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Abstract
Aim: To verify which vegetation and environmental factors are the most important 
in determining the spatial and temporal variability of average and maximum values 
of radiation use efficiency (RUEann and RUEmax, respectively) of cold and temperate 
forests.
Location: Forty‐eight cold and temperate forests distributed across the Northern 
Hemisphere.
Major taxa studied: Evergreen and deciduous trees.
Time period: 2000–2011.
Methods: We analysed the impact of 17 factors as potential determinants of mean 
RUE (at 8 days interval, annual and interannual level) and RUEmax (at annual and in‐
terannual level) in cold and temperate forests by using linear regression and random 
forests models.
Results: Mean annual RUE (RUEann, c. 1.1 gC/MJ) and RUEmax (c. 0.8 gC/MJ) did not 
differ between cold and temperate forests. However, for cold forests, RUEann was 
affected by temperature‐related variables, while for temperate forests RUEann was 
affected by drought‐related variables. Leaf area index (LAI) was important for both 
forest types, while N deposition only for cold forests and cloud cover only for tem‐
perate forest. RUEmax of cold forests was mainly driven by N deposition and LAI, 
whereas for temperate forests only a weak relationship between RUEmax and CO2 
concentration was found. Short‐term variability of RUE was strongly related to the 
meteorological variables and varied during the season and was stronger in summer 
than spring or autumn. Interannual variability of RUEann and RUEmax was only weakly 
related to the interannual variability of the environmental drivers.
Main conclusions: Cold and temperate forests show different relationships with the 
environment and vegetation properties. Among the RUE drivers observed, the least 
anticipated was N deposition. RUE is strongly related to short‐term and seasonal 
changes in meteorological variables among seasons and among sites. Our results 
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1  | INTRODUC TION

Radiation use efficiency (RUE; gC/MJ) has emerged in recent de‐
cades as a key parameter to determine photosynthetic carbon 
uptake by vegetation, and thus the carbon exchange between the at‐
mosphere and biosphere (Monteith, 1972). RUE represents the effi‐
ciency of vegetation to transform absorbed light energy into organic 
compounds; it is the ratio between gross primary production (GPP; 
gC/m2/year) and the absorbed photosynthetically active radiation 
(APAR; MJ/m2/year), with APAR being the product of the incident 
photosynthetically active radiation (PAR; MJ/m2/year) and its frac‐
tion absorbed by vegetation (fAPAR) (Monteith, 1972):

The global ecological modelling and the remote sensing com‐
munities are particularly interested in the RUE concept (e.g., Cheng, 
Zhang, Lyapustin, Wang, & Middleton, 2014; Grace et al., 2007; 
King, Turner, & Ritts, 2011; McCallum et al., 2009; Running et al., 
2004; Stocker et al., 2018; Wang, Prentice, & Davis, 2014; Wang et 
al., 2017; Yuan et al., 2014;). Nevertheless, to date, no consensus 
has been reached regarding the most suitable algorithm for RUE 
(Gitelson & Gamon, 2015) and scientists still need to fully under‐
stand if (and how) models should simulate  the impact of environ‐
mental factors on RUE (Baldocchi, 2018). To do this, first we need to 
find suitable proxies that capture well RUE variability in space (from 
local to global) and in time (from daily to annual). RUE changes over 
time because GPP is affected by the current environmental condi‐
tions and because the absorbed radiation is affected by changes in 
incident PAR and leaf properties (e.g., leaf and chloroplast move‐
ment), which can occur over short time periods. On the other hand, 
the impact of respiration variability on RUE is expected to be low in 
the short term (when plant respiration is thought to be independent 
of photosynthesis) but it can be greater over longer, annual time‐
scales (when plant respiration is thought to be proportional to pho‐
tosynthesis) (Ryan, Linder, Vose, & Hubbard, 1994).

First, RUE was used as a constant parameter (e.g., Myneni, Los, 
& Asrar, 1995). Subsequently, interannual variability has been rec‐
ognized. The ratio between the accumulated GPP over the year and 
the total solar radiation absorbed by the canopy was then defined as 
annual RUE (RUEann). This definition has been widely used in simple 
crop growth models, based on in situ observations (McCallum et al., 
2009), as well as in meta‐analyses seeking general ecological eluci‐
dations (Fernández‐Martínez et al., 2014). Finally, the intra‐annual 
variability of RUE, due to its dependency on seasonal environmental 

factors, was recognized (e.g., Grace et al., 2007). Production effi‐
ciency models define the light conversion factor as the product of 
an optimum RUE value (RUE potential or maximum, RUEmax) and 
other factors that relate to the environmental variables that regulate 
photosynthesis and APAR. For example, in the moderate resolution 
imaging spectroradiometer (MODIS) algorithm, RUE is implicitly cal‐
culated (to determine GPP) based on temperature, light, vapour pres‐
sure deficit and the biome‐specific RUEmax derived from a look‐up 
table (Zhao, Running, & Nemani, 2006). However, many studies con‐
sidering different biomes (Garbulsky et al., 2010; Runyon, Waring, 
Goward, & Welles, 1994) have shown that RUE might be influenced 
not only by environmental factors, but also by a range of biophysi‐
cal and structural factors related to plant properties, sometimes af‐
fected by ecosystem management (e.g., irrigation, fertilization). Both 
environmental and vegetation factors that affect RUE are reported 
in Table 1 with the aim of summarizing the current state of the art.

In detail, factors that have been reported to date as determinants 
of RUE are: (a) temperature‐related variables [air and soil tempera‐
ture, length of the warm period (i.e., the number of months with 
mean temperature above 5 °C), thermal amplitude (i.e., mean maxi‐
mum minus mean minimum temperature)]; (b) water status variables 
[vapour pressure deficit (VPD), precipitation, intensity and duration 
of drought, evaporative fraction, actual and potential evapotranspi‐
ration, soil water content and deficit, irrigation]; (c) radiation‐related 
variables [diffuse light and leaf area index (LAI)]; (d) variables related 
to leaf and vegetation characteristics [stand age, leaf habit and type 
and biome type] and (e) fertility‐related variables [nitrogen (N) depo‐
sition, leaf N, management and CO2 concentration]. The relevance of 
these factors is reviewed below based on the literature.

(a) Temperature‐related variables. The impact of air temperature 
on RUE has been tested the most, but contrasting results have 
been found, ranging from significant (Chasmer et al., 2008; Kergoat, 
Lafont, Arneth, Dantec, & Saugier, 2008; Mäkelä et al., 2008; 
Schwalm et al., 2006) to non‐significant (Jenkins et al., 2007; Turner 
et al., 2003), or with impact limited to periods during the warm sea‐
son (see above definition; Fernández‐Martínez et al., 2014) or only 
at cold sites (Garbulsky et al., 2010). The latter evidence is the most 
anticipated, as the positive effect of temperature on photosynthesis 
is larger in cold environments and APAR is not expected to depend 
significantly on temperature. Furthermore, Fernández‐Martínez  
et al. (2014) tested the thermal amplitude and the length of the warm 
season, finding them not relevant to RUE variability.

(b) Water status variables. Water limitation is generally expected to 
reduce RUE because of reduced photosynthesis following reduction 

(1)RUE=
GPP

APAR
=

GPP

fAPAR×PAR

should be considered in the formulation of climate zone‐specific tools for remote 
sensing and global models.

K E Y W O R D S

meteorological and vegetation influences, forest ecosystems, gross primary production, light 
use efficiency, meta‐analysis, short‐term variability, spatial and temporal variabilities
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in stomatal conductance or stomata closure. VPD has frequently 
been tested as a potential driver of RUE. As can be seen in Table 1, 
both significant (Bracho et al., 2012; Chasmer et al., 2008; Mäkelä 
et al., 2008; Runyon et al., 1994) and non‐significant (Garbulsky et 
al., 2010; Jenkins et al., 2007; Turner et al., 2003) impacts of VPD 
on RUE have been found. Also annual precipitation was identified 
both as a significant (Garbulsky et al., 2010) and a non‐significant 
driver of RUE (Fernández‐Martínez et al., 2014). In the latter work, 
the water deficit was tested as potential driver of RUE (i.e., an indica‐
tor of the intensity of water stress that the vegetation must tolerate) 
but with a negative response. Soil water content was reported as a 
significant driver of RUE in one study on temperate forests (Bracho 
et al., 2012) and one on cold forests (Chasmer et al., 2008), while 
it was not relevant in the study of Mäkelä et al. (2008), comparing 
cold and temperate forests. The evaporative fraction was found 
to be a significant driver by Garbulsky et al. (2010) and Yuan et al. 
(2007). Actual evapotranspiration was identified as an important 
variable by Garbulsky et al. (2010), but not by Fernández‐Martínez 
et al. (2014). Two irrigation experiments on temperate forests (Allen, 
Will, McGarvey, Coyle, & Coleman, 2005; Campoe et al., 2013) both 
agreed on the potential influence of irrigation on RUE.

(c) Radiation‐related variables. The role of diffuse light has been 
tested in several studies, focused only on forests or combining for‐
ests with other biomes (Table 1). All studies agreed on its potential 
role in defining RUE variability because the reduction that the dif‐
fuse light triggers in APAR is larger than the reduction it triggers in 
GPP (Gu et al., 2002). The APAR term in Monteith’s model depends 
not only on the amount of PAR, but also on the PAR absorbance 
capacity, and thus canopy structure, leaf area index (LAI) (Bracho 
et al., 2012; Schwalm et al., 2006), leaf angle distribution and photo‐
synthetic pigment content.

(d) Variables related to leaf and ecosystem characteristics. Stand 
age, leaf habitat and type, and biome types have been tested as 
potential drivers of RUE. Stand age has been identified both as a 
significant (Bracho et al., 2012; Chasmer et al., 2008) and non‐sig‐
nificant driver of RUE (Fernández‐Martínez et al., 2014), whereas 
leaf habitat and type were found to be non‐significant (Fernández‐
Martínez et al., 2014). It has been reported by several authors that 
RUE varies with vegetation type (Field, Randerson, & Malmstrom, 
1995, Garbulsky et al., 2010; Prince & Goward 1995; Schwalm et al., 
2006; Turner et al., 2003) because of the different ratio of respira‐
tion to photosynthesis. RUE was found to be around 2 gC/MJ for 
annual crops, for which the ratio of respiration to photosynthesis is 
assumed to be low, whereas for woody plants the value of RUE var‐
ies from 0.2 to 1.5 gC/MJ because the ratio of respiration to photo‐
synthesis is assumed to increase with plant size (Hunt, 1994; Waring 
& Running, 1998).

(e) Fertility‐related variables. The impact of fertility on RUE has 
been tested in two experiments on temperate forests but contrasting 
results were found [significant in Campoe et al. (2013), non‐signifi‐
cant in Allen et al. (2005)]. Bracho et al. (2012) identified fertility as 
not influential for RUE in drought conditions. Leaf nitrogen content 
affects RUE directly (mainly through its impact on photosynthesis) 

but also indirectly (through its impact on leaf and plant structure, 
which influence light absorption). Leaf N has been therefore consid‐
ered as a potential driver of RUE in manifold studies on forest eco‐
systems (Kergoat et al., 2008; Ollinger et al., 2008; Peltoniemi et al., 
2012) but has not been found to be consistently significant (Mäkelä 
et al., 2008; Schwalm et al., 2006). In a recent study, Fernández‐
Martínez et al. (2014) tested the relationship between RUE and 
N deposition but no significant association was found. Finally, De 
Kauwe, Keenan, Medlyn, Prentice, and Terrer (2016) have recently 
shown that CO2 is a key factor controlling RUE variability. These au‐
thors found a large increase in RUE due to elevated CO2 for two 
long‐term free air carbon enrichment (FACE) forest sites (Oak Ridge: 
1998–2008 and Duke: 1996–2007).

Overall, even though the underlying mechanisms for the differ‐
ent potentially influencing factors seem clear, our literature review 
indicates that there is still high uncertainty about the vegetation and 
environmental drivers of RUE, their relative importance and their 
different impacts on forest ecosystems of different climate zones. 
Moreover, the biological and physiological processes that regulate 
photosynthesis and radiation absorption vary daily over the grow‐
ing season and, potentially, among years. Therefore, here, we aim to 
elucidate the spatial (across the Northern Hemisphere) and temporal 
(short‐term, annual and interannual) variability of RUE in temperate 
and cold forests by comparing the impact on RUE and RUEmax of 
several potential drivers. The short‐term variability refers to the 
variability of RUE among 8‐day time windows (RUE8days), as 8 days is 
a common time reference for remote sensing. The focus on RUE8days, 
RUEann and RUEmax offers the most comprehensive insight into RUE 
dynamics and their possible implementation in global monitoring 
tools.

2  | MATERIAL S AND METHODS

2.1 | Forest categories and sites

It appears clear that most of the variables (e.g., related to tem‐
perature, water status, fertility) potentially affecting RUE differ 
between the two main climate zones where the majority of the 
northern forests are situated, that is, the temperate and cold 
zones. As for most of the previous studies on RUE variability (see 
Table 1), we therefore separated the two forest types in our analy‐
sis. This categorization is also important to generalize our findings 
and match the forest land classification used in global vegetation 
modelling.

The categorization of cold and temperate is based on the 
Köppen–Geiger classification (Peel, Finlayson, & McMahon, 2007), 
using monthly temperature data from the European Commission—
Joint Research Centre—Monitoring Agricultural ResourceS 
(EC‐JRC‐MARS, https​://ec.europa.eu/jrc/en/mars) portal. The 
Köppen–Geiger classification defines a particular site as “cold” when 
the temperature of the hottest month is > 10°C, while the tempera‐
ture of the coldest month is below or equal to 0°C. On the other 
hand, sites are classified as “temperate” when the temperature of 

https://ec.europa.eu/jrc/en/mars
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the hottest month is >  10°C and the temperature of the coldest 
month is between 0 and 18°C.

For the analysis on spatial variability of RUEann we used 26 cold 
and 22 temperate forests in the Northern Hemisphere (Figure 1). 
These sites were selected because they had both GPP derived from 
eddy covariance flux measurements and the associated satellite 
value of fAPAR available (see below for fAPAR determination). 
Multiple years were considered when available. Total site–year 
combinations were 114 for cold and 102 for temperate forests (see 
Supporting Information Appendix S1). For the analysis of the spatial 
variability of RUEmax, only the sites with seasonal data for GPP and 
fAPAR were selected. A subset of 20 cold forests and 20 temperate 
forests was thus used (see Supporting Information Appendix S1). 
The temporal analyses (interannual variability of RUEann and RUEmax 
and short‐term RUE variability, RUE8days) were conducted by con‐
sidering 11 sites that had at least 8 years of seasonal data for GPP 
and fAPAR.

2.2 | PAR, fAPAR, GPP and RUE

PAR. The cumulative annual value of PAR (PARann) and 8‐day PAR 
(PAR8days) were calculated, for every site–year combination, from 
seasonal daily data for PAR using (a) free fair‐use data files from the 
Fluxnet and European Fluxes Database Cluster (69% of the sites) and 
(b) the EC‐JRC‐MARS data set for the remaining sites. (a) In the Fluxnet 
and European Fluxes Database Cluster files the measurement of the 
incoming radiation in the PAR region (400–700 nm) is reported. (b) 
EC‐JRC‐MARS reports only total shortwave incoming radiation. We 
therefore multiplied the radiation by a factor of 0.45, assuming that 

about 45% of the total incoming shortwave radiation is in the PAR re‐
gion (Campbell & Norman, 1998). The physical unit of the total short‐
wave radiation reported in the EC‐JRC‐MARS database is MJ/m2/day. 
The physical unit of incoming PAR in the Fluxnet and European Flux 
Database Cluster is μmol/photons/m2/s. We converted PAR from 
μmol/photons/m2/s to J/m2/s using a conversion factor of 4.55 μmol/J 
as proposed by Goudriaan and Van Laar (1994). Finally, we obtained 
daily values in MJ/m2/day by multiplying by 0.0864. For sites with 
availability of both, preliminary analyses indicated a high correlation 
between PAR data from EC‐JRC‐MARS and the Fluxnet/ European 
Fluxes Database Cluster (R2 = .8; p < .001; slope = 1.05).

fAPAR. 8‐day values of fAPAR (fPAR8days) were derived from the 
fAPAR/LAI product (MOD15A2, collection 5) from the MODIS/
TERRA satellite sensor/platform as provided by the Oak Ridge 
National Laboratory Distributed Active Archive Center (ORNL 
DAAC). MOD15A2 pixel values represent the optimal fPAR8days at 
1‐km spatial resolution (Myneni et al., 2002). Only the pixels with 
the highest quality based on the Quality Assurance/Quality Control 
flags provided by MODIS (e.g., clear conditions without snow) were 
selected and retained for computing fAPAR values. For each year, 
annual fAPAR (fAPARannW) was calculated from weighted fAPAR8days 
data where the weighting was provided by PAR8days data.

APAR. Annual APAR (APARann) was computed as fAPARannW mul‐
tiplied by the cumulative PAR (PARann). To derive APAR8days, we mul‐
tiplied fAPAR8days by the PAR8days.

GPP. GPP data (annual comulative GPP) and 8‐day GPP (GPP8days) 
were derived from publicly available databases of forest ecosys‐
tem carbon fluxes (Luyssaert et al., 2007, Fluxnet, European Flux 
Database Cluster).

F I G U R E  1  Map with distribution of sites: cold forests and temperate forests are represented with red and blue circles, respectively 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


1656  |     BALZAROLO et al.

RUEann, RUEmax and RUE8days. According to Monteith’s equation 
(Equation 1), we calculated RUEann as the ratio between GPPann and 
APARann. To calculate RUEmax for a year we computed 8‐day RUE 
(RUE8days) values for the whole growing season from the ratio be‐
tween GPP8days and APAR8days values. RUEmax was defined as the 
maximum value of the RUE8days time series.

2.3 | Explanatory drivers

2.3.1 | Analyses of spatial variability

We examined the following potential determinants of RUEann and 
RUEmax that were in common with previous studies: leaf type and 
habit, annual potential evapotranspiration, annual precipitation, 
mean annual temperature, mean monthly minimum and maximum 
air temperature, N deposition, VPD, cloud cover data, LAI, arid‐
ity index, leaf N and CO2 concentration. Furthermore, we decided 
to complete the group of determinants with the addition of some 
new variables related to soil fertility, number of days with mean 
daily temperature below zero (i.e., freezing period) and duration of 
the longest period without rain. These variables were determined 
for each site and year for which RUEann was available, except for 
LAI and leaf N concentration, for which data were not consistently 
available for all years (averages were made with the available data) 
or sites (leaf N concentration was available only at about half of 
the sites and only those sites were considered in the data analysis 
for leaf N).

2.3.2 | Analyses of temporal variability

For the analysis of short‐term variability of RUE8days the available 
(meteorological) variables were: mean 8‐day temperature, 8‐day 
minimum and maximum temperature, 8‐day mean potential evap‐
otranspiration, 8‐day mean VPD and 8‐day mean CO2 concentra‐
tion. For the analysis of the interannual variability of both RUEann 
and RUEmax, we considered the same meteorological explanatory 
variables used for the analysis of short‐term variability of RUE8days.

(a) Meteo‐variables

Mean annual temperature, mean monthly minimum and maximum 
temperature, annual precipitation and potential evapotranspiration, 
yearly number of days with mean daily temperature below zero and 
the duration of the longest period without rain (expressed in num‐
ber of days), mean 8‐day temperature, 8‐day minimum and maxi‐
mum temperature, 8‐day mean potential evapotranspiration and 
8‐day mean VPD were calculated using the EC‐JRC‐MARS data set. 
The evaporation data that we used are derived from Penman (1948) 
and they represented the annual potential evapotranspiration. We 
calculated the annual aridity index as the ratio of annual precipita‐
tion to annual evapotranspiration.

VPD (in kPa) is the difference between the saturation vapour 
pressure (es, kPa) at air temperature and actual vapour pressure (ea, 
kPa) (Allen, Pereira, Raes, & Smith, 1998):

where T is the air temperature (°C) and RH is the relative humidity 
(%). Mean daily values of VPD over an 8‐day time window and the 
annual mean of daily values were used in our analyses. RH data 
were available from the Fluxnet and European Fluxes Database 
Cluster for 89% of the sites, while for the other sites we used data 
from the public online Global Weather Data for soil & water as‐
sessment tool (SWAT) (Dile & Srinivasan, 2014; Fuka et al., 2014) 
that provides interpolated RH from local meteorological stations.

Cloud cover was used as a proxy of diffuse light, as the latter is 
a parameter that is not generally measured by meteorological sta‐
tions and flux towers. We extracted cloud cover data (mean annual 
value as percentage) from Climatic Research Unit (CRU) Time‐Series 
Version 3.22 (Harris & Jones, 2014).

(b) Soil fertility

The soil type of each site was derived from the food and agriculture 
organization (FAO) digital Soil Map of the World Version 3.6 (FAO, 
2007). Subsequently, soil types were classified into three levels (H: 
high, M: medium, L: low) of nutrient availability (see Supporting 
Information Appendix S1), based on fertility information reported in 
Creutzberg (1987).

(c) Leaf type and habit

We collected the description of each site from the database of 
Luyssaert et al. (2007). The two leaf type categories are needle‐
leaved and broadleaved, while the categories deciduous and ever‐
green represent the leaf habit of the forest tree species.

(d) N deposition

In our analysis, N deposition was considered as the sum of dry and 
wet deposition. We extracted these data from the global N deposition 
data set simulated with goddard earth observing system‐Chem (GEOS; 
http://acmg.seas.harvard.edu/geos/index.html)  for years from 2004 
to 2006, at 2°×2.5° grid resolution (Ackerman, Chen, & Millet, 2018).

(e) LAI and leaf N concentration

We extracted LAI data from the forest database of Luyssaert et 
al. (2007) and the literature (see Supporting Information Appendix 
S2). Leaf N was obtained from the ancillary files of the Fluxnet and 
European Fluxes Database Cluster and the literature (see Supporting 
Information Appendix S3). For both LAI and leaf N concentration, we 
used the maximum annual value.

(f) CO2 concentration

For 81% of the sites, we used CO2 concentration data from the 
Fluxnet database. For the remaining sites, we used values provided 

(2)VPD=es - ea

(3)es=0.6108exp

(

17.27T

T+237.3

)

(4)ea=es
RH

100
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in the global data set compiled by the Institute for Atmospheric and 
Climate Science at the Eidgenössische Technische Hochschule in 
Zürich (Switzerland) for the Northern Hemisphere (https​://www.
co2.earth/​histo​rical-co2-datasets).

2.4 | Statistical analysis

2.4.1 | Spatial variability of RUEann and RUEmax

The analyses of RUEann and RUEmax were conducted separately 
for cold forests and temperate forests (see Tables 2 and 3), with 
the analysis on the entire data set reported only in the Supporting 
Information (see Appendices S4 and S5). Three main analyses were 
performed: univariate analysis, random forest and linear models 
with multiple predictors. Analyses on leaf N were limited to the uni‐
variate analysis (see below), because we did not have leaf N avail‐
able for all sites (see above). (a) To describe the correlation between 
each predictor and RUEann and RUEmax, we conducted univariate 
analysis for each variable. We used single linear regression for 
continuous variables and one‐way ANOVAs with post hoc Tukey’s 
honestly significant difference (HSD) test for categorical variables. 
Shapiro–Wilk’s normality test and Levene’s test for homoscedas‐
ticity were always passed. (b) We used random forest analysis 
(Breiman, 2001) to estimate the relative importance of the dif‐
ferent variables. This analysis ranks the factors from the one with 
the strongest impact to the one with the lowest impact, while not 
exclusively considering linearity but also other, nonlinear, types of 
relationships. The ranking is based on the mean decrease in accu‐
racy of model prediction (%IncMSE) when the variable is randomly 
permuted. We used a standard random forest algorithm (Liaw & 
Wiener, 2002) with 50,000 trees. For ranking the predictors, we 
preferred random forest to multiple regression analysis because 
of the ability of random forest analysis to consider also nonlinear 
relationships and because the relatively small sample sizes would 
have made the ranking with multiple regression analysis less robust. 
(c) Finally, we built linear models with the predictors to evaluate 
how much of the variability in RUE could be explained by combina‐
tions of predictors. To build these models, we first detected the 
variables that were highly correlated by doing a multicollinearity 
test [recording the variance inflation factor (VIF)] and by exploring 
the relationships among all the variables with a bivariate analysis by 
doing a matrix of Pearson’s correlation coefficients. Practically, we 
removed all variables that had a VIF > 5 or had a correlation coef‐
ficient > |.8| with another variable. With the variables that passed 
the multicollinearity and correlation test, we performed a stepwise 
backwards regression analysis (SBRA). This is a process of building a 
model considering at first all variables together and successively re‐
moving the least important ones. The original model was compared 
with the new model, with one variable removed, by using the likeli‐
hood ratio and Akaike information criterion (AIC). The new model 
was not accepted if the likelihood ratio was significant (p < .05) or 
the AIC increased (i.e., we considered as the final model the one 
that respected those assumptions).

2.5 | Temporal analysis of short‐term RUE 
variability

For this test, we performed univariate analyses considering as de‐
pendent variable the time series of RUE8days and as independent 
variables the 8‐day time series of the predictors (see above). The 
analyses were done for each of the 11 selected sites, separately, and 
averages were done across years. First, the analyses were done for 
all 8‐day periods within the growing season. Second, the analyses 
were run separately for three periods representing the main sea‐
sons: spring (considering 8‐day windows from 15 April to 15 June), 
summer (from 16 June to 15 August) and autumn (from 16 August 
to 15 October).

2.5.1 | Temporal analysis of interannual 
variability of RUEann and RUEmax

This analysis was done separately on the selected 11 sites (see 
above). We conducted a univariate analysis to evaluate the good‐
ness of the linear correlation between RUE (RUEann and RUEmax) of 
each year and the value of each predictor variable (see above for the 
variables list). For RUEann, we used annual values of the predictor 
variables. For predictors of RUEmax, we used the values of the 8‐day 
window corresponding to the 8‐day period associated with RUEmax.

All the statistical analyses were done using R (R Core Team, 
2015).

3  | RESULTS

Mean RUEann for cold and temperate forests was very similar: 1.10 
(SD ±0.39) gC/MJ for cold forests and 1.11 (SD ±0.45) gC/MJ for 
temperate forests. The variability of RUEann was larger than the 
variability of annual GPP [1,221.46 (SD ±412.60) gC/m2/year and 
1,510.27 (SD ±329.53) gC/m2/year for cold and temperate forests, 
respectively]. Cold forests showed the largest RUEmax but also the 
largest variability across sites [0.86 (SD ±0.42) gC/MJ], whereas tem‐
perate forests presented slightly lower values [0.79 (SD ±0.26) gC/
MJ].

The results of the univariate analyses are shown in Tables 2 and 
3 for RUEann and RUEmax, respectively, for both cold and temper‐
ate forests. For cold forests, temperate‐related variables were sig‐
nificantly correlated with RUEann, in particular the number of days 
with mean daily temperature below zero (p = .001, R2 = .35), annual 
temperature (p =  .03, R2 =  .14) and, but with a weaker trend, Tmin 
(p  =  .06, R2  =  .11). Moreover, N deposition (p  =  .02, R2  =  .18) and 
LAI (p =  .05, R2 =  .12) were also significant determinants of spatial 
variability of RUEann (Table 2). On the other hand, RUEmax showed 
a significant relationship only with N deposition (p =  .02, R2 =  .20) 
and LAI (p =  .05, R2 =  .16) and only a weak relationship with tem‐
perature (Tmin; p =  .07; R2 =  .13) (Table 3). For temperate forests, 
a different picture emerged. First, RUEann showed dependencies 
with variables related to the water status instead of temperature, 

https://www.co2.earth/historical-co2-datasets
https://www.co2.earth/historical-co2-datasets
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in particular annual precipitation (p  =  .02, R2  =  .19), aridity index 
(p =  .003, R2 =  .34), longest period without rain (p =  .01, R2 =  .23) 
and VPD (p =  .05 R2 =  .13) (Table 2). Second, RUEann of temperate 
forests showed mainly different patterns from those of RUEann 
of cold forests such as a significant relationship with cloud cover 
(p = .002, R2 = .34) and a non‐significant relationship with N deposi‐
tion (p = .62, R2 = −.04) (Table 2). Finally, RUEmax of temperate forests 
did not show significant relationships with any explanatory variable 

except a weak relationship with CO2 concentration (p = .09, R2 = .10) 
(Table 3).

In general, there was a good agreement between the univariate 
analysis and random forest analysis and the variables that were sig‐
nificant in the univariate analysis also showed high importance in the 
random forest analysis (Figures 2 and 3). However, there were ex‐
ceptions. First, for temperate forests, the relation between RUEann 
and maximum air temperature was not significant according to the 

TA B L E  2  The impact of vegetation and environmental drivers on annual radiation use efficiency (RUEann) for cold (n = 26) and temperate 
forests (n = 22), from univariate analysis and stepwise backwards regression analysis (SBRA)

Potential predictor

Cold forest (n = 26) Temperate forest (n = 22)

Variable typea

Univariate analysisb

SBRAc

Univariate analysisb

SBRAcp value
Adj. R2 
(sign) Post hoc p value

Adj. R2 
(sign) Post hoc

Water‐related

Aridity index con. .73 −.04 (‐) X .003** .34 (+) X

Longest period with‐
out rain

con. .78 −.04 (‐) X .01* .23 (‐) X

Annual precipitation con. .72 −.04 (+) X .02* .19 (+)

Evapotranspiration con. .62 −.03 (+) X .56 −.03 (‐) X

Vapour pressure 
deficit

con. .34 −.003 (+) .05○ .13 (‐) X

Temperature‐related

Number days under 
0°C

con. .001** .35 (‐) X .27 .01 (+)

Annual temperature con. .03* .14 (+) .16 .05 (‐) X

Tmin con. .06○ .11 (+) X .25 .02 (‐) X

Tmax con. .99 −.04 (+) X .13 .06 (‐) X

Radiation‐related

Cloud cover data con. .93 −.04 (+) .002** .34 (+) X

LAI con. .05○ .12 (+) .01* .24 (+) X

Others

N deposition con. .02* .18 (+) .1 .09 (+)

Soil fertilityd cat. .23 L‐H: 
−0.30

.38 M‐H: 
−0.35

X

Leaf habite cat. .2 BN‐B: 
−0.26

.36 BN‐B: 
0.27

Leaf typef cat. .28 E‐D: 
−0.27

.74 E‐D: 
−0.12

Leaf Ng con. .39 −.01 (+) .36 .001 (+)

CO2 con. .73 −.04 (‐) .21 .03 (+)

Stepwise backwards 
regression model

R2 = .57 R2 = .38

Abbreviations and symbols: LAI = leaf area index; Tmin and Tmax = mean monthly minimum and maximum air temperature, respectively; Number 
days under 0°C = the number of days in a year with mean daily temperature below zero. ○ = .05 < p < .10; * = .01 < p < .05; ** = .001 < p < .01; 
*** = p < .001; (+) = positive linear regression; (‐) = negative linear regression. aVariable type: “con.” when continuous; “cat.” when categorical. bFor 
continuous variables, the significance level of the linear regression (p) and adjusted R2 are reported, with “sign” as the sign of the linear regression. 
For categorical variables, we report results of one‐way ANOVA (p value) and post hoc Tukey’s honestly significant difference (HSD) test (absolute 
difference for two significantly different factors and p value of the difference). cFor SBRA, we report the variables of the final model, representing 
the key predictors of RUE, and (in the last row) the coefficient of determination (R2) of the final model; dSoil fertility was classified as H = high; M = 
medium; L = low. eLeaf habit was classified as N = needleleaved; B = broadleaved; BN = mixed habit. fLeaf type was classified as D = deciduous; E = 
evergreen. gLeaf N: variable tested only for univariate analysis as with fewer sites than other variables (cold: n = 11; temperate: n = 12).
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univariate analysis but was highly ranked in random forest analysis 
(see Figure 2 and Table 2). This is probably due to the hyperbolic 
relationship between maximum temperature and RUEann which was 
likely detected by the random forest but not by the univariate analy‐
sis (Supporting Information Appendix S6). However, we believe this 
relationship to be spurious as it is driven by only three sites with 
exceptionally high maximum temperatures (Supporting Information 
Appendix S6). Second, similarly to the previous case, RUEmax of cold 
forests was not significantly correlated with Tmean in the univariate 

analysis but Tmean was highly ranked in the random forest analy‐
sis, likely because of a few exceptional sites (Supporting Information 
Appendix S7). Third, for RUEann and RUEmax of cold forests, LAI was 
significant according to the univariate analysis but of very low im‐
portance in the random forest analysis. This suggests that for RUEann 
and RUEmax of cold forests, nonlinear relationships might dominate 
and overshadow the linear dependencies.

Tables 2 and 3 also show linear models combining multiple pre‐
dictors. The models explained 57 and 38% of the spatial variability of 

TA B L E  3  The impact of vegetation and environmental drivers on maximum radiation use efficiency (RUEmax) for cold (n = 20) and 
temperate forests (n = 20), from univariate analysis and stepwise backwards regression analysis (SBRA)

Potential predictor Variable typea

Cold forest (n = 20) Temperate forest (n = 20)

Univariate analysisb

SBRAc

Univariate analysis(b)

SBRAcp value
Adj. R2 
(sign) Post hoc p value

Adj. R2 
(sign) Post hoc

Water‐related

Aridity index con. .23 .03 (+) X .26 .02 (+) X

Longest period with‐
out rain

con. .36 −.01 (‐) X .11 .09 (‐) X

Annual precipitation con. .20 .04 (+) X .56 −.04 (+) X

Evapotranspiration con. .79 −.05 (+) X .55 −.03 (‐) X

Vapour pressure 
deficit

con. .91 −.05 (+) X .45 −.02 (‐) X

Temperature‐related

Number days under 
0°C

con. .13 .08 (‐) X .80 −.05 (+) X

Annual temperature con. .14 .07 (+) X .40 −.01 (‐)

Tmin con. .07○ .13 (+) X .50 −.03 (‐) X

Tmax con. .91 −.05 (‐) X .55 −.03 (‐) X

Radiation‐related

Cloud cover data con. .93 −.06 (+) X .23 .03 (+) X

LAI con. .05* .16 (+) .20 .04 (+) X

Others

N deposition con. .02* .20 (+) X .62 −.04 (+) X

Soil fertilityd cat. L‐H: 0.77 X L‐H: 0.36 X

Leaf habite cat. BN‐B: 
0.49

BN‐B: 
0.91

X

Leaf typef cat. E‐D: 0.49 E‐D: 0.47 X

Leaf Ng con. .79 −.10 (‐) .29 .02 (+)

CO2 concentration con. .80 −.05 (‐) X .09○ .10 (+)

Stepwise backwards 
regression model

R2 = .44 R2 = .88

Abbreviations and symbols: LAI = leaf area index; Tmin and Tmax = mean monthly minimum and maximum air temperature, respectively; Number 
days under 0°C = the number of days in a year with mean daily temperature below zero. ○ = .05 < p < .10; * = .01 < p < .05; ** = .001 < p < .01; 
*** = p < .001. (+): positive linear regression; (‐): negative linear regression. aVariable type: “con.” when continuous; “cat.” when categorical. bFor con‐
tinuous variables, the significance level of the linear regression (p) and adjusted R2 are reported, with “sign” as the sign of the linear regression. For 
categorical variables, we report results of one‐way ANOVA (p value) and post hoc Tukey’s honestly significant difference (HSD) test (absolute differ‐
ence for two significantly different factors and p value of the difference). cFor SBRA, we report the variables of the final model, representing the key 
predictors of RUE, and (in the last row) the coefficient of determination (R2) of the final model. dSoil fertility was classified as H = high; M = medium; 
L = low. eLeaf habit was classified as N = needleleaved; B = broadleaved; BN = mixed habit. fLeaf type was classified as D = deciduous; E = evergreen. 
gLeaf N = variable tested only for univariate analysis as with fewer sites than other variables (cold: n = 11; temperate: n = 12). 
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RUEann for cold and temperate forests, respectively, and 44 and 88% 
of the spatial variability of RUEmax for cold and temperate forests, 
respectively. However, note that a high number of variables were 
retained in the best models (see Tables 2 and 3).

As mentioned above, we also carried out an analysis on the en‐
tire data set, without separating forests into the cold and temperate 
categories. For RUEann, both temperature‐related variables (import‐
ant for cold forests) and drought‐related variables (important for 

F I G U R E  2  Relative importance of vegetation and environmental drivers for annual radiation use efficiency (RUEann) for cold forests 
(n = 26) and temperate forests (n = 22). Data are from (a) random forest analysis (cold forests: light grey bars, temperate forests: black bars) 
with variable importance positively related to accuracy of model prediction (%IncMSE), and negative %IncMSE indicating lack of importance 
and (b) univariate analysis, with significant (p < .10) drivers marked with “*” symbol (see text and Table 2 for details). Abbreviations: Tmin and 
Tmax = mean monthly minimum and maximum air temperature, respectively; N. days under 0°C = the number of days in a year with mean 
daily temperature below 0°C

F I G U R E  3  Relative importance of vegetation and environmental drivers for maximum radiation use efficiency (RUEmax) for cold forests 
(n = 20) and temperate forests (n = 20). Data are from (a) random forest analysis (cold forests: light grey bars, temperate forests: black bars) 
with variable importance positively related to accuracy of model prediction (%IncMSE), and negative %IncMSE indicating lack of importance 
and (b) univariate analysis, with significant (p < .10) drivers marked with “*” symbol (see text and Table 3 for details). Abbreviations: Tmin and 
Tmax = mean monthly minimum and maximum air temperature, respectively; N. days under 0°C = the number of days in a year with mean 
daily temperature below 0°C
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temperate forests) were significant. Moreover, other variables, sig‐
nificant for at least one of the two forest types, retained their impor‐
tance (e.g., cloud cover, LAI, N deposition) (Supporting Information 
Appendix S4). SBRA on the whole data set produced for RUEann a 
model with an R2 (.38, Supporting Information Appendix S4) similar 
to that for temperate forests (see above). For RUEmax, analyses on the 
entire data set showed only N deposition and LAI having a significant 
correlation with it (but aridity index presented p =  .08; Supporting 
Information Appendix S5) with a clear similarity to the behaviour of 
cold forests (see Table 3). SBRA on the whole data set produced for 
RUEmax a model with an R2 (.23, Supporting Information Appendix 
S5) lower than those obtained for cold and temperate forests sepa‐
rately (see above).

RUEmax for cold and temperate forests showed significant 
interannual variability (Table 4, SD ±0.24–0.30 gC/MJ for both 
forest types) but, within each forest type, still slightly lower than 
the spatial variability. Soroe (DK‐Sor) forest showed the highest 
variability in RUEmax (SD ±0.45 gC/MJ, max. 1.66 gC/MJ, min. 
0.31 gC/MJ) whereas Loobos (NL‐Loo) forest showed the lowest 
variability (SD ±0.09 gC/MJ, max. 0.95 gC/MJ, min. 0.58 gC/MJ). 
For RUEann, the interannual variability was lower than the interan‐
nual variability of RUEmax (Table 4, SD ±0.19–0.23 gC/MJ for both 
forest types). In general, the interannual variability of RUEann and 
RUEmax was weakly related to the examined variables (Table 5). 
For RUEann, for five (out of six) cold forests and three (out of five) 
temperate forests, interannual variability was not related to any 
variable. Moreover, the other sites only showed significant rela‐
tionships with one or two variables per site (variables involved: 
mainly evapotranspiration and precipitation but also Tmax; see 
Table 5). For RUEmax, significant relationships were found only for 
three cold forests and one temperate forest. The interannual vari‐
ability of RUEmax was explained mainly by evapotranspiration and 
precipitation, with some weak relationships (.05  <  p <  .10) with 
temperature‐related variables (see Table 5).

Table 6 and Supporting Information Appendix S8 report the results 
of the short‐term variability analysis of RUE8days for the whole season 
and for each season separately (i.e., spring, summer, autumn). The vari‐
ables selected were generally correlated with RUE8days, particularly for 
cold forests. In fact, for cold forests, RUE8days was significantly cor‐
related with (a) potential evapotranspiration at five sites (out of six), (b) 
Tmean and Tmin at four sites, and with (c) VPD, annual precipitation 
and Tmax at about half of the sites. For temperate forests, only three of 
the five sites presented significant correlations between RUE8days and 
the examined variables (Table 6). SBRA showed in general R2 between 
.21 and .61 (Supporting Information Appendix S9). The low R2 of some 
of the SBRAs may be related to the fact that important variables were 
not considered and/or because of nonlinear relationships.

When analysed for the three seasons, cold forests presented 
two main results. First, cold forests showed the strongest rela‐
tionships between RUE8days and the environmental factors in 
summer, for both temperature‐ and drought‐related variables 
and for all sites. Second, the drivers of RUE8days in spring (mainly 
VPD, Tmean and Tmin) were different to the drivers of RUE8days in 

autumn (mainly evapotranspiration, Tmax and precipitation) and in 
any case less relevant (e.g., significant at about half of the sites). 
For temperate forests, RUE8days appeared to be related to environ‐
mental factors mainly in summer and autumn (with dependencies 
for both temperature‐ and drought‐related variables at most sites) 
but to be conservative in spring (with only one variable important 
at one site).

4  | DISCUSSION

One of the main findings of this study is that, on average, cold and 
temperate forests exhibit very similar RUEann (c.  1.1 gC/MJ) and 
RUEmax (c.  0.8 gC/MJ) but their relationships with vegetation and 
environmental drivers differ significantly. Also, the drivers of RUEann 
differ from the drivers of RUEmax within each forest type. More in 
detail, RUEann of cold forests is influenced by mainly variables related 
to temperature (particularly the number of freezing days), whereas 
RUEann of temperate forests by variables related to water status 
(particularly aridity index). LAI is important for both forest types, 
whereas cloud cover only for temperate forests and N deposition 
only for cold forests. On the other hand, RUEmax of cold forests was 
related to LAI and N deposition, whereas RUEmax of temperature for‐
ests was only weakly related to CO2 concentration. Concerning the 
temporal variability, our study shows that interannual variability of 
RUEann and RUEmax is not primarily related to environmental factors. 
On the other hand, we showed that short‐term (8 days) variability of 
RUE is strongly related to the environmental conditions, particularly 
in summer. This evidence was valid for both cold‐ and temperate 
forests.

TA B L E  4  Statistics (mean and SD) for interannual variability in 
annual (RUEann) and maximum radiation use efficiency (RUEmax) 
in cold and temperate forests. Sites’ full names can be found in 
Supporting Information Appendix S1

 Forest 
type / 
Site code N. years

RUEann RUEmax

Mean SD Mean SD

Cold forest

DE‐Hai 8 1.38 ± 0.31 1.06 ± 0.40

DE‐Tha 9 1.39 ± 0.21 0.97 ± 0.18

DK‐Sor 9 1.59 ± 0.23 1.18 ± 0.45

FI‐Hyy 12 0.91 ± 0.11 0.81 ± 0.36

FI‐Sod 8 0.04 ± 0.32 0.75 ± 0.24

IT‐Ren 8 1.02 ± 0.22 0.79 ± 0.16

Temperate forest

BE‐Bra 10 0.96 ± 0.16 0.82 ± 0.40

BE‐Vie 9 1.59 ± 0.20 0.87 ± 0.27

FR‐Hes 9 1.37 ± 0.27 1.16 ± 0.27

FR‐Pue 8 0.59 ± 0.07 0.51 ± 0.16

NL‐Loo 9 1.21 ± 0.23 0.76 ± 0.09
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The fact that (low) temperature plays an important role in the 
eco‐physiology of trees in the cold zone is not surprising. Subfreezing 
temperatures stop photosynthesis, because leaf stomata are forced 
to close (Waring & Running, 1998). Moreover, negative effects 
of freezing on RUE could be related to direct frost damage to the 
leaves (Marchand, 1996) or to indirect, freezing‐induced damage to 

the hydraulic system that supplies leaves with water and nutrients 
(e.g., freezing‐induced xylem cavitation) (Jackson, Sperry, & Dawson, 
2000; Sperry, Nichols, Sullivan, & Eastlack, 1994; Sperry & Sullivan, 
1992). Our temporal analysis showed that drought‐related variables 
(e.g., VPD) were also important to determine RUE of cold forests but 
mainly in summer. Thus, they should not be neglected for seasonal 

TA B L E  6  Results of univariate analysis for short‐term variability in radiation use efficiency (RUE8days) of cold and temperate forests, for 
the whole growing season and spring, summer and autumn separately. Cells in orange are for correlations with p ≤ .05 and in yellow for 
correlations with .05 < p ≤ .10. All detailed data (p and adjusted R2) are reported in Supporting Information Appendix S8. Data are reported 
for six cold and five temperate forest sites. Sites’ full names and descriptions can be found in Supporting Information Appendix S1

Potential predictor

Cold forest Temperate forest

DE‐Hai DE‐Tha DK‐Sor FI‐Hyy FI‐Sod IT‐Ren BE‐Bra BE‐Vie FR‐Hes FR‐Pue NL‐Loo

All seasons

Tmean

Tmin

Tmax

Precipitation

Vapour pressure 
deficit

Evapotranspiration

CO2 concentration

SPRING: from mid‐April to mid‐June

Tmean

Tmin

Tmax

Precipitation

Vapour pressure 
deficit

Evapotranspiration

CO2 concentration

SUMMER: from mid‐June to mid‐August

Tmean

Tmin

Tmax

Precipitation

Vapour pressure 
deficit

Evapotranspiration

CO2 concentration

AUTUMN: from mid‐August to mid‐October

Tmean

Tmin

Tmax

Precipitation

Vapour pressure 
deficit

Evapotranspiration

CO2 concentration

Abbreviations: Tmean = mean temperature; Tmin and Tmax = minimum and maximum air temperature, respectively.
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modelling of RUE but it is also clear that they did not emerge in the 
annual analyses of either RUEann or RUEmax.

Our results support previous findings that identified drought‐
related variables (e.g., annual precipitation, aridity index, longest 
period without rain, VPD) as highly significant determinants of RUE 
for temperate forests. The negative relationship between drought 
and RUE in temperate forests is related to the fact that drought 
impacts on stomatal conductance and restricts the photosynthe‐
sis process (e.g., Bracho et al. (2012)). Moreover, in typical drought 
conditions, a canopy receives more direct light and this has a neg‐
ative impact on RUE (De Boeck & Verbeeck, 2011). Our temporal 
analysis for temperate forests showed that temperature‐related 
variables are not to be neglected for short‐term modelling of RUE 
in summer, but as for the case of drought‐related variables for cold 
forests, these variables are not important in the annual analyses of 
either RUEann or RUEmax.

Both forest types showed relationships with radiation‐related 
variables. The important impact of radiation type (i.e., diffuse ver‐
sus direct radiation) and radiation interception capacity (i.e., LAI) on 
photosynthetic efficiency and RUE of forests is well known. Diffuse 
radiation penetrates deeper in the canopy and does not saturate the 
photosynthetic capacity at leaf level (Gu et al., 2002). Therefore, 
greater cloud cover improves the photosynthetic efficiency by de‐
creasing the denominator of Equation 1 at similar values of GPP. 
Furthermore, more leaves (i.e., higher LAI) correspond to a higher 
fAPAR.

The key role of nutrient availability in affecting plant and 
ecosystem processes is well known. In particular, high N avail‐
ability allows the maintenance of high Rubisco concentration in 
the leaves, which contributes to a high photosynthetic capacity 
(Field, Merino, & Mooney, 1983). However, the role of nutrient 
availability in determining RUE was unclear (Table 1). Our study 
shows no impact of leaf N or site fertility but a positive impact of 
N deposition. This indicates the relevance of a fertilization effect, 
which might be more important than actual N pools (leaf and soil 
N) and more important in colder (typically nutrient limited) high 
latitude areas. The past uncertainty in understanding the effect 
of N deposition on RUE might also have been related to the qual‐
ity and representativeness of N deposition data. In this work, we 
used very recent global simulations for N deposition for the period 
2004–2006 (Ackerman et al., 2018).

The effect of CO2 concentration was found to be of some signifi‐
cance but not a key driver of RUE as found by De Kauwe et al. (2016). 
This might be due to the fact that we analysed natural variability 
of CO2 concentration (overall 380 ± 8 ppm) whereas De Kauwe et 
al. (2016) analysed long‐term FACE forest sites with CO2 concentra‐
tions ranging from 370 to 550 ppm. A high CO2 concentration may 
increase the effect of CO2 on RUE.

Our study is difficult to compare to the one of Wang et al. (2017) 
on a universal mechanism driving RUE across biomes, as the stud‐
ies are methodologically very different. For instance, our seasonal 
short‐term analysis of RUE variability could have not taken into 

account factors found to be important by Wang et al. (2017), such 
as the ratio of internal leaf CO2 to external CO2, or elevation. On 
the other hand, both studies found that temperature and a drought‐
related variable [Wang et al. (2017) considered VPD, we potential 
evapotranspiration; Table 6] are crucial determinants of the short‐
term variability of RUE.

Two general remarks should also be made concerning our study. 
First, the short‐term temporal analysis clearly revealed differences 
among sites, with some sites showing stronger relationships be‐
tween RUE and the environment than others. This might be the 
reason why so many contrasting results have been found about the 
environmental drivers of RUE dynamics in the past (Table 1). Second, 
one general difficulty in understanding the effects of environmental 
variables on RUE is finding a good surrogate of each environmen‐
tal factor at the global scale and their availability at daily to annual 
time‐scales. The accuracy of available meteorological data is of par‐
ticular importance for modelling the RUE dynamics of ecosystems 
under stress conditions such as drought. Moreover, note that under 
drought conditions other specific factors might also play a role as 
determinants of RUE (Garbulsky et al., 2010; Goerner et al., 2009; 
Stocker et al., 2018).

In summary, our study synthesized existing knowledge on the 
determinants of the variability of RUE in cold and temperate forests 
and tested their potential roles as predictor variables considering a 
high number of sites in the Northern Hemisphere. We found that, 
on average, RUEann and RUEmax do not differ markedly between 
cold and temperate forests, but the influence of different veg‐
etation and environment drivers on RUE does differ significantly 
between the two climatic zones. These findings primarily indicate 
that global tools using RUE should differentiate their algorithms be‐
tween climate zones. For instance, MODIS GPP might improve if 
current RUEmax modulators (temperature, light and VPD) become 
region‐dependent. Also, our study suggests that the use of envi‐
ronmental variables only does not suffice to describe the variability 
of RUE, and therefore that ecological models based on Monteith’s 
approach should include new parameters that describe plant char‐
acteristics such as LAI. N deposition should also be accounted for 
in modelling RUE of cold forests. Moreover, our results show that, 
within each climatic zone, RUEann and RUEmax have different rela‐
tionships with environmental and vegetation variables. Therefore, 
equations parameterized for one index cannot be used for the other 
index. Our analysis showed also that RUEmax is less related to envi‐
ronmental conditions than RUEann. This helps modelling and remote 
sensing applications. In detail, while RUEmax for cold forests de‐
pends on two variables (LAI and N deposition), RUEmax of temperate 
forests is not related to any variables. So, the latter might be used as 
a constant. Finally, concerning the temporal variability, our analysis 
at a short‐term scale (i.e. 8‐day), indicated that the relationships be‐
tween RUE and predictors differ when the whole growing season or 
spring, summer and autumn are considered separately. On the other 
hand, interannual variability of RUEann and RUEmax was less related 
to the environment.



     |  1665BALZAROLO et al.

ACKNOWLEDG MENTS

IAJ acknowledges the Belgian Science Policy Office (BELSPO) 
STEREO III program ECOPROPHET (Improved Ecosystem 
Productivity Modelling by Innovative Algorithms and Remotely 
Sensed Phenology Indicators) project (SR/00/334). NV and IAJ ac‐
knowledge the European Research Council Synergy grant ERC‐2013‐
SyG‐610028 IMBALANCE‐P. MC was a Postdoctoral Fellow of the 
Research Foundation – Flanders (FWO). YHF was supported by the 
University of Beijing Normal University, the General Program of 
National Nature Science Foundation of China (grant no. 31770516). 
This work used eddy covariance data acquired by the FLUXNET 
community and in particular by the following networks: AmeriFlux 
[U.S. Department of Energy, Biological and Environmental Research, 
Terrestrial Carbon Program (DE‐FG02‐04ER63917 and DE‐
FG02‐04ER63911)], AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, 
CarboItaly, CarboMont, ChinaFlux, Fluxnet‐Canada (supported 
by CFCAS, NSERC, BIOCAP, Environment Canada and NRCan), 
GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS‐Siberia, USCCC. 
We acknowledge the financial support to the eddy covariance data 
harmonization provided by CarboEuropeIP, FAO‐GTOS‐TCO, iL‐
EAPS, Max Planck Institute for Biogeochemistry, National Science 
Foundation, University of Tuscia, Université Laval and Environment 
Canada and U.S. Department of Energy and the database develop‐
ment and technical support from Berkeley Water Center, Lawrence 
Berkeley National Laboratory, Microsoft Research Science, Oak 
Ridge National Laboratory, University of California – Berkeley, 
University of Virginia. We gratefully thank all scientists and techni‐
cians who helped collect these data and make them available for anal‐
ysis. We also acknowledge the authors and repository institutions of: 
Global Forest Database; European Fluxes Database Cluster; ‘Global 
nitrogen deposition (2°×2.5° grid resolution) simulated with GEOS‐
Chem for 2004‐2006' (University of Minnesota); EC‐JRC‐MARS 
data set (© European Union, 2011–2014) created by MeteoConsult 
based on European Centre for Medium‐Range Weather Forecasts 
(ECMWF) model outputs and a reanalysis of ERA‐Interim; Global 
Weather Data for SWAT (http://globa​lweat​her.tamu.edu); Land and 
Water Development Division, FAO, Rome, for the Digital Soil Map 
of the World (http://www.fao.org/geone​twork​); University of East 
Anglia Climatic Research Unit (CRU) Time‐Series (TS) Version 3.22 for 
cloud cover data (http://dx.doi.org/10.5285/18BE2​3F8-D252-482D-
8AF9-5D6A2​D40990C); Land Processes Distributed Active Archive 
Center (LP DAAC), US Geological Survey (USGS) Earth Resources 
Observation and Science (EROS) Center (lpdaac.usgs.gov) for provid‐
ing MODIS data. We thank Erik Fransen (StatUa Center for Statistics, 
University of Antwerp) for statistic consultancy and Sara Vicca and 
James Weedon for support on data analysis. This project has re‐
ceived funding from the EU Horizon 2020 Research and Innovation 
programme under a Marie Skłodowska‐Curie grant (INDRO (Remote 
sensing INdicators for DROught monitoring), grant no. 702717).

CONFLIC T OF INTERE S T

The authors declare no competing financial interests.

AUTHOR CONTRIBUTION

MB, NV, IAJ and MC conceived the paper; MB performed the analy‐
ses; MB, NV and MC wrote the text; YHF gathered cloud cover data; 
LS gathered soil‐type description; all authors contributed substan‐
tially to discussions.

DATA AVAILABILITY STATEMENT

A summarized version of the data set is available in Supporting 
Information Appendix S1. The full data set can be made available by 
the leading author upon request.

ORCID

Manuela Balzarolo   https://orcid.org/0000-0002-7888-1501 

Yongshuo H. Fu   https://orcid.org/0000-0002-9761-5292 

R E FE R E N C E S

Ackerman, D. E., Chen, X., & Millet, D. B. (2018). Global nitrogen depo‐
sition (2°×2.5° grid resolution) simulated with GEOS‐Chem for 1984–
1986, 1994–1996, 2004–2006, and 2014–2016. Retrieved from 
the Data Repository for the University of Minnesota. https​://doi.
org/10.13020/​D6KX2R

Allen, C. B., Will, R. E., McGarvey, R. C., Coyle, D. R., & Coleman, M. 
D. (2005). Radiation‐use efficiency and gas exchange responses to 
water and nutrient availability in irrigated and fertilized stands of 
sweetgum and sycamore. Tree Physiology, 25, 191–200. https​://doi.
org/10.1093/treep​hys/25.2.191

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotrans‐
piration‐guidelines for computing crop water requirements. FAO irri‐
gation and drainage paper 56. Rome, Italy: FAO.

Alton, P., North, P., & Los, S. (2007). The impact of diffuse sunlight on 
canopy light‐use efficiency, gross photosynthetic product and net 
ecosystem exchange in three forest biomes. Global Change Biology, 
13, 776–787. https​://doi.org/10.1111/j.1365-2486.2007.01316.x

Baldocchi, D. D. (2018). Must we incorporate soil moisture information 
when applying light use efficiency models with satellite remote 
sensing information? New Phytologist, 218, 1293–1294. https​://doi.
org/10.1111/nph.15176​

Bracho, R., Starr, G., Gholz, H. L., Martin, T. A., Cropper, W. P., & Loescher, 
H. W. (2012). Controls on carbon dynamics by ecosystem structure 
and climate for southeastern US slash pine plantations. Ecological 
Monographs, 82, 101–128. https​://doi.org/10.1890/11-0587.1

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
 Campbell, G. S., &  Norman, J. M. (1998). An introduction to environmental 

biophysics. New York, USA: Springer Science & Business Media.
Campoe, O. C., Stape, J. L., Albaugh, T. J., Allen, H. L., Fox, T. R., 

Rubilar, R., & Binkley, D. (2013). Fertilization and irrigation effects 
on tree level aboveground net primary production, light intercep‐
tion and light use efficiency in a loblolly pine plantation. Forest 
Ecology and Management, 288, 43–48. https​://doi.org/10.1016/j.
foreco.2012.05.026

Chasmer, L., McCaughey, H., Barr, A., Black, A., Shashkov, A., Treitz, P., 
& Zha, T. (2008). Investigating light‐use efficiency across a jack pine 
chronosequence during dry and wet years. Tree Physiology, 28, 1395–
1406. https​://doi.org/10.1093/treep​hys/28.9.1395

Cheng, Y.‐B., Zhang, Q., Lyapustin, A. I., Wang, Y., & Middleton, E. 
M. (2014). Impacts of light use efficiency and fPAR parameter‐
ization on gross primary production modeling. Agricultural and 

http://globalweather.tamu.edu
http://www.fao.org/geonetwork
http://dx.doi.org/10.5285/18BE23F8-D252-482D-8AF9-5D6A2D40990C
http://dx.doi.org/10.5285/18BE23F8-D252-482D-8AF9-5D6A2D40990C
https://orcid.org/0000-0002-7888-1501
https://orcid.org/0000-0002-7888-1501
https://orcid.org/0000-0002-9761-5292
https://orcid.org/0000-0002-9761-5292
https://doi.org/10.13020/D6KX2R
https://doi.org/10.13020/D6KX2R
https://doi.org/10.1093/treephys/25.2.191
https://doi.org/10.1093/treephys/25.2.191
https://doi.org/10.1111/j.1365-2486.2007.01316.x
https://doi.org/10.1111/nph.15176
https://doi.org/10.1111/nph.15176
https://doi.org/10.1890/11-0587.1
https://doi.org/10.1016/j.foreco.2012.05.026
https://doi.org/10.1016/j.foreco.2012.05.026
https://doi.org/10.1093/treephys/28.9.1395


1666  |     BALZAROLO et al.

Forest Meteorology, 189, 187–197. https​://doi.org/10.1016/j.agrfo​
rmet.2014.01.006

Creutzberg, D. (1987) Description of units of the FAO‐UNESCO soil map 
of the world legend (ISRIC Report 1987/01). Wageningen, NL. 
Retrieved from http://www.isric.org/sites/​all/modul​es/pubdl​cnt/
pubdl​cnt.php?file=/isric/​webdo​cs/docs/ISRIC_Report_1987_01.
pdf&nxml:id=332

De Boeck, H., & Verbeeck, H. (2011). Drought‐associated changes 
in climate and their relevance for ecosystem experiments and 
models. Biogeosciences, 8, 1121–1130. https​://doi.org/10.5194/
bg-8-1121-2011

De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C., & Terrer, 
C. (2016). Satellite based estimates underestimate the effect of CO2 
fertilization on net primary productivity. Nature Climate Change, 6, 
892–893.

Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for 
hydrologic prediction in data‐scarce watersheds: An application in 
the Blue Nile River Basin. Journal of the American Water Resources 
Association, 50, 1226–1241. https​://doi.org/10.1111/jawr.12182​

FAO. (2007). Digital soil map of the world version 3.6. Land and water de‐
velopment division. Rome, Italy: FAO. Retrieved from http://www.
fao.org/geone​twork​?uuxml​:id=446ed​430-8383-11db-b9b2-000d9​
39bc5d8

Fernández‐Martínez, M., Vicca, S., Janssens, I. A., Luyssaert, S., Campioli, 
M., Sardans, J., … Peñuelas, J. (2014). Spatial variability and con‐
trols over biomass stocks, carbon fluxes, and resource‐use effi‐
ciencies across forest ecosystems. Trees, 28, 597–611. https​://doi.
org/10.1007/s00468-013-0975-9

Field, C., Merino, J., & Mooney, H. A. (1983). Compromises between 
water‐use efficiency and nitrogen‐use efficiency in five species 
of California evergreens. Oecologia, 60, 384–389. https​://doi.
org/10.1007/BF003​76856​

Field, C. B., Randerson, J. T., & Malmstrom, C. M. (1995). Global net pri‐
mary production: Combining ecology and remote sensing. Remote 
Sensing of Environment, 51, 74–88.

Fuka, D. R., Walter, M. T., MacAlister, C., Degaetano, A. T., Steenhuis, 
T. S., & Easton, Z. M. (2014). Using the Climate Forecast System 
Reanalysis as weather input data for watershed models. Hydrological 
Processes, 28, 5613–5623. https​://doi.org/10.1002/hyp.10073​

Garbulsky, M. F., Penuelas, J., Papale, D., Ardo, J., Goulden, M. L., Kiely, 
G., … Filella, I. (2010). Patterns and controls of the variability of radi‐
ation use efficiency and primary productivity across terrestrial eco‐
systems. Global Ecology and Biogeography, 19, 253–267. https​://doi.
org/10.1111/j.1466-8238.2009.00504.x

Gitelson, A. A., & Gamon, J. A. (2015). The need for a common basis 
for defining light‐use efficiency: Implications for productivity esti‐
mation. Remote Sensing of Environment, 156, 196–201. https​://doi.
org/10.1016/j.rse.2014.09.017

Goerner, A., Reichstein, M., & Rambal, S. (2009). Tracking seasonal 
drought effects on ecosystemlight use efficiency with satellitebased 
PRI in a Mediterranean forest. Remote Sensing of Environment, 113, 
1101–1111. https​://doi.org/10.1016/j.rse.2009.02.001

Goudriaan, J., & Van Laar, H. H. (1994). Modelling potential crop growth 
processes. Textbook with exercises. Dordrecht, The Netherlands: 
Kluwer Academic Publishers.

Grace, J., Nichol, C., Disney, M., Lewis, P., Quaife, T., & Bowyer, P. (2007). 
Can we measure terrestrial photosynthesis from space directly, using 
spectral reflectance and fluorescence? Global Change Biology, 13, 
1484–1497. https​://doi.org/10.1111/j.1365-2486.2007.01352.x

 Gu, L.,  Baldocchi, D.,  Verma, S. B.,  Black, T.,  Vesala, T.,  Falge, E. M., 
&   Dowty, P. R. (2002). Advantages of diffuse radiation for ter‐
restrial ecosystem productivity. Journal of Geophysical Research: 
Atmospheres, 107.

Hunt, E. R. Jr (1994). Relationship between woody biomass and PAR con‐
version efficiency for estimating net primary production from NDVI. 
International Journal of Remote Sensing, 15, 1725–1730.

Harris, I., & Jones, P. D. (2014). CRU TS3.22: Climatic Research Unit 
(CRU) Time‐Series (TS) version 3.22 of high resolution gridded 
data of month‐by‐month variation in climate (Jan. 1901‐ Dec. 
2013). NCAS British Atmospheric Data Centre. Retrieved from 
https​://catal​ogue.ceda.ac.uk/uuid/4a6d0​71383​976a5​fb24b​
5b42e​28cf28f

Jackson, R. B., Sperry, J. S., & Dawson, T. E. (2000). Root water up‐
take and transport: Using physiological processes in global predic‐
tions. Trends in Plant Science, 5, 482–488. https​://doi.org/10.1016/
S1360-1385(00)01766-0

Jenkins, J. P., Richardson, A. D., Braswell, B. H., Ollinger, S. V., Hollinger, 
D. Y., & Smith, M. L. (2007). Refining light‐use efficiency calcu‐
lations for a deciduous forest canopy using simultaneous tower‐
based carbon flux and radiometric measurements. Agricultural and 
Forest Meteorology, 143, 64–79. https​://doi.org/10.1016/j.agrfo​
rmet.2006.11.008

Kergoat, L., Lafont, S., Arneth, A., Le Dantec, V., & Saugier, B. (2008). 
Nitrogen controls plant canopy light‐use efficiency in temperate and 
boreal ecosystems. Journal of Geophysical Research: Biogeosciences, 
113, G04017. https​://doi.org/10.1029/2007J​G000676

King, D. A., Turner, D. P., & Ritts, W. D. (2011). Parameterization of a diag‐
nostic carbon cycle model for continental scale application. Remote 
Sensing of Environment, 115, 1653–1664. https​://doi.org/10.1016/j.
rse.2011.02.024

Liaw, A., & Wiener, M. (2002). Classification and regression by random‐
Forest. R News, 2, 18–22.

Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., 
Papale, D., … Janssens, I. A. (2007). CO2 balance of boreal, temperate, 
and tropical forests derived from a global database. Global Change 
Biology, 13, 2509–2537.

Mäkelä, A., Pulkkinen, M., Kolari, P., Lagergren, F., Berbigier, P., Lindroth, 
A., … Hari, P. (2008). Developing an empirical model of stand GPP 
with the LUE approach: Analysis of eddy covariance data at five con‐
trasting conifer sites in Europe. Global Change Biology, 14, 92–108.

Marchand, P. (1996). Life in the cold: An introduction to winter ecology. 
Lebanon, NH: University Press of New England.

McCallum, I., Wagner, W., Schmullius, C., Shvidenko, A., Obersteiner, M., 
Fritz, S., & Nilsson, S. (2009). Satellite‐based terrestrial production 
efficiency modeling. Carbon Balance and Management, 4. https​://doi.
org/10.1186/1750-0680-4-8

Monteith, J. (1972). Solar radiation and productivity in tropical eco‐
systems. Journal of Applied Ecology, 9, 747–766. https​://doi.
org/10.2307/2401901

Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, 
Y., … Running, S. W. (2002). Global products of vegetation leaf area 
and fraction absorbed PAR from year one of MODIS data. Remote 
Sensing of Environment, 83, 214–231. https​://doi.org/10.1016/
S0034-4257(02)00074-3

Myneni, R. B., Los, S. O., & Asrar, G. (1995). Potential gross primary 
productivity of terrestrial vegetation from 1982–1990. Geophysical 
Research Letters, 22, 2617–2620. https​://doi.org/10.1029/95GL0​
2562

Ollinger, S. V., Richardson, A. D., Martin, M. E., Hollinger, D. Y., Frolking, 
S. E., Reich, P. B., … Schmid, H. P. (2008). Canopy nitrogen, carbon 
assimilation, and albedo in temperate and boreal forests: Functional 
relations and potential climate feedbacks. Proceedings of the 
National Academy of Sciences USA, 105, 19336–19341. https​://doi.
org/10.1073/pnas.08100​21105​

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world 
map of the Koppen‐Geiger climate classification. Hydrology and Earth 
System Sciences, 11, 1633–1644.

Peltoniemi, M., Pulkkinen, M., Kolari, P., Duursma, R. A., Montagnani, 
L., Wharton, S., … Makela, A. (2012). Does canopy mean nitrogen 
concentration explain variation in canopy light use efficiency across 
14 contrasting forest sites? Tree Physiology, 32, 200–218. https​://doi.
org/10.1093/treep​hys/tpr140

https://doi.org/10.1016/j.agrformet.2014.01.006
https://doi.org/10.1016/j.agrformet.2014.01.006
http://www.isric.org/sites/all/modules/pubdlcnt/pubdlcnt.php?file=/isric/webdocs/docs/ISRIC_Report_1987_01.pdf&nxml:id=332
http://www.isric.org/sites/all/modules/pubdlcnt/pubdlcnt.php?file=/isric/webdocs/docs/ISRIC_Report_1987_01.pdf&nxml:id=332
http://www.isric.org/sites/all/modules/pubdlcnt/pubdlcnt.php?file=/isric/webdocs/docs/ISRIC_Report_1987_01.pdf&nxml:id=332
https://doi.org/10.5194/bg-8-1121-2011
https://doi.org/10.5194/bg-8-1121-2011
https://doi.org/10.1111/jawr.12182
http://www.fao.org/geonetwork?uuxml:id=446ed430-8383-11db-b9b2-000d939bc5d8
http://www.fao.org/geonetwork?uuxml:id=446ed430-8383-11db-b9b2-000d939bc5d8
http://www.fao.org/geonetwork?uuxml:id=446ed430-8383-11db-b9b2-000d939bc5d8
https://doi.org/10.1007/s00468-013-0975-9
https://doi.org/10.1007/s00468-013-0975-9
https://doi.org/10.1007/BF00376856
https://doi.org/10.1007/BF00376856
https://doi.org/10.1002/hyp.10073
https://doi.org/10.1111/j.1466-8238.2009.00504.x
https://doi.org/10.1111/j.1466-8238.2009.00504.x
https://doi.org/10.1016/j.rse.2014.09.017
https://doi.org/10.1016/j.rse.2014.09.017
https://doi.org/10.1016/j.rse.2009.02.001
https://doi.org/10.1111/j.1365-2486.2007.01352.x
https://catalogue.ceda.ac.uk/uuid/4a6d071383976a5fb24b5b42e28cf28f
https://catalogue.ceda.ac.uk/uuid/4a6d071383976a5fb24b5b42e28cf28f
https://doi.org/10.1016/S1360-1385(00)01766-0
https://doi.org/10.1016/S1360-1385(00)01766-0
https://doi.org/10.1016/j.agrformet.2006.11.008
https://doi.org/10.1016/j.agrformet.2006.11.008
https://doi.org/10.1029/2007JG000676
https://doi.org/10.1016/j.rse.2011.02.024
https://doi.org/10.1016/j.rse.2011.02.024
https://doi.org/10.1186/1750-0680-4-8
https://doi.org/10.1186/1750-0680-4-8
https://doi.org/10.2307/2401901
https://doi.org/10.2307/2401901
https://doi.org/10.1016/S0034-4257(02)00074-3
https://doi.org/10.1016/S0034-4257(02)00074-3
https://doi.org/10.1029/95GL02562
https://doi.org/10.1029/95GL02562
https://doi.org/10.1073/pnas.0810021105
https://doi.org/10.1073/pnas.0810021105
https://doi.org/10.1093/treephys/tpr140
https://doi.org/10.1093/treephys/tpr140


     |  1667BALZAROLO et al.

Penman, H. L. (1948). Natural evaporation from open water, bare soil and 
grass. Proceedings of the Royal Society of London Series A, Mathematical 
and Physical Sciences, 193, 120–145.

Prince, S. D., & Goward, S. N. (1995). Global primary production: A re‐
mote sensing approach. Journal of Biogeography, 22, 815–835.

R Core Team. (2015). R: A language and environment for statistical com‐
puting. Vienna, Austria: R Foundation for Statistical Computing. 
Retrieved from http://www.r-proje​ct.org/

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & 
Hashimoto, H. (2004). A continuous satellite‐derived measure of 
global terrestrial primary production. BioScience, 54, 547–560. 
https​://doi.org/10.1641/0006-3568(2004)054[0547:ACSMO​
G]2.0.CO;2

Runyon, J., Waring, R. H., Goward, S. N., & Welles, J. M. (1994). 
Environmental limits on net primary production and light‐use effi‐
ciency across the Oregon transect. Ecological Applications, 4, 226–237.

Ryan, M. G., Linder, S., Vose, J. M., & Hubbard, R. M. (1994). Dark 
Respiration of Pines. Ecological Bulletins, 43, 50–53.

Schwalm, C. R., Black, T. A., Arniro, B. D., Arain, M. A., Barr, A. G., 
Bourque, C. P. A., … Wofsy, S. C. (2006). Photosynthetic light use ef‐
ficiency of three biomes across an east‐west continental‐scale tran‐
sect in Canada. Agricultural and Forest Meteorology, 140, 269–286. 
https​://doi.org/10.1016/j.agrfo​rmet.2006.06.010

 Sperry, J. S.,  Nichols, K. L.,  Sullivan, J. E., &  Eastlack, S. E. (1994). Xylem 
embolism in ring‐porous, diffuse‐porous, and coniferous trees of 
northern Utah and interior Alaska. Ecology, 75, 1736–1752. https​://
doi.org/10.2307/1939633 

Sperry, J. S., & Sullivan, J. E. (1992). Xylem embolism in response to 
freeze‐thaw cycles and water stress in ring‐porous, diffuse‐porous, 
and conifer species. Plant Physiology, 100, 605–613. https​://doi.
org/10.1104/pp.100.2.605

Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Peñuelas, 
J., & Seneviratne, S. I. (2018). Quantifying soil moisture impacts on 
light use efficiency across biomes. New Phytologist, 218, 1430–1449. 
https​://doi.org/10.1111/nph.15123​

Turner, D. P., Urbanski, S., Bremer, D., Wofsy, S. C., Meyers, T., Gower, 
S. T., & Gregory, M. (2003). A cross‐biome comparison of daily light 
use efficiency for gross primary production. Global Change Biology, 9, 
383–395. https​://doi.org/10.1046/j.1365-2486.2003.00573.x

Wang, H., Prentice, I., & Davis, T. (2014). Biophsyical constraints on gross 
primary production by the terrestrial biosphere. Biogeosciences, 11, 
5987–6001. https​://doi.org/10.5194/bg-11-5987-2014

Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J., Cornwell, 
W. K., … Peng, C. (2017). Towards a universal model for carbon 

dioxide uptake by plants. Nature Plants, 3(9), 734–741. https​://doi.
org/10.1038/s41477-017-0006-8

Waring, R. H., … Running, S. W. (1998). Forest ecosystems, analysis at mul‐
tiple scales (2nd ed.). USA: Academic Press.

Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., … Wohlfahrt, G. 
(2014). Global comparison of light use efficiency models for simu‐
lating terrestrial vegetation gross primary production based on the 
LaThuile database. Agricultural and Forest Meteorology, 192–193, 108–
120. https​://doi.org/10.1016/j.agrfo​rmet.2014.03.007

Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D., … Wofsy, 
S. C. (2007). Deriving a light use efficiency model from eddy covari‐
ance flux data for predicting daily gross primary production across 
biomes. Agricultural and Forest Meteorology, 143, 189–207. https​://
doi.org/10.1016/j.agrfo​rmet.2006.12.001

Zhao, M., Running, S. W., & Nemani, R. R. (2006). Sensitivity of moderate 
resolution imaging spectroradiometer (MODIS) terrestrial primary 
production to the accuracy of meteorological reanalyses. Journal 
of Geophysical Research‐Biogeosciences, 111, G01002. https​://doi.
org/10.1029/2004J​G000004

BIOSKE TCH

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section at the end of the article. 

How to cite this article: Balzarolo M, Valdameri N, Fu YH, 
Schepers L, Janssens IA, Campioli M. Different determinants 
of radiation use efficiency in cold and temperate 
forests. Global Ecol Biogeogr. 2019;28:1649–1667. 
https​://doi.org/10.1111/geb.12985​

Manuela Balzarolo is currently a Marie Curie Postdoctoral 
Research Fellow at Ecological and Forestry Applications Research 
Centre (CREAF) in Spain. Her research focuses on the analysis of 
the impact of climate on ecosystem productivity by using remote 
sensing data.

http://www.r-project.org/
https://doi.org/10.1641/0006-3568(2004)054%5B0547:ACSMOG%5D2.0.CO;2
https://doi.org/10.1641/0006-3568(2004)054%5B0547:ACSMOG%5D2.0.CO;2
https://doi.org/10.1016/j.agrformet.2006.06.010
https://doi.org/10.2307/1939633
https://doi.org/10.2307/1939633
https://doi.org/10.1104/pp.100.2.605
https://doi.org/10.1104/pp.100.2.605
https://doi.org/10.1111/nph.15123
https://doi.org/10.1046/j.1365-2486.2003.00573.x
https://doi.org/10.5194/bg-11-5987-2014
https://doi.org/10.1038/s41477-017-0006-8
https://doi.org/10.1038/s41477-017-0006-8
https://doi.org/10.1016/j.agrformet.2014.03.007
https://doi.org/10.1016/j.agrformet.2006.12.001
https://doi.org/10.1016/j.agrformet.2006.12.001
https://doi.org/10.1029/2004JG000004
https://doi.org/10.1029/2004JG000004
https://doi.org/10.1111/geb.12985

