25-75%) uncertainty percentile range of one of the most recent and detailed map of 

vegetation carbon for the Amazon region (Saatchi et al., 2011). Over- and underestimation of 

vegetation carbon are well- balanced with a mean difference of 0.11 and a standard deviation of 
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+/- 4.93 kgC m-2 across all grid cells between LPJmL-FIT and mean observed values. Excluding 

the trait variability corridor in experiment B not only reduces diversity of SLA (cf. Fig. 2), but 

also reduces the average vegetation carbon of the whole study area by 15% compared to 

experiment A (Fig. S14). In experiment B, vegetation carbon appears generally underestimated 

with the mean absolute difference of -1.75 and a standard deviation of +/- 4.79kgC m-2 across all 

grid cells between LPJmL-FIT and observed mean values. 

 

Discussion 

This study demonstrates a generalizable approach to a.) improve the representation of functional 

diversity in a DGVM by incorporating empirically-based trait distributions, and b.) employ a 

mechanistic framework of trade-offs to enable the coexistence of uniquely parameterized tree 

individuals with realistic growth strategies as defined by their trait combinations. A major 

advance of the individual- and trait-based DGVM LPJmL-FIT model is that the uniform input of 

trait values ensures that each trait combination gets the same chance to establish in a certain 

location. This flexible parameterization method avoids the pre-selection of tree types by 

bioclimatic limits as well as the model-specific calibration of plant traits. As a result, LPJmL-FIT 

replaces PFTs with numerous plant types representing functional spectra instead of constant 

plant parameters.  

The study design with three simulated experiments A-C provides new insight into the 

mechanisms and selective forces shaping modeled and natural trait distributions in tree 

communities with different levels of functional diversity along a climatic gradient. Only the 

simulation experiment A with all trade-offs and the trait variability corridor included 
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successfully reproduces empirical leaf trait distributions and vegetation carbon. Two further 

experiments B-C which lack functional components of the SLA-LL trade-off fail to do so. Here 

we first discuss the modelling implications, and then the ecological implications of this study. 

Continuum of tree growth strategies replaces PFTs 

From the climate of wetter and less seasonal tropical rainforests to the climate of drier and 

more seasonal closed and open dry deciduous forests, LPJmL-FIT produces a continuous 

gradient of tree growth strategies, replacing the strict classification of the “evergreen” and 

“raingreen” tropical broadleaved tree PFTs.  

The results of experiment A show a large trait diversity in heterogeneous environments 

which implies that the SLA-LL trade-off has a decisive influence on the realized functional 

diversity in LPJmL-FIT as quantified by the expectation value E and width (scale parameter σ) 

of the modeled trait distributions. For example, the model predicts a high trait diversity at the 

fringes of the Amazon (Fig 4, right panels), where drought-avoiding deciduous species and 

drought-tolerant evergreen species coexist (Markesteijn & Poorter, 2009). Here, niche 

differentiation (Macarthur & Levins, 1967) due to climatic variability (seasonal and inter-annual) 

leads to coexistence of more growth strategies (Mori et al., 2013; Sterk et al., 2013). This 

suggests that climatic variability acts as a major driver shaping the realized niche (McGill et al., 

2006) of trees. The resulting trait divergence is also observed in natural communities (Brousseau 

et al., 2013; Laurans et al., 2012; Pillar et al., 2009) where niche separation in a heterogeneous 

environment prevents competitive exclusion. The large trait variation should also make forests 

more resilient to environmental change due to higher response diversity (Mori et al., 2013). 

Other studies have predicted that increased droughts could lead to the replacement by savanna 
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vegetation (Hirota et al., 2011; Nobre & Borma, 2009), or even forest collapse (Cox et al., 2000; 

Cox et al., 2013; Phillips et al., 2009). LPJmL-FIT provides a tool to test which outcome is more 

likely in dependence of functional diversity, especially at the fringes of the Amazon, where 

climatic extremes are now more commonly observed (Marengo et al., 2011; Saatchi et al., 2013). 

Conversely, a lower σ for all considered leaf and stem traits is simulated in areas with low 

climatic variability where trait convergence (Shipley et al., 2006) occurs due to environmental 

filtering. Here, our model predicts a lower diversity of SLA and LL in the Northwestern Amazon, 

despite the high observed species diversity in this area (Baker et al., 2014; ter Steege et al., 

2003). Due to functional redundancy, plant trait diversity cannot be directly translated into 

species diversity. However, the model results suggest that the lower plant trait diversity in this 

area may render it especially vulnerable to climatic changes. 

Overall, the modeled trait distributions for SLA are very similar in expectation value E and 

scale parameter σ to the empirically-derived ones at all 12 tested locations in experiment A 

(mean overlap of PDFs: 86.7%, cf. Fig. 2, Fig. S12, and Table S1-2). The key to this successful 

model approach is that LPJmL-FIT selects for the best adapted growth strategies under different 

environmental conditions so that tree individuals optimize gains from photosynthesis per gram 

carbon investment into their leaves. 

All viable growth strategies are based on trait combinations which lie within a 

multidimensional trait space constrained by trade-offs. Higher carbon investment per leaf area 

(lower SLA) is connected with higher possible carbon return time (LL) and higher possible return 

rate (Vcmaxarea). These trade-offs enable a continuum between the extremes of short-lived, thin 

and less dense leaves and thicker, long-lived leaves as implied by the LES. Without this 
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continuum, DGVMs are likely to misrepresent the seasonality of tree phenology and may 

therefore fail to predict future responses of forests to climate change (Richardson et al., 2013). 

By including these trade-offs with the trait variability corridor and randomizing the threshold 

value for leaf abscission (minwscal) in LPJmL-FIT, we have achieved to reproduce the observed 

continuum of phenological strategies from evergreen to raingreen trees. This is a considerable 

advance over the simplified representation of phenology in existing DGVMs which prescribe 

either evergreen or deciduous PFTs. 

Using the successful modelling approach from experiment A to model SLA distributions across 

the entire Amazon region, we find that the SLA expectation values agree well with the SLA map 

from Castanho et al. (2013) which interpolates field data. Few empirical data are available for 

the basin-wide validation of the modeled leaf longevity (LL). Independent data on estimated leaf 

longevities (Caldararu et al., 2011) based on satellite images of the leaf area index from the 

MODIS product series (MOD15) support our simulated pattern with high LLs in the 

northwestern part of the Amazon region, and lower LLs in the southeastern part. 

The northwestern part of the Amazon is characterized by high rainfall and irradiation as well as 

low climatic variability (Fig. S9). Here, the simulated SLAs are lowest and the most abundant 

LLs are >14 months. The favorable and comparatively stable growing conditions throughout the 

year promote the growth of trees with high LLs, since leaf shedding due to seasonal drought is 

not necessary. A high LL improves the carbon balance, increasing the competitiveness of an 

individual. A corresponding, low SLA entails a high VcN which can compensate for the higher 

carbon investment per leaf area of thicker and/or denser leaves. Together these advantages let 

plant types with low SLAs prevail in high and aseasonal rainfall areas in our simulations. In 

contrast, slow-growing, drought resistant, long-lived trees with high SLAs, LLs <12 months, and 
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high WD are more abundant in drier areas with higher climatic variability, e.g. in the eastern to 

southern parts of the Amazon region.  

                   

Generally, the WD-mortality trade-off enables to simulate a continuum of competing WDs 

because it counteracts the higher growth rates of trees with low WD. The continuous WD 

distribution is an advance over setting constant WD for all tree types and contributes to a 

reasonably good match of simulated vegetation carbon with remote sensing data (Saatchi et al., 

2011). This implies that the WD-mortality trade-off is important for modelling ecosystem 

functioning, as WD influences the carbon storage capacity of the forest (Malhi et al., 2006; 

Stegen et al., 2009).  

More specifically, the modeled WD pattern generally reflects the observed gradient from 

drier (higher WD) to wetter (lower WD) areas in Chave et al. (2009). However, at sites with 

pronounced nutrient wash-out (e.g. Guyana shield), LPJmL-FIT simulates evergreen trees with 

low WD, although field observations show a stronger Northeast to Southwest gradient (Quesada 

et al., 2012; ter Steege et al., 2006). This is because the simulated trait distributions are a result 

of climatically forced forest communities under competition, whereas other factors influencing 

tree growth such as nutrient availability (Quesada et al., 2012; Fisher et al., 2012) are still being 

ignored. In LPJmL-FIT, dry and seasonal climates as at the fringes of the Amazon promote 

higher WDs and wider WD-distributions because a relatively low growth efficiency promotes 

trees with high WD, reflecting their physiological advantage under water stress (Data S1 Eq. 6-

7). In contrast, relatively high and constant annual rainfall as in the Northwestern part of the 

Amazon leads to a low growth efficiency-related mortality for all simulated tree types. In such 
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areas, E values of WDs are intermediate to high because trees may invest carbon both into higher 

WD and into height growth at the same time. Notably, the constant rainfall also decreases the 

range of the WD distributions (Fig. 4f). In climates with intermediate rainfall and high 

seasonality as in the central and eastern part of the Amazon, the E values of WD are lowest 

because the two mechanisms promoting higher WD as described above are less effective.  

Trait corridors enhance the number of growth strategies and the performance of tree 

individuals in trait-based models 

Experiment B excludes the trait variability corridor around the SLA-LL trade-off. The 

corridor broadens the possible range of trait combinations at establishment time and is therefore 

essential to enlarge the width of the resulting trait distributions in the model. Within the spectrum 

of possible trait combinations in experiment A, there are combinations which outperform those 

in experiment B. In general, the trait variability corridor produces tree individuals with a higher 

performance, because trees with a certain SLA can adapt a variety of LLs, therefore partially 

capturing the variability within the SLA-LL trade-off. The magnitude and direction of this trait 

offset depends on the local environmental conditions. Hence, a higher trait variability as model 

input and a resulting higher adaptability leads to more productivity and an overall better C-

balance of trees in LPJmL-FIT. This result suggests that the natural variability around 

empirically-based linear regressions of traits should be incorporated in trait-based models, which 

contrasts sharply with the fixed PFTs in most DGVMs.  

Inclusion of trade-offs is essential to provide ecological realism  

Experiment C completely excludes the SLA-LL trade-off. The resulting SLA expectation values 

become unrealistically high. High SLAs are much more competitive than lower ones in all 
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regions, because they invest less carbon into their leaves per area (thin or less dense leaves), 

while they are also able to maintain high LLs. Therefore, they achieve unrealistically high returns 

from photosynthesis. This result implies that just varying trait parameters without constraining 

them by an ecophysiologically motivated trade-off is insufficient to replace the fixed PFT 

approach and fails to reproduce natural patterns of plant trait diversity and indicators of 

ecosystem functioning.  

Potential of LPJmL-FIT to model the effects of functional diversity on ecosystem 

functioning  

Up to now, hypotheses about the links between B-EF could neither be tested systematically nor 

quantitatively established with DGVMs. LPJmL-FIT advances in this direction because it 

improves the representation of functional diversity by combining three modelling strategies: a.) 

the gap model approach with simulation of individual trees which enables unique trait 

combinations and local competition for resources, b) parameter assignment to these trees based 

on empirical trait ranges publicly available from the TRY plant trait database (Kattge et al., 

2011), and c.) the empirically-grounded constriction of the trait parameter space by the 

implemented trade-offs and the trait variability corridor based on the LES. This methodology 

directly address several calls (Adler et al., 2013; Quillet et al., 2010; Webb et al., 2010) to better 

quantify the influence of continuous multiple traits on ecosystem functions by testing their 

functional redundancy and complementarity with empirical data and vegetation models .The 

combination of a strong theoretical core, mechanistic relationships, and the empirically-derived 

knowledge on trait correlations makes LPJmL-FIT a powerful modeling tool for testing of 

leading BEF-related hypotheses, e.g. the insurance hypothesis (Yachi & Loreau, 1999; Walker, 

1992) and the mass-ratio hypothesis (Grime, 1998), at different spatial scales.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

As a future outlook, LPJmL-FIT could be extended to needle-leaved and herbaceous plants to 

model other natural ecosystems. For forests, LPJmL-FIT lends itself to simulate the effects of 

different logging schemes on the trait diversity of trees and the carbon cycle in exchange with the 

atmosphere. LPJmL-FIT may also predict the effects of global warming and CO2 fertilization on 

individual tree physiology to reduce model uncertainty (Rammig et al., 2010) and to better 

understand processes leading to biodiversity loss, e.g. by identifying ecological tipping points in 

scenarios of global change. 
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Supporting information 

Additional Supporting Information may be found in the online version of this article: 

Data S1. Additional information regarding standard LPJmL model description, trade-offs 
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implemented in LPJmL-FIT, details of linear regressions, light competition scheme of individual 

trees in LPJmL-FIT, distribution fitting, calculation of probability density function overlap as 

well as 20 additional references are provided. 

Table S1. Comparison of modeled vs. observed expected values E and scale parameter sigma 

based on probability density functions of SLA trait distributions across the Amazon region. 

Table S2. Percentage overlap (ov) between probability density functions of modeled vs. 

observed SLA. 

Fig. S1 Geographical origin of TRY data used to derive the tradeoffs of this study (Data S1 eq. 

1, 2, 3). Blue circles indicate data of the SLA-LL regression (Data S1 eq. 1). Orange circles 

indicate the data of the SLA-Narea regression (Data S1 eq. 2). Cyan circles indicate data of the 

Narea-Vcmaxarea regression (Data S1 eq. 3). 

Fig. S2. Regression of leaf longevity (LL) against specific leaf area (SLA). 

Fig. S3. Regression of leaf nitrogen per leaf area (Narea) against specific leaf area (SLA).  

Fig. S4. Regression of maximum carboxylation rate of RUBISCO enzyme per area measured at 

25°C (Vcmaxarea25°) against leaf nitrogen per leaf area (Narea). 

Fig. S5. Trait variability corridor of a regression between two exemplary traits. 

Fig. S6. Sampling of SLA input values for LPJmL-FIT based on data from TRY.  

Fig. S7. Visualization of LPJmL-FITs vegetation dynamics. 

Fig. S8. Test locations L1-L12 where sufficient TRY data were available for fitting empirical 
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SLA distributions with probability density functions. Coordinates of sites (longitude, latitude): L1 

(-60.75, -14.75); L2 (-60.25, -2.75); L3 (-76.25, -0.75); L4 (-69.25, -12.75); L5 (-77.75, -1.25); 

L6 (-67.26, 1.75); L7 (-51.25, -1.75); L8 (-61.25, -14.25); L9 (-68.25, -10.75); L10 (-72.75, -

3.25); L11 (-44.75, -23.25); L12 (-79.75, 8.75). 

Fig. S9. Precipitation patterns of input data used for all simulations in the Amazon region. a) 

Annual mean of the precipitation data. b) Mean annual standard deviation of the precipitation 

data. 

Fig. S10. Histograms of SLA values from TRY database at the 12 test locations L1-L12 (cf. Fig. 

S8) throughout the Amazon region.  

Fig. S11. Histograms of SLA values simulated in experiment A in LPJmL-FIT at the 12 selected 

test locations L1-L12. 

Fig. S12. Probability density functions fitted to the SLA distributions from the TRY database and 

LPJmL-FIT in simulated experiment A at the 12 test locations L1-L12.  

Fig. S13. Comparison between the probability density functions for the SLA distributions derived 

from simulated experiments A, B, and C, and the TRY database.  

Fig. S14. Modeled vs. observed mean vegetation carbon (vegC) across the Amazon region.  
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Figure legends 

Fig. 1: Flowchart of LPJmL-FIT. a.) Input: Parameter settings for individual trees are generated 

at tree establishment at the beginning of every 5th simulated year. A uniform distribution of 

input SLA, WD and wscalmin values and the derived trait values for Narea, LL, and Vcmaxarea gives 

every possible trait combination within the parameter space the same chance to establish at a 

given location. b) Vegetation dynamics: Trees compete for light and water while passing through 

distinct canopy layers during growth. A bottom layer (0) represents the grass the C3- and C4-

grass PFTs (see video visualization of model output under: http://www.pik-

potsdam.de/~borissa/video; documentation in Fig. S7). The location of individual trees within a 

patch is not spatially explicit so that total leaf area within a canopy layer is mixed. c) Output: 

Individual trees above 5m in height and their respective trait combinations are recorded each 

year. More competitive trait combinations show a higher contribution to the growing data set. A 

histogram of the simulated trait distribution (e.g. SLA) is established from a sufficient number of 

patches and simulation years (cf. Methods). Local trait distributions enable to compile trait maps 

for a whole region.   

Fig. 2: Top: Histograms of observed SLA values (broadleaved trees) from the TRY database 

(Kattge et al., 2011) at four selected locations L1-L4 (cf. 4a). The number of observations for 

each panel is N = 86 (L1), N = 122 (L2), N = 119 (L3), and N = 143 (L4). Center: Histograms of 

simulated SLA values from experiment A at the same locations. The average number of trees per 

ha and year for each panel is N = 270 (L1), N = 164 (L2), N = 197 (L3), and N = 250 (L4). 

Simulated SLA distributions refer to trees > 5m in height and the last 600 out of 900 simulation 

years. Bottom: Comparison of probability density functions fitted to the distributions in the top 

and center panel for the same locations. The distributions of the observed SLAs in the TRY data 
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base (red) match closely with the simulated SLA distributions (black). 

Fig. 3: Probability density functions of observed SLA distributions (black, solid line) from the 

TRY database (Kattge et al., 2011) in comparison to simulated experiments A (red), B (dashed), 

and C (dashed-dotted) at location L2 (cf. Fig. 4 for a map of all locations). For experiment B 

lacking the trait variability corridor, the distribution is shifted towards the lower SLAs. For 

experiment C lacking the SLA-LL trade-off, the distribution is shifted strongly towards the higher 

SLAs.  

Fig. 4: Trait distributions simulated at each grid cell of the entire Amazon region. Shown are the 

expectation values E and scale parameters σ of the fitted log-normal distributions (cf. Fig. 2) 

under the settings of experiment A. Left panels (a, c, e): Expectation values E.  Right panels (b, 

d, f): Scale parameter σ (right panels). E indicates the most probable trait value and σ is a 

measure of trait variability of the log normal probability density functions of specific leaf area 

(SLA, a-b), leaf longevity (LL, c-d), and wood density (WD, e-f) distributions, respectively. a.) 

Trees with lower SLAs establish in the North-Western wetter part of the Amazon region, whereas 

those with higher SLAs establish in the South-Eastern drier part of the Amazon region. Circles in 

(a) indicate locations L1-L4 with sufficient TRY data to compare empirical to simulated SLA 

distributions (cf. Fig.2). Coordinates of sites (longitude, latitude): L1 (-60.75, -14.75); L2 (-

60.25, -2.75); L3 (-76.25, -0.75); L4 (-69.25, -12.75). b.) The σ of the SLA distribution is higher 

in the drier parts of the Amazon and lower in the wetter parts of the Amazon. c.) The E of LL is 

higher in wetter parts of the region. d.) The σ of the LL distribution is higher in the drier and 

lower in the wetter areas. e.) WD shows high values in the northwestern and southern part, and 

low values in the central and eastern part of the Amazon. f.) As for SLA and LL, the σ of the WD 

distribution is higher (lower) in the drier (wetter) parts of the Amazon. 
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