


 
Figure 1. Coefficient plot showing estimate values and their 68% (thin line) and 95% (thick line) 
confidence intervals of the final linear mixed effect model fitted. To explain species CV, the final 
model included leaf dry matter content (LDMC); seed mass transformed through natural logarithm 
(Seed Mass); specific leaf area transformed through natural logarithm (SLA); and Leaf N content. 
 
 

 
Figure 2. Regression plots of the final model showing the effects of leaf dry matter content (LDMC, 
a), specific leaf area (SLA, b), seed mass (c), and leaf N (d) content on the CV of species. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497476doi: bioRxiv preprint 



Similar results were found using either of the two first PCoA axes based on multiple traits 

(Supporting Information Table S1), although with a slightly lower predictive power (R2 fixed was 

0.05 compared to 0.07 in the final model with individual traits). Therefore, results from PCoA did 

not improve results from single traits. We also fitted models using the single PCoA axis and the single 

traits.  In this case as well single trait models explained a higher variability compared to the models 

with the single PCoA axis (PCoA Axis 1 model’s R2 fixed was 0.040 vs 0.050 when using LDMC; PCoA 

Axis 2 model’s R2 fixed was 0.003 vs 0.005 when using seed mass; Supporting Information Table. S1). 

Finally, when the two components determining species’ CV were analysed separately, i.e. species’ 

mean abundance and standard deviation of abundance over time, the model predicting mean 

abundance was stronger compared to the one for standard deviation of abundance over time (with 

significant results and a higher R2 fixed; see Supporting Information Fig. S3) although LDMC 

predicted significantly both mean abundance and its standard deviation.  

 

Discussion  

By analysing a large worldwide compilation of permanent vegetation plot records, we confirmed 

the generality of theoretical predictions relating key functional traits to plant population stability 

over time. We specifically found that the abundance of species with greater LDMC and a bigger seed 

mass were the most stable over time. Ultimately, these results suggest that common functional 

trade-offs related to resource use and dispersal consistently define herbaceous plant population 

stability worldwide.  

We identified two likely functional trade-offs that influence stability. Specifically, differences 

associated with the leaf economic spectrum (in our case linked to LDMC, SLA and N content values) 

define trade-offs in terms of slow-fast resource acquisition (Wright et al., 2004; Díaz et al., 2016). 

Differences in seed mass values represent the competition-colonization (seedling establishment) 

trade-off (Turnbull et al., 1999) related to the species’ dispersal and establishment strategy. 

Moreover, when analysing multivariate functional differentiation in herbaceous species, these set 

of traits were the ones most strongly associated with the two first principal axes (Supporting 

Information Table S1), further confirming the importance of these two functional differentiation 

axes. These findings are broadly consistent with Diaz et al. (2016), who found that the main 

differentiation between species was related to leaf and size-related (whole plant and seed) traits. 

At the same time, it is interesting to notice that, in our case, combined trait information in the form 

of plant spectra (i.e. via the PCoA axes) lost some ecological explanatory power compared to specific 
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trait effects. This suggests that, in the case of predicting species stability, using specific functional 

traits could be more effective than using axes of functional variation based on multiple traits, in 

which case their individual effects could be possibly blurred.  

Both the two main functional traits ultimately related to the populations’ temporal patterns 

are intrinsically linked to how the species adapt to patterns of resource availability and disturbance. 

Higher LDMC values, as well as smaller SLA and N content values, correspond to a slow return of 

investments in nutrients, lower potential relative growth rate, and longer leaf and whole-plant 

lifespan (Wright et al., 2004; Pérez-Harguindeguy et al., 2013). This implies higher potential of 

buffered population growth. In fact, slow-growing and long-lived species, for example with higher 

values of LDMC, could have an advantage in unfavourable years due to resources stored from 

previous, more favourable years, thus maintaining buffered population growth and consequently 

more stable populations (Májeková et al., 2014; Reich, 2014). Similarly, larger seed mass means 

greater resources stored that tend to help the young seedling establish and survive in the face of 

stress with the cost of short-distance dispersal, while smaller seeds (also in combination with seed 

shape) are typically related to greater longevity in seed banks and dispersal over longer distances 

(Thompson et al., 1993; Turnbull et al., 1999; Moles & Westoby, 2006). Therefore, species 

germinating from seeds with a larger mass are more likely to survive during adverse years and so 

their populations are more stable in a given site compared to species with smaller seeds, which will 

tend to maintain their populations through permanence in seed banks, which enables proper 

germination timing (Venable & Brown, 1988; Metz et al., 2010). In addition, species with greater 

seed mass might be favoured in communities where gaps are scarce, which are usually dominated 

by perennial species (with higher LDMC values) and are more stable. Large seeds will tend to remain 

closer to the mother plant than small seeds, thus increasing the stabilizing effects on populations. 

Small seeded species still maintain a buffered population growth (Pake & Venable, 1995), yet their 

above-ground abundance will be more variable over time, because they usually germinate only in 

favourable years. This explanation is particularly supported, for example, for short-lived plants 

(annuals and biennial species together, Table S3), which tend to be less stable over time (Fig. S1b) 

and are generally associated with the small-seed strategy at a global scale (Westoby, 1998).  

It is important to consider that the same traits that predicted species variability, using CV, 

also predicted the components of CV, i.e. species means and standard deviation (SD). Clearly the SD 

in species fluctuation is inherently increasing with species means, following the so-called Taylor’s 

power law (Lepš, 2004). This leads to the use of CV in the study of stability, as a more “scaled” 
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measure of species variability. At the same time, when the CV is negatively correlated to species 

means, as in our case (R=-0.46, which corresponds to the case of a slope in the Taylor’s power law 

being lower than 2), it implies that more dominant species tend to fluctuate comparatively less than 

subordinate species. This is an important observation because this scenario implies that the same 

type of species that are dominant, e.g. with high LDMC, are also the more stable ones. Since 

dominant species were key drivers of the stability of the communities considered in our study 

(Valencia et al., 2020a) the results of the present study indicate that the same traits that determine 

species dominance also determine species stability, which is a key message for any attempt to 

predict both community structure and its potential to buffer environmental fluctuations (de Bello 

et al., 2021).  

Our results show worldwide evidence that species with more conservative leaf economics 

and greater seed mass are generally more stable, i.e. less variable over time, and therefore confirm 

theoretical assumptions as well as previous localized empirical evidence on the interdependence 

between these traits, their relative trade-offs, and population temporal stability (e.g. MacArthur & 

Wilson, 1967; Májeková et al., 2014). In addition, our results show the global validity of these trade-

offs, found across a variety of abiotic and biotic conditions. Overall, our findings contribute to a 

better understanding of the drivers of plant population temporal stability, which has important 

implications for the conservation of ecosystem functions over time across the world.  
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Fig. S1 Mean species variability (CV) and categorical traits  
Fig. S2 Mean species variability detrended (CVt3) and traits  
Fig. S3 Species’ mean abundance and standard deviation, and traits 
Fig. S4 Random slope effects in single trait models. 
Table. S1 Mean species variability (CV) and PCoA axes  
Table S2 Dataset information (Separate file: “Table S2 Datasets information.xlsx”)   
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Supporting Information 
 
Fig. S1 Species variability (CV) and categorical traits. Here we show results of the models fitted 
using single categorical traits as predictors for the mean species CV at dataset level (i.e. analogous 
models as the final model in the main text): woodiness (a), life span (b), life form (c), growth form 
(d). Coefficient plots of these linear mixed models are shown in red (estimates and respective 95% 
confidence intervals). Intercept was excluded from the model to better understand the differences 
across trait categories.   
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Fig. S2 Mean species variability detrended (CVt3) and traits. We computed the detrended version 
of CV using the moving window method in Valencia et al. (2020b). We then fitted a model analogous 
to the final model in the main text. Results were very similar to those in the main text and are not 
further discussed. In this model, R2 (fixed) was 0.05 while R2 (total) was 0.16. 

 
 
 
Fig. S3 Species’ mean abundance and standard deviation, and traits. We fitted analogous models 
as the final model in the main text but using either the mean abundance of each species in each 
dataset (a), or their standard deviation (b), both these variables where scaled and centered within 
each dataset. The model using the mean abundance was stronger, with more significant results 
and higher R2 (fixed 0.05, total 0.22), compared to the model using the standard deviation (R2 
fixed 0.04, total 0.19). Moreover, the positive effect of LDMC on the species’ standard deviation is 
due to the known relationship between variation and mean abundance (Pearson’s correlation 
coefficient between CV and mean abundance is -0.46).  
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Fig. S4 Random slope effects in single trait models. To see the variability across datasets of the 
relationships found in the main results, we fitted two separate models explaining mean (dataset 
level) species variability (CV) with each the two main traits emerging from the final model in the 
main text, i.e leaf dry matter content (LDMC) and seed mass, adding a random slope effect. Here, 
caterpillar plots show the resulting random effect slope for each of the datasets analyzed in the 
model using LDMC (a) and the model using seed mass (b). 
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Table. S1 Mean species variability (CV) and PCoA axes and single traits. We performed a PCoA 
considering all continuous traits. We used a PCoA instead of a PCA as we couldn’t use a correlation-
matrix PCA because of the missing trait data. Trait data was centered and scaled, as well as log-
transformed when its distribution was skewed. We used Gower's distance to generate the pairwise 
distance matrix, which was corrected through squared-root transformation. We found that the first 
two axes resulting from the PCoA explained 15% and 14% of the variability (when considering only 
positive eigenvalues, i.e. the metric part of the distance matrix, which explained 82% of the total 
variability). Moreover, these two axes were highly correlated (r>0.8) to leaf dry matter content 
(LDMC) and seed mass, respectively. We fitted a linear mixed effect model analogous to the final 
model in the main manuscript but using the values from these two axes. We found that despite the 
high correlation with the traits explaining CV in the main results, the results using the PCoA axis 
were not as clear as when using the trait values. Their R2 (fixed) value was of 0.05, compared to 0.07 
in the main results (Tab.1). For a fair comparison, we also fitted models using the single PCoA axis 
and the single traits, also in this case the single trait models explained a higher variability compared 
to the models with the single PCoA axis. All predictors were mean-centred and scaled by 1 standard 
deviation, to be able to compare results across all models. R2 (fixed): variation explained by fixed 
factors; R2 (total): variation explained by both fixed and random factors. P-values calculated using 
Satterthwaite approximation for degrees of freedom. ***p-value<=0.001; **p-value<=0.01; *p-
value<=0.05. 
 
 

 PCoA Axes PCoA Axis 1 PCoA Axis 2 LDMC Seed Mass 
(Intercept) 0.06 *   0.06 *   0.04 0.02 0.05 
  (0.03)    (0.03)    (0.03)  (0.03)    (0.02)   
PCoA 
Axis1 

1.95 *** 1.94 ***                      

  (0.23)    (0.24)                         
PCoA 
Axis2 

0.60 *           0.57 *                

  (0.27)            (0.28)                 
LDMC                       -0.23 ***        
                        (0.03)           
Seed Mass                               -0.04 ** 
                                (0.01)   
N 2238 2238 2238 2090 2979 
Species 716 716 716 651 1211 
Datasets 77 77 77 77 78 
R2 (fixed) 0.05 0.04 0.003 0.05 0.005 
R2 (total) 0.17 0.16 0.16 0.17 0.19 
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