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Abstract  

Foliar traits such as specific leaf area (SLA), leaf nitrogen (N) and phosphorus (P) 

concentrations play an important role in plant economic strategies and ecosystem functioning. 

Various global maps of these foliar traits have been generated using statistical upscaling 

approaches based on in-situ trait observations. 

Here, we intercompare such global upscaled foliar trait maps at 0.5° spatial resolution (six 

maps for SLA, five for N, three for P), categorize the upscaling approaches used to generate 

them, and evaluate the maps with trait estimates from a global database of vegetation plots 

(sPlotOpen). We disentangled the contributions from different plant functional types (PFTs) to 

the upscaled maps and calculated a top-of-canopy-weighted mean (TWM) and the 

community-weighted mean (CWM) of sPlotOpen trait estimates. 

We found that the global foliar trait maps of SLA and N differ drastically and fall into two groups 

that are almost uncorrelated (for P only maps from one group were available). The primary 

factor explaining the differences between these groups is the use of PFT information combined 

with land cover products in one group while the other group relied only on environmental 

predictors. The impact of using TWM or CWM on spatial patterns is considerably smaller than 

that of including PFT and land cover information. The maps that used PFT and land cover 

information exhibit considerable similarities in spatial patterns that are strongly driven by land 

cover. The maps not using PFTs show a lower level of similarity and tend to be strongly driven 

by individual environmental variables. 

Overall, the maps using PFT and land cover information better reproduce the between-PFT 

trait differences and trait distributions of the plot-level sPlotOpen data, while the two groups 

performed similarly in capturing within-PFT trait variation. Upscaled maps of both groups were 

moderately correlated to grid-cell-level sPlotOpen data (R = 0.2-0.6), but only when 

accounting for the differences in processing in the upscaling approaches by applying similar 

scaling to the sPlotOpen data. 

Our findings indicate the importance of accounting for within-grid-cell trait variation, which has 

important implications for applications using existing maps and future upscaling efforts. 

 

Keywords: foliar trait, specific leaf area, leaf nitrogen, leaf phosphorus, global map, upscaling  
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1. Introduction 

Vascular plants play a crucial role in the terrestrial Earth system due to their exchange of 

carbon, water, nutrients, and energy with the atmosphere and the pedosphere. Moreover, 

plants are important elements in the biosphere as they are strong drivers of the population 

dynamics of other organisms. Functional traits are important for characterizing vegetation 

function and plant ecological strategies related to metrics of performance, such as nutrient 

retention, biomass accumulation and CO2 uptake (Wright et al., 2004; Díaz et al., 2015; 

Bongers et al., 2021). In particular, morphological and chemical leaf traits, such as specific 

leaf area (SLA) and leaf concentrations of phosphorus (P) and nitrogen (N), are key 

components of the leaf economic spectrum (Wright et al., 2004). In turn, the leaf economic 

spectrum contributes to determining plant growth strategies and canopy carbon exchange 

dynamics globally (Reich, 2014). 

 

Due to their important roles in plant metabolism, the leaf traits N, P and SLA have been used 

as inputs to land surface models (Walker et al., 2017), but often in highly simplified ways. As 

there are currently no observations (or more direct estimates) of these key foliar traits at the 

global scale, most land surface modeling applications use plant functional type (PFT) look-up 

tables for key traits such as photosynthetic capacity, which is closely related with N, P and 

SLA (Kattge et al., 2009; Walker et al., 2014). These look-up tables contain PFT mean trait 

values that can be combined with remote sensing-based maps of land-cover types dominated 

by particular PFTs to approximate global trait distributions, but these approaches ignore 

considerable within-PFT trait variability driven by inter- and intraspecific trait variation (Kattge 

et al., 2011; Van Bodegom et al., 2012; Scheiter et al., 2013). Furthermore,  the focus on 

dominant PFTs detectable by remote sensing emphasizes top-of-canopy vegetation and 

ignores the complexity of multi-layered ecosystems. 

To overcome the limitations of simplified approaches based on PFT mean trait values for land 

surface modeling applications and to address ecological questions (related to aspects of 

functional biodiversity), static maps of SLA, N, P and other traits have been produced based 

on in-situ, leaf-level trait measurements using statistical upscaling approaches at regional 

(Swenson & Weiser, 2010; Šímová et al., 2018; Loozen et al., 2020; Zhang et al., 2021) and 

global scales (van Bodegom et al., 2014; Butler et al., 2017; Madani et al., 2018; Moreno-

Martínez et al., 2018; Boonman et al., 2020; Schiller et al., 2021; Vallicrosa et al., 2021; Wolf 

et al., 2022). These upscaled maps of N, P and SLA were generated using different methods, 

different trait databases and were developed for a range of purposes, such as supporting land 

surface modeling, biodiversity characterization or a trait-based estimation of the distribution of 

vegetation types. Given these contrasting approaches and aims we sought to understand the 
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degree of consistency among these maps, as well as their performance when evaluated in 

comparison to in-situ data.  

For potential users, the reliability of upscaled global foliar trait maps and their suitability for 

specific purposes are difficult to assess. Identifying the key sources of uncertainties and 

limitations of these maps can provide guidance for users and help improve global mapping of 

plant traits. Here we provide a comprehensive evaluation of the current global upscaled foliar 

trait maps of SLA, leaf nitrogen concentration (N) and leaf phosphorus concentration (P) 

consisting of the following elements:  

1) Categorization of upscaling approaches; 

2) Comparison of spatial patterns and attribution of differences to upscaling methodology;  

3)  Evaluation against trait estimates based on a global vegetation plot database. 

2. Materials and methods 

2.1   Terminology 

 The upscaling of foliar trait maps is relevant for different scientific communities (e.g., land 

surface modeling, vegetation remote sensing, macroecology), which may use different terms 

or partly similar terms that have different meanings. To avoid misunderstandings and be able 

to use convenient shorthand notations for concepts frequently used throughout the 

manuscript, we clarify our use of key terms with the following definitions (Table 1). We do not 

claim that these definitions are necessarily optimal or universal, rather, they serve as a 

pragmatic way to clarify terms used in the presentation of our study. Note that the land cover 

types (LCTs) we consider are land cover functional types in the sense that they can be directly 

matched to PFTs (Table 2) in the sense used in previous work (Friedl et al., 2002; Poulter et 

al., 2015). 

 

 
Table 1: Glossary of terms. Key terms used frequently in the manuscript, their abbreviations and intended 

meaning.  

Plant functional type 
(PFT) 

classification of plants, mostly based on growth form, leaf type and leaf phenology. 
Example: evergreen needleleaf tree. 

Land cover type (LCT) 
remote sensing-based classification of the land cover, dominated by specific PFTs. 
Example: evergreen needleleaf forest. 

Community weighted 
mean (CWM) 

the mean trait value of a community weighted by the species cover, abundance, or 
biomass. In the case of the sPlotOpen dataset the weighting is done by species 
cover or abundance. 

Top-of-canopy weighted 
mean (TWM) 

the mean trait value at the top-of-canopy weighted by the cover of the species that 
constitute the dominant PFT of a plot. 

Homogeneous grid cells 
grid cells with low trait variability, either occupied by a single LCT or several LCTs 
with similar trait values. 

Heterogeneous grid cells 
grid cells with high trait variability, occupied by more than one dominant PFT with 
considerable differences in mean trait values of the dominant PFTs. 
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2.2   Trait maps 

We identified seven publications in the literature (state June 2022) that present global, 

statistically upscaled trait maps with at least one of the three traits SLA, N or P: van Bodegom 

et al. (2014); Butler et al. (2017); Madani et al. (2018), Moreno-Martínez et al. (2018),  

Boonman et al. (2020), Schiller et al. (2021), and Vallicrosa et al. (2021) (Table 2). For the 

sake of simplicity, we use a short version of the last name of the first author of each map-

related publication to refer to the different maps, e.g., ‘Bodegom’ refers to the map of van 

Bodegom et al. (2014). ‘Moreno’ refers to Moreno-Martinez et al. (2018) (see Table 2).  

The degree of completeness of the spatial coverage of the maps differed. Four maps provided 

gap-free global maps (Bodegom, Butler, Madani, Boonman), while the two high-resolution 

maps excluded cropland (Moreno, Vallicrosa). Schiller had gaps in different regions due to the 

availability/selection of plant photographs from iNaturalist. All upscaling approaches except 

Madani only considered trait variation in natural vegetation and excluded foliar traits in 

croplands. While most approaches considered vegetation of different growth forms, Vallicrosa 

only mapped traits for woody vegetation (Table 2). 

 
Table 2: Overview of key information of the seven upscaling approaches and the corresponding maps. This 
includes the short version of the lead author name used in the text, year of publication, the foliar traits covered, 
whether plant functional type (PFT) information was used or not, the spatial resolution in degrees latitude/longitude, 
the vegetation types considered and the full first author name of the reference publication. The resolutions 0.5°, 
0.05°, and 0.008° correspond to square grid cell sizes of about 50 km,  5 km and 1 km at the equator. 

Lead 

author 

 

Year 

 

Traits 

PFT 

use 

Reso- 

lution 

Vegetation 

Considered 

 

Reference 

Bodegom 2014 SLA 0 0.5 ° Natural van Bodegom et al. (2014) 

Butler 2017 SLA, N, P 1 0.5 ° Natural Butler et al. (2017) 

Madani 2018 SLA 1 0.05 ° All Madani et al. (2018) 

Moreno 2018 SLA, N, P 1 0.008 °  Natural Moreno-Martínez et al. (2018) 

Boonman 2020 SLA, N, P  0 0.5 ° Natural Boonman et al. (2020) 

Vallicrosa 2021 N, P 1 0.008 °  Woody Vallicrosa et al. (2021) 

Schiller 2021 SLA, N 0 0.5 ° Natural Schiller et al. (2021) 

 

 

2.3   Upscaling approaches 

All approaches derived gridded global trait maps from globally distributed leaf-level in-situ 

observations (Fig. S1). The upscaling approaches can therefore be characterized by two steps 

of upscaling: (1) leaf to grid scaling, and (2) spatialization, i.e., increasing the spatial coverage 

from the limited number grid cells with in-situ data to the global land surface (Fig. 1). All 

approaches but one first estimated trait values for reference grid cells from leaf-level trait 

observations available within those cells (leaf-to-grid scaling). Then, the approaches applied 

regression-based mapping that established trait-environment relationships for the reference 

grid cells and applied them to the global vegetated land surface to obtain global maps 
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(spatialization). Schiller, however, switched the order of the two upscaling steps and first 

estimated trait values for a large number of iNaturalist photographs of individual plants 

distributed globally and aggregated these trait values to grid-cell-level in the second step.  

There were important differences between the upscaling approaches in essentially all aspects 

of the upscaling processing chain (Fig. 1). The approaches differed in the motivations, the 

input data and its processing, the leaf to grid scaling method, and the spatialization including 

both the choice of predictor variables and regression algorithms (Fig. 1, supplementary 

Methods M1). The environmental predictors used in the upscaling approaches were mainly 

related to temperature, solar radiation, water availability and soil characteristics (Tables S1) 

and came from a variety of climate and soil products (Table S2). Moreno was the only 

approach that directly used optical reflectance satellite remote sensing data (Table S1). 

Importantly, there were differences regarding the use of land cover type and PFT information 

in the different upscaling approaches (Fig. 1), which is relevant for our analyses and was the 

motivation for the categorization below.  

 

Categorization of upscaling strategies. All maps used environmental predictor information 

(‘Env’) in the spatialization step but only some used PFT information in either the leaf-to-grid 

scaling or the spatialization. Therefore, we use the shorthand notation of ‘PFT+Env’ vs. ‘Env’ 

maps to more generally distinguish the upscaling approaches that used PFT information from 

those that did not. Note that there are considerable differences in the way PFT information 

was used in the PFT+Env approaches and that in the case of the Schiller map additional 

information unrelated to PFTs was used but it is still categorized as ‘Env’ upscaling approach 

(Fig. 1). ‘PFT+Env’ is a shorthand for ‘PFT+LCT+Env’ as PFT and LCT information was always 

used together and LCTs are matched to PFTs. In a more general sense, LCTs can be seen 

as PFT-related information at the grid cell level. 
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Figure 1: Overview of the seven upscaling approaches in terms of the motivation and the two main 
upscaling steps as well as their key components. Each upscaling approach is shown in a separate color 
connecting the different elements of the upscaling from the motivation and input data at the top to the final predicted 
grid cell values at the bottom. Special emphasis is put on the use of plant functional type (PFT) and land cover type 
(LCT) information shown in dark grey color. The explanatory column on the left hand side applies to all approaches 
except Schiller, while the corresponding column on the right hand side only applies to Schiller. The abbreviations 
of the trait databases are as follows: ‘TTT’ refers to the Tundra Trait Team database, ‘literature’ to data based on 
individual publications not represented in other trait databases. The abbreviation of the upscaling algorithms are 
as follows: ‘MR’ refers to multiple linear regression, ‘BHR’ to bayesian hierarchical regression, ‘GAM’ to generalized 
additive models, ‘GLM’ to generalized linear models, ‘GBM’ to generalized boosted models, ‘RF’ to random forests, 
‘NN’ to neural networks, and ‘CNN’ to convolutional neural networks. Note that Madani and Vallicrosa used 

dominant LCT maps, while Moreno and Butler used fractional LCT cover. 
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Additional versions of the Butler and Moreno maps. To quantify the relative contributions 

of different types of predictor information to the upscaled trait maps, we also analyzed versions 

of the Butler and Moreno trait maps that differed only in the predictor variables used. In 

particular, Butler produced trait maps with either no PFT categories at all and only 

environmental drivers (abbreviated as ‘Env’), a combination of the two (abbreviated as 

‘PFT+Env’), and maps that only use LCT cover and mean PFT trait values (‘PFT’; ‘categorical 

maps’). We additionally generated an optimized version of the ‘PFT’ maps by adjusting the 

PFT mean trait values to match the spatial patterns of the full ‘PFT+Env’ maps (Fig. S2). In 

the analyses, we used the optimized maps unless stated otherwise. While for the PFT+Env 

Butler map we always used the spatial model as it had the best performance in the original 

publication, for the Env model, we considered both the spatial models including a kriging 

component and the linear models without this component. Moreno also generated additional 

trait maps that exclusively used either remote sensing (‘RS’) or environmental variables (‘Env’) 

in the spatialization step (Fig. 1) for comparison to their final map products that combined both 

types of variables (‘RS+Env’). In addition, Moreno generated maps without using PFT 

information in the leaf-to-grid scaling step.  

 

2.4   Data processing  

2.4.1 Global foliar trait maps 

We used global trait maps provided by the map developers (the leading authors of the relevant 

publications) to ensure that we had the most up-to-date and correct versions of the upscaling 

products. A list of the sources is provided in Table S3. We only used maps representing the 

present and recent past and did not consider maps of future change predictions such as 

Madani et al. (2018). We aggregated the higher resolution maps (Madani, Moreno, Vallicrosa) 

to the common resolution of 0.5 degree using the Bodegom map as reference regarding the 

projection and coordinate origin. In this aggregation, we used the average over all available 

high resolution grid cells within a coarse grid cell and ignored missing-data and zero values. 

Non-vegetated grid cells such as bare soil, ice/snow etc. were excluded. This was done by 

applying a vegetation cover threshold of 95% on the LCT cover map used by Butler. Madani 

was the only data set to provide estimates for croplands, so prior to aggregating to 0.5°, we 

masked out the cropland grid cells at the original resolution of 0.05° using the land cover map 

used by Madani.  
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2.4.2 Separation of land cover - driven and environmentally driven trait variation and 

stratification by PFT  

Our initial analyses revealed that LCT cover-driven trait variation dominated the global spatial 

trait patterns of the PFT+Env maps. To distinguish the LCT cover-driven trait variation, which 

is related to between-PFT trait differences, from the environmentally driven variation within 

PFTs, we developed two complementary approaches: filtering homogeneous versus 

heterogeneous grid cells, and unmixing LCTs in heterogeneous grid cells (see box 1). For 

analyses at the level of PFTs/LCTs we combined the two approaches to benefit both from the 

accuracy of the filtering approach and the higher number of available grid-cells of the unmixing 

approach. 

Approach 1: Heterogeneity filtering 

 

Heterogeneity filtering is based on estimates of within grid cell trait variability using 

LCT cover fractions and differences in average trait values between PFTs 

corresponding to LCTs. Within-PFT trait variation was explicitly excluded. Higher within 

grid cell trait variability (a.k.a. heterogeneity) indicates mixing of LCTs with 

considerable differences in the corresponding mean PFT traits, while lower 

heterogeneity indicates either dominance of a single LCT or a mixture of different LCTs 

with  similar PFT mean trait values. For this approach, we combined the PFT-mean 

trait values with global maps of LCT cover fractions for each grid cell, both provided by 

Butler and originally based on the TRY database (Kattge et al., 2011, 2020) and 

MODIS and AVHRR satellite products of land cover (Lawrence & Chase, 2007). For 

each 0.5° grid cell, we then estimated the trait variability by calculating the coefficient 

of variation (CV) of a variable in which each PFT mean trait value was represented 

proportional to its LCT cover fraction (Figs. S2). For each trait, we categorized grid 

cells with higher CV than the median of all grid cells as ‘heterogeneous’ and those with 

lower CV than the median as ‘homogeneous’.  

 

To stratify the maps by PFT, we combined the heterogeneity filtering with a threshold 

on the fractional LCT cover. This double threshold approach was necessary because 

even cells with high cover fraction of one LCT can exhibit high within-grid cell trait 

heterogeneity due to the mixing of LCTs with strongly differing trait values (Fig. S3b). 

While the double threshold approach is reasonable for the shrubland (SHR), grassland 

(GRA), and evergreen broadleaf forest (EBF) LCTs, it has severe limitations for 

evergreen needleleaf forest (ENF), deciduous needleleaf forest (DNF) and deciduous 

broadleaf forest (DBF). Specifically, the double threshold filtering does not leave 
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enough data for robust statistical analyses of ENF, DNF and DBF (Figs. S2c). In case 

of ENF, this is mainly due to the peak CV located at very high cover fraction (about 

0.8), while for DBF the CV peak is at rather low cover fractions (0.2-0.4) but only 

relatively few grid cells with higher cover fractions exist (Fig. S3b). Therefore, for ENF, 

DNF and DBF another approach to isolate trait variation related to the corresponding 

LCT cover was needed. 

 

Approach 2: Unmixing 

 

The second approach entails essentially reverse engineering the final step of 

calculating grid-cell averages weighted by LCT cover in the generation of some of the 

‘PFT+Env’ trait maps (Fig. 1). While not all maps applied the LCT weighting after the 

spatialization, this approach can be applied to all maps as the only assumption is the 

linear mixing of LCTs, i.e. only the spatial distribution of LCT cover is used. The 

unmixing was done by using a three by three grid cell moving window within which the 

system of overdetermined linear equations for six PFTs (ENF, DNF, EBF, DBF, SHR, 

GRA) was solved. For each grid-cell, there is one linear equation that equates the final 

grid cell trait value (known) with the sum over the six products of fractional LCT cover 

(known) times the corresponding local, PFT-specific trait value (unknown). For solving 

the linear equation systems the function lsei of the R package limSolve was used in 

combination with the focal function of the terra package (Van den Meersche et al., 

2009; Hijmans et al., 2015; Soetart et al., 2022). We evaluated the performance of the 

unmixing approach with the categorical maps provided by Butler and found that it 

performed robustly for ENF and DNF, and reasonably well for DBF and EBF but could 

not be used for SHR and GRA (Fig. S4a). The limitations for SHR and GRA are likely 

due to their broad trait distributions and their co-occurrence with other LCTs with 

similar trait values. To exclude grid cells where the unmixing method did not work well, 

we applied a threshold on the fractional cover of the relevant PFT of 5% and applied 

thresholds on the maximum and minimum possible trait values to exclude large outliers 

or ecologically implausible values. Even after this filtering step, considerably more data 

were left for analyses of ENF and DBF than in case of applying Approach 1. 

 

Overall approach: combining Approach 1 and Approach 2 

Due to the limitations of both approaches for some LCTs, we combined the unmixing 

approach for ENF, DBF, and EBF with the heterogeneity filtering approach for SHR 

and GRA. For EBF, both strategies could be used in principle, but we chose to use the 

unmixing as it provides better data coverage. DNF was excluded from further analyses 



12 

due to the sparseness of data from sPlotOpen and the limited geographic extent of the 

distribution compared to other LCTs.  

 

 

 

 
Figure 2: Illustration of the key aspects of the data processing of the upscaled maps and the sPlotOpen 
reference data. In a) an overview of the different processing steps and comparisons is shown.  For sPlotOpen, 
either the community weighted mean (CWM) or top-of-canopy-weighted mean (TWM) of sPlotOpen is used and 
both for sPlotOpen and upscaled maps the data was either stratified by plant functional type (PFT) or not. While 
upscaled map data is necessarily always at grid-cell level (grid-level), sPlotOpen data can either be used at plot- 
or grid-level. To obtain grid-level sPlotOpen data, unweighted or land cover type (LCT) fraction-weighted averages 
can be applied. For upscaled maps, the PFT stratification was done by combining a trait heterogeneity filtering and 
a linear unmixing approach (b). The heterogeneity filtering approach was based on thresholds on the estimated 
within grid-cell trait variability (coefficient of variation, CV) and fractional land cover and only suitable for some 
LCTs.The unmixing approach could be applied to the remaining LCTs. 
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2.4.3 Evaluation against  sPlotOpen  

To evaluate the upscaled maps against data not directly used in the upscaling, we used the 

sPlotOpen database (Sabatini et al., 2021). sPlotOpen is an open-access collection of 95,104 

vegetation plots sampled in the field, spanning 114 countries. It consists of a stratified random 

selection of vegetation plots derived from sPlot - The Global Vegetation plot database 

(Bruelheide et al., 2019). Plots vary widely in size, ranging between 0.03 and 40,000 m2. For 

each plot, sPlotOpen reports the list of vascular plant species, together with a measure of their 

relative abundance. Species mean trait values, as extracted from the TRY database (Kattge 

et al., 2011, 2020), were combined with species abundance data to calculate plot-level 

community weighted mean (CWM) trait values. To evaluate the impact of vertical variations of 

foliar traits, we calculated top-of-canopy weight mean (TWM) trait estimates per plot, in 

addition to the standard CWM trait estimates, which integrate traits from all vegetation layers. 

This was done by first determining the dominant PFT of each plot using thresholds on the 

species cover of a given PFT (Table S4) and then calculating the weighted mean over all 

species of the dominant PFT of the plot. To compare sPlotOpen and upscaled maps at the 

level of individual PFTs, we stratified both CWM and TWM by PFT by using the dominant PFT 

of the plot. We used the six PFT categories defined above (ENF, DNF, EBF, DBF, SHR, GRA) 

and matched the species in sPlotOpen to these categories using plant growth form, leaf type 

and leaf phenology type from the TRY database and literature.  

 

We compared characteristics of the upscaled maps with sPlotOpen at two levels: using plot-

level sPlotOpen data and grid-cell-level sPlotOpen data (Fig. 2a).  

 

Plot-level sPlotOpen data. The advantage of using plot-level data is that it contains all 

information of the original observations. These data allow direct comparison of trait 

distributions. We found that global trait distributions did not contain sufficient (spatial) detail 

needed for the evaluation, but when calculating trait distributions in latitudinal intervals, 

meaningful spatial patterns of trait distributions emerged that could be compared.  

 

Grid-cell-level sPlotOpen data. For a grid-cell-level comparison, the sPlotOpen plot data has 

to be scaled to the grid cell given the fact that sPlotOpen plots are much smaller than the 

typical grid cell size (50 km).  This was done as follows to ensure direct comparability to the 

upscaled maps. For the comparison to Env upscaled maps, we aggregated the plot-level 

CWMs to the 0.5° grid cells without any weighting. For the comparison to PFT+Env upscaled 

maps, for each PFT, we first aggregated the plot-level TWM data to the 0.5° grid cells without 

weighting and then combined the six sPlotOpen PFT maps per trait by applying a weighted 

average based on the fractional LCT cover for each 0.5° grid cell. Data filtering was applied 
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to ensure that sufficient data from sPlotOpen was available to be reasonably representative 

of a grid cell by. applying a 99% threshold on the cumulated LCT cover. The high threshold is 

necessary as small fractions of missing coverage can considerably impact the result if the 

missing PFT has a very different trait value compared to the other PFTs that are represented, 

e.g. ENF (Fig. S3b). For the comparison of between- and within-PFT trait variation we used 

unweighted grid-cell averages of all relevant plots per PFT (with the partial exception of plot-

level data in Figs. 9c, S13). 

 

A cross comparison of leaf-to-grid scaling approaches not matching the approaches of the 

upscaled maps was also included to quantify the impact of such a mismatch on the results. 

 

 

2.5  Statistical analyses 

Principal component analysis (PCA) was used to visualize the grouping and relative 

correlation of different trait maps. Variables were centered and scaled to unit variance for PCA. 

Pearson correlation (R) was used to quantify the similarity between two given maps. Apart 

from the ‘normal’ correlation based on all selected grid cells, we also quantified the degree of 

‘local correlation’ by calculating correlations in a moving window of 3 × 3 grid cells to quantify 

the similarity in spatial patterns at smaller scales. For each pair of maps, the local correlation 

produces a correlation map and to summarize that map, the median was used.  

All analyses and image processing were conducted using R version 4.0.2 (R Core Team, 

2012), primarily with the raster package (Hijmans, 2022). 

 

3. Results 

 

3.1  Intercomparison of global maps and attribution of differences  

A visual comparison of the different maps for SLA, N and P indicated substantial differences 

between the maps for each trait but no obvious grouping or similarities at first sight (Figure 

S5).  
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Figure 3: Overview of principal component analyses and pairwise correlation of  upscaled maps for specific 
leaf area (SLA), leaf nitrogen (N) and phosphorus (P) concentration. In the principal component biplots a) and 
the pairwise correlation plots b), colors correspond to the use of predictor variables (‘Env’ stands for environmental 
variables, while ‘PFT’ stands for plant functional type and land cover type information). Pearson correlation is 
shown either for all selected grid cells (‘global’) or as median value of the local spatial correlation map in 3 x 3 pixel 
windows (‘local’). In b) the gray boxplots contain all possible pairs of PFT+Env maps and the Env maps; for the 
PFT+Env maps, the same symbols are used for the cases ‘x vs. 3’ and ‘x vs. 4’, where x is either 1 or 2, since 3 is 
only available for SLA and 4 only for N and P; note that the symbols for P and the case ‘1 vs. 2’ and ‘2 vs. 4’ are 
so close that they are hard to distinguish visually. 

3.1.1 Principal components and pairwise correlations - grouping of maps 

We found that the maps clustered according to the use of PFT and LCT information for the 

upscaling of in-situ trait information: approaches using this additional information (‘PFT+Env’) 

were similar among each other and different from the other approaches that only used 

environmental predictors (‘Env’) (Fig. 3a). For SLA, the PCA results indicate This effect of 

using PFT information resulted from the dominant influence of heterogeneous grid cells at the 

global scale as the separation into two groups was similar both when selecting all grid cells or 

only heterogeneous grid cells, but disappeared when selecting only homogeneous grid cells 

(Fig. S6a). The first two axes of the PCA explained 60%-65% of the variance for all data 

selection cases. The patterns in the PCA biplots were confirmed by pairwise correlation 

analyses showing a higher degree of within-group correlations for the approaches that used 

PFT information (Fig. 3b). The local correlations were moderately strong for the PFT+Env 

category, especially for heterogeneous grid cells, but were zero for the Env category (Fig. 

S6b). High local correlations between maps from the PFT+Env group coincided with grid cells 

of high within-cell trait heterogeneity (results not shown).  For N, the PCA results were 

generally similar as for SLA (Fig. 3a) with the difference  that the correlations within the Env 

group were low in homogeneous grid cells, as were the correlations between groups (Fig. S6). 
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The first two axes of the PCA explained 50%-60% of the variance for all data selection cases. 

For P, only maps based on the use of PFT information were available. They showed similar 

global pairwise correlations as for SLA, but higher values for the homogeneous grid cells and 

slightly lower local correlation when all or the heterogeneous grid cells were selected (Fig. 3b). 

 

The impact of using PFT and land cover information on the upscaled maps was so dominant 

that maps only using this information combined with fixed trait values per PFT (‘categorical’ or 

‘PFT’ maps) showed similar spatial patterns and fell into the same group of maps as those 

that also used environmental predictors (Figs. S2, S7a,c).  

3.1.2 Global maps: spatial patterns and within-group differences 

We grouped the maps according to the use of PFT information and calculated the trait 

averages over all maps within a given category as well as the coefficient of variation (CV) for 

each grid cell as a metric for dissimilarity (Fig. 4). These ‘synthesis maps‘ and corresponding 

CV maps of SLA and N differed considerably between the PFT+Env and Env groups (Fig. 4). 

On average the CV values within the PFT+Env group were lower than in the Env group. 

Despite the higher level of similarity of the PFT+Env maps compared to the Env maps, there 

were considerable differences between individual PFT+Env maps of all three traits such as 

the notably higher trait values of the Butler maps at high latitudes (Fig. S5). 

The average maps for the PFT+Env and Env categories showed considerable differences in 

spatial patterns (Fig. 4, 5a). For SLA, the PFT+Env mean map had high values in regions 

dominated by GRA, and SHR PFTs and a distinct band of low values for ENF (Figs. 4, 5a). 

The Env mean map, in contrast, showed overall low values in the Southern Hemisphere and 

a band of higher values in parts of the Northern Hemisphere dominated by GRA and ENF 

(Figs. 4, 5a). For N, the PFT+Env mean map showed somewhat similar patterns with a band 

of low values in the ENF dominated areas, while the Env mean map had overall high values 

with little contrast between the Northern and Southern Hemispheres. Also when looking at 

Europe in more detail (Fig. 4), the PFT+Env maps for SLA and N showed spatial patterns 

corresponding to dominant LCTs while the Env maps showed little contrast between dominant 

LCTs. For P, the mean PFT+Env map showed the lowest values in EBF-dominated regions 

and clearly lower values in the Southern than the Northern Hemisphere. P had somewhat 

lower values in the ENF-dominated region compared to the surrounding areas but the contrast 

was smaller than for SLA and N. 
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Figure 4: Overview of spatial patterns of specific leaf area (SLA, mm2/mg), leaf nitrogen (N, mg/g) and 
phosphorus (P, mg/g) for different upscaled maps. For each trait, the the upper row shows the average and the 
lower row shows the coefficient of variation (CV) between the maps of each upscaling category: those that used 
both plant functional type and environmental information (PFT+Env) and those that use only environmental 
predictors (Env). The average trait maps for Europe are shown besides the global maps to provide more detailed 
information on smaller-scale variations. The color scales of the mean maps for Europe are identical to those for 
the global maps and therefore not shown.  The global and European maps of dominant land cover type is shown 
for reference (ENF: evergreen needleleaf forest; DNF: deciduous needleleaf forest; EBF: evergreen broadleaf 
forest; DBF: deciduous broadleaf forest; SHR: shrubland; GRA: grassland). 

 

The higher level of similarity in spatial patterns within the PFT+Env category compared to the 

Env category was also visible in the latitudinal median patterns of the individual maps (Fig. 

S8). In particular, the PFT+Env maps showed strongly covarying latitudinal patterns for all 

three traits despite offsets in absolute values for SLA and divergence at the high northern 

latitude while Env maps showed very different patterns (Fig. S8). For N, PFT+Env maps 

showed consistent latitudinal patterns above 25 degree south and divergent patterns below, 

while Env maps showed the opposite tendency.  
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Figure 5: Latitudinal patterns of upscaled trait maps and differences between plant functional types (PFTs). 
a) Median latitudinal trait values of fractional PFT cover (fcov) and median latitudinal trait values of specific leaf 
area (SLA), leaf nitrogen (N) and phosphorus contents (P) averaged over the two upscaling groups (PFT+Env vs. 
Env). The shading around the mean values indicates one standard deviation (for the N  maps with Env approaches 
there were only two maps, so no standard deviation could be calculated). b) Comparison of mean PFT (fcov > 0.5) 
trait values per upscaling approach with colors indicating each PFT (ENF: evergreen needleleaf forest; EBF: 
evergreen broadleaf forest; DBF: deciduous broadleaf forest; SHR: shrubland; GRA: grassland). In contrast to the 
upscaled maps for which unmixing was used to get median values per PFT, sPlotOpen (‘sPlot’) was first stratified 
by PFT and then aggregated to 0.5° grid cells. TWM indicates top-of-canopy data selection, and CWM includes all 
vertical layers weighted by cover fraction. 

3.2 Evaluation of upscaled global trait maps with sPlotOpen 

3.2.1 Comparison to sPlotOpen plot-level data 

Latitudinal median values. When reducing the upscaled maps to the grid cells for which 

sPlotOpen data is available, we found some agreement in the latitudinal patterns of upscaled 

maps and sPlotOpen plot data (Fig. S11). In particular, the average of the PFT+Env maps 

agreed well with sPlotOpen data for SLA, N and P in the northern hemisphere including the 

lower values for ENF (Fig. S11) but the Butler maps showed considerably higher SLA values 

in the high northern latitudes than sPlotOpen (Figs. S8, S11). In the tropics, PFT+Env maps 

agreed rather well for SLA and P but showed some discrepancies for N. sPlotOpen generally 
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showed considerably lower values than upscaled maps in the Southern Hemisphere, with the 

exception of the Env maps for SLA (Fig. S11). Apart from this exception, Env upscaled maps 

showed larger discrepancies with sPlotOpen plot data than PFT+Env maps. The latitudinal 

mean patterns of sPlotOpen trait data only showed rather small differences between TWM 

and CWM (Fig. S11). 

Latitudinal distributions. While latitudinal mean or median values can be a useful way to 

summarize global patterns, they cannot capture the complexity of multi-modal trait 

distributions well. The full latitudinal trait distributions of upscaled maps (Fig. 6) partly showed 

considerable differences compared to sPlotOpen plot data (Fig. 6). Also, there were 

considerable differences between CWM and TWM distributions, with TWM showing a 

tendency to broad, multi-modal distributions and CWM a tendency to narrower, unimodal 

distributions (Fig. 6). 

Some of the PFT+Env maps showed considerable similarities with the sPlotOpen TWM 

distributions with a higher level of agreement for SLA than for N and P (Fig. 6). For SLA, the 

Butler map best captured the latitudinal patterns of the TWM distribution peaks including the 

double peak feature in the higher northern latitudes. This double peak feature was also partly 

captured by the Moreno and Madani maps but with a smaller distance between the peak in 

case of Moreno and a considerable lower secondary peak in case of Madani. While the Butler 

and Madani upscaled maps at least partly captured the lower trait values of sPlotOpen TWM 

at higher latitudes, they did not capture the higher values that also contributed to the overall 

wider distributions (Fig. 6). For N, PFT+Env upscaled maps did not capture the wide 

distributions of sPlotOpen TWM in the tropics well. Also, the overall latitudinal patterns of the 

peaks of the distributions were less consistent between upscaled maps and sPlotOpen TWM 

than for SLA. For P, the overall latitudinal patterns of PFT+Env upscaled maps was similar to 

sPlotOpen TWM, but Butler and Moreno maps had considerably narrower distributions than 

Vallicrosa and sPlotOpen TWM.  

Some of the Env upscaled maps showed considerable similarities to the latitudinal 

distributions of sPlotOpen CWM also with a higher level of similarities for SLA than for N (Fig. 

6). For SLA, the Schiller map best captured the patterns in the sPlotOpen CWM data, with 

general agreement in the patterns of latitudinal peaks. However, neither the Schiller nor the 

Boonman and Bodegom maps captured the broader distribution of sPlotOpen CWM due to 

the increasing presence of lower trait values in the higher northern latitudes. For N, the Schiller 

map agreed better with sPlotOpen CWM than the Boonman map regarding the overall 

decrease in the peak N values towards higher latitudes. However, the patterns of broader and 

partly double peaked distributions of sPlotOpen CWM were not captured by the Schiller map 



20 

that had narrow, unimodal distributions across the entire latitudinal range. The Boonman map 

better captured the double peaked distribution of sPlotOpen CWM in the southern hemisphere 

but showed a decreasing trend towards the higher latitudes. 

 

Figure 6: Latitudinal trait distributions for specific leaf area (SLA, mm2/mg), leaf nitrogen (N, mg/g) and 

phosphorus (P, mg/g) of upscaled maps and sPlotOpen plot-level data. For each trait, the distributions in 

latitude intervals (units in degrees) are shown, with the upscaling approaches using plant functional type, land 

cover and environmental information (PFT+Env) in the top row in red color, and those only using environmental 

information (Env) in the bottom row. Plot-level sPlotOpen (‘sPlot’) top-of-canopy weighted mean (TWM) are 

compared to the PFT+Env maps and community weighted mean (CWM) to the Env maps 
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3.2.2 Comparison to sPlotOpen data scaled to the grid level 

 

With PFT stratification 

We found considerable differences between upscaled maps in both the spread of trait values 

between PFTs and the absolute values (Fig. 5b). A general tendency was that the PFT+Env 

maps showed larger spread between PFTs than the Env maps. This larger spread of the 

PFT+Env maps was more consistent with grid-level sPlotOpen data for SLA and N than for 

the Env maps even when considering the difference between top-of-canopy weighted mean 

(TWM) vs. community weighted mean (CWM).  While CWM showed smaller between-PFT 

differences than TWM, they were still considerable and had mostly similar  patterns between 

PFTs (Fig. 5b). The description of results focuses on mean PFT trait values for the sake of 

simplicity, but the differences in spread between PFTs can also be observed across latitudinal 

gradients (Figs. S9, S10). 

 

For SLA, only the Butler map had a similar level of spread between PFTs as sPlotOpen TWM 

and was the only map that came close to matching the low values for ENF (Fig. 5b). However, 

the Butler map had much higher values for SHR than sPlotOpen and  EBF was also 

considerably higher but these discrepancies were due to specific latitudinal ranges and 

agreement in others was considerably better (Fig. S10). The other two PFT+Env maps 

(Moreno, Madani) were more consistent with sPlotOpen in terms of the order of PFTs, but had 

considerably smaller between-PFT differences (even smaller than for CWM). While the Env 

maps differed somewhat in the absolute values, they generally tended to have the highest 

values for ENF and the lowest values for SHR and GRA, which was opposed to the patterns 

in sPlotOpen CWM (Fig. 5b).  

 

For N, the difference in values for ENF among the PFT+Env maps was smaller than for SLA, 

but the differences in spread between PFTs and the order of PFTs were still considerable (Fig. 

5b). Similar to SLA, Butler showed higher values for SHR and EBF than sPlotOpen TWM and 

showed more similar values for DBF and GRA. As for SLA, Moreno showed a similar order of 

PFTs as sPlotOpen but even smaller spread than CWM. The Vallicrosa maps showed large 

differences between ENF and DBF but very similar values for the other PFTs. The two Env 

maps overall had much smaller spread between PFTs than the other upscaled maps and 

sPlotOpen. 

 

For P, the Butler and Vallicrosa maps showed larger differences between PFTs than 

sPlotOpen, while the Moreno map had a more similar level of differences (Fig. 5b). There was 

little similarity in the absolute values between sPlotOpen and the upscaled maps except for 
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EBF which consistently had the lowest values for the upscaled maps and sPlotOpen. The 

difference between TWM and CWM was considerably smaller for P than for SLA and N. 

 

 We found partially good agreement in some aspects of the within-PFT trait variation 

between upscaled maps and sPlotOpen, with different maps showing the strongest agreement 

with sPlotOpen for any given trait and PFT (Figs. S10). In particular, the Butler maps tended 

to perform well for forest PFTs, with the largest differences to other maps for ENF. However, 

the high values of the Butler SLA and P maps for SHR and DBF in the high latitudes disagreed 

with sPlotOpen that showed either a decrease (SLA) or no strong increase (P). Moreno tended 

to show better agreement with sPlotOpen for SHR and GRA, especially for SLA. Schiller, an 

Env approach, showed the strongest agreement to reference products for SHR and GRA for 

SLA, and overall robust performance for the other PFTs except ENF. There are indications 

that some of the Env maps show better agreement to the within-PFT variation of CWM than 

TWM, e.g. for the Boonman trait - PFT pairs of SLA - SHR and N - ENF (Fig. S10b).  

 

We found rather low grid-cell to grid-cell correlations of the upscaled maps vs. 

sPlotOpen at the level of individual PFTs/LCTs. Moderate to strong correlations only emerged 

when pooling data from all PFTs/LCTs (Fig. S12). In particular, the Butler maps showed high 

correlations with the difference to the Moreno map mostly being its lower SLA and N values 

for ENF. The improved Butler categorical maps showed a similar level of correlation as the 

PFT+Env map.  

 

Without PFT stratification 

Overall, we found that the upscaled maps showed moderate correlations (R up to 0.6) to 

sPlotOpen when matching the leaf-to-grid scaling of sPlotOpen to that of the upscaled maps 

(Fig. 7a for PFT+Env maps, Fig. 7b for Env maps). When comparing upscaled maps to 

sPlotOpen scaled to the grid cell with a different approach than was used in the upscaling 

approaches, the correlations to sPlotOpen were considerably lower for SLA and N (R = 0.2 - 

0.4) (Fig. 7b for PFT+Env maps, Fig. 7a for Env maps). For P, however, there were large 

differences between the scaling options for the PFT+Env maps but they did not follow the 

same pattern as for SLA and N except for the Butler Env map. In particular, the highest 

correlation of PFT+Env maps (Moreno) to sPlotOpen was to CWM without LCT cover 

weighting. 
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Figure 7: Comparison of upscaled maps against grid-level sPlotOpen data. The left column a) shows the 
correlation between upscaled maps against top-of-canopy weighted mean (TWM) sPlotOpen data scaled to the 
0.5° grid cell by weighting with the land cover fraction (fcov) corresponding to each plant functional type of the. The 
middle column b) shows the correlation between upscaled maps and  community weighted mean (CWM) 
sPlotOpen data scaled to the 0.5° grid cell without weighting, i.e. using the unweighted average of all plot-level 
data within each grid cell. Colors indicate if upscaling maps belong to the group that only used environmental 
drivers (Env) or additionally used plant functional type (PFT) and land cover information (PFT+Env). The blue 
colored bars indicate the correlation to sPlotOpen of the single environmental variable (among those used by Butler 
et al., 2017) with the strongest correlation. The right column c) shows principal component biplots of upscaled 
maps, sPlotOpen data,  and the climate variable (Clim) with the strongest relationships to Env maps (total annual 
solar radiation for SLA and N, mean annual temperature for P). For sPlotOpen, two processing options 
corresponding to panels a) and b) are shown in the biplots: sPlotTWM corresponds to a) and sPlotCWM corresponds 
to b).  In a) and b), the mean over the two upscaling groups excludes the different versions of Butler (only PFT, 
only Env)  and the climate cases, i.e. represents the averages over the bars of the corresponding colors. The 
categorical map (PFT) bar in light red color corresponds to the optimized Butler categorical maps that only used 
land cover and PFT mean trait values, while the light green bars correspond to the linear version of the Butler maps 
using only environmental drivers (Env).  
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Even when only considering consistent leaf-to-grid scaling of sPlotOpen and the upscaled 

maps, there were notable differences between individual maps of the upscaling categories 

(Fig. 7). In the group of PFT+Env maps, the Butler map agreed best with sPlotOpen cover-

weighted TWM and the (optimized) categorical map (PFT) showed similar performance as the 

full upscaled map. The Moreno map showed similar agreement to sPlotOpen cover-weighted 

TWM as Butler for SLA, but lower correlation for N and higher correlation for P (Fig. 7a). 

However, the Moreno map tended to agree better with sPlotOpen unweighted (at grid cell 

level) CWM, with considerable differences for SLA and P and similar correlation for N (Fig. 

7b). Among the Env maps, the Schiller map showed consistently better agreement to 

sPlotOpen unweighted CWM data than the other maps, especially for N (Fig. 7b).  

 

We found a tendency of stronger univariate trait-environment relationships for the unweighted 

CWM grid cell mean sPlotOpen trait values compared to the LCT cover weighted TWM (Fig. 

7). This was most pronounced for SLA and P where a single environmental predictor showed 

similar levels of correlation to sPlotOpen data aggregated to grid cells without weighting as 

the ’best’ upscaled Env maps.  

 

 

Due to the complexity of the results, an overview of the key findings and the corresponding 

results figures is given in Table 3 that can be used alongside the detailed results description 

above. 

 

Table 3: Overview of key results and the corresponding figures. ‘PFT’ stands for plant functional type, ‘Env’ 
for environmental predictor variables (climate, soil), ‘TWM’ for top-of-canopy weighte mean, ‘CWM’ for community 
weighted mean, and ‘sPlot’ refers to sPlotOpen. 

Key results 
Main 
figures 

Supplementary 
figures 

Two fundamentally different categories of maps/upscaling approaches using only 
environmental drivers (Env) or additionally PFT and land cover (PFT+Env) 

Figs. 1, 3, 
4, 5, 6, 7, 8 

Fig. S5-S9, S14, 
S15, S16 

PFT+Env maps strongly driven by PFT and land cover due to dominance of between-PFT 
over within-PFT trait variation; Env maps strongly driven by key environmental drivers 

Figs. 4, 7, 8  
Fig. S7, S14, 
S15 

Larger between-PFT differences for PFT+Env than for Env maps; Overall PFT+Env more 
consistent with sPlot for between-PFT, similar performance for within-PFT trait variation 

Figs. 5b, 6 
Figs. S9, S10, 
S15 

Wide, multi-modal trait distributions for PFT+Env maps and sPlot plot-level TWM vs. 
narrower, unimodal distributions for Env maps and sPlot plot-level CWM 

Figs. 6, 9c 
Fig. S13, Fig. 
S18a 

Strong impact of leaf/plot-to-grid scaling on evaluation with sPlot data Fig. 7a-c Fig. S17 
Impacts of aggregation of in-situ data to grid cells: horizontal weighting with land cover 
fractions vs. no weighting dominates over vertical weighting (TWM/CWM) 

Figs. 7c 
S13, S14, Fig. 
S18b 

Most sPlot data are located in heterogeneous grid cells; stratifying by PFT can 
considerably reduce the within-grid cell trait variability, especially for TWM 

Fig. 9a,b Fig. S17 

Impacts of unweighted averaging of in-situ data to grid cells results in strong dependence 
of resulting trait distributions on grid cell size 

Fig. 9c Fig. S13 
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4. Discussion 

 

We comprehensively compared seven approaches for the global upscaling of foliar trait data 

for SLA, and mass based leaf N and P concentrations. For each trait, we found considerable 

differences between the global maps (Fig. 3, S4) and identified two clearly separated groups 

of upscaling approaches (Figs 3, 4): one using PFT and land cover information in addition to 

environmental predictors and one only relying on environmental predictors. Since the use of 

PFT information explained the main differences between the upscaled maps (despite various 

other methodological differences), it is important to address the question of what using PFT 

information versus not using it implies, and what the motivations behind these different 

approaches are. Also, while there is a close association of using top-of-canopy weight mean 

(TWM) together with PFT information in the existing upscaled maps, the choice of upscaling 

TWM or community-weighted mean (CWM) should be considered separately from the use of 

PFTs as these two aspects are not necessarily linked.  

 

In the following sections, we discuss existing upscaling approaches with respect to the use of 

PFT and LCT information (4.1), the representations of vertical trait variation with TWMs or 

CWMs (4.2), aspects of the evaluation of the maps (4.3), the potential to use synthesis maps 

(4.4), the implications for trait ratios, trait-trait and trait-environment relationships (4.5),  and 

ending with an outlook (4.6). 

   

4.1 Upscaling with or without PFTs ? 

Both the PFT+Env and the Env upscaling approaches have practical advantages and 

limitations which partly depend on the characteristics of the in-situ data (Table S5). We found 

that the Env-based maps cannot well capture the between-PFT trait differences (Fig. 5b) and 

therefore tend to show stronger similarity to key environmental drivers (Figs. 7, 8b, S14b, 

S15),  while they apparently reasonably capture environmentally driven within-PFT variations 

(Fig. S10). This is directly opposed to the categorical maps that only rely on PFT and LCT 

information to represent between-PFT differences while, by design, lacking information on 

within-PFT trait variation (Fig. 8b, Table S5). PFT+Env approaches can combine the two to 

capture both between- and within-PFT trait variation (Figs. 5b, 6, 8, S10). However, our results 

show that including PFT and LCT information does not guarantee good performance regarding 

the representation of between-PFT differences for TWM (Figs. 5a, 6, Table S5). The limitations 

of Env upscaling approaches to capture between-PFT trait differences is mostly related to the 

heterogeneity of the majority of the grid cells for which in-situ data is available (Fig. 9a) and 

better performance would be expected for mostly homogeneous grid cells (Table S5). 
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Conceptually, the approach used in the PFT+Env upscaling corresponds to a common 

strategy to account for sub-grid variations by partitioning the heterogeneous patterns into more 

homogeneous components (Wu, 2007). Consistent with this interpretation, we found that the 

reduction in within-grid cell trait variability when stratifying by PFT can be considerable, 

especially for TWMs (Fig. 9b) and is consistent across a wide range of spatial scales (Fig. 

S17). This reduction in variability is due to the considerable differences in PFT mean trait 

values which are well documented in the literature (e.g. Reich et al., 2007; Kattge et al., 2011) 

and also present in sPlotOpen TWM and CWM data (Fig. 5b). While PFT+Env upscaling 

approaches tend to better capture between-PFT trait differences, some of them are also 

negatively affected by the heterogeneity of the training data (Table S5) and all of them have 

limitations regarding the use of LCT cover products to represent canopy cover of the dominant 

PFTs. The motivations and limitations of global trait upscaling with and without PFT and land 

cover information are discussed in more detail below (4.1.1 - 4.1.3).  

 

While in the upscaling approaches we analyzed the use of PFT and land cover information is 

typically associated with the use of TWMs and Env approaches typically aimed at CWMs, 

these associations are not necessarily always present. Some of the motivations for using PFT 

and land cover information also apply to CWMs and on the other hand Butler also attempted 

to upscale TWMs using environmental drivers alone (Figs. 7, 8a, S7, S14) as did Bodegom 

whose SLA map shows stronger similarities to the Butler Env map for SLA than with the other 

more CWM-based Env maps (Figs. 6a, 8a). We did not have any upscaled map that combined 

CWM with PFT and LCT information but can rely on some indications from the analyses made 

on sPlotOpen data (Figs. 5b, 6, 9) as well as comparisons to TWM in our reasoning. 

Conceptually, a fundamental difference between PFT+Env approaches and Env approaches 

is that the former rely on remotely sensing products such as land cover and surface reflectance 

to constrain trait values based on observed vegetation characteristics (Fig. 1), while the latter 

approaches only rely on environmental drivers. This aspect of the upscaling approaches can 

be related to the distinction of actual or realized versus potential species distributions 

(Bonannella et al., 2022). Potential distributions are are based on suitable environmental 

conditions and can be useful for prognostic applications (e.g. Boonman et al., 2022), while 

realized distributions are based on additional remote sensing observations and more related 

to monitoring applications. In the upscaling approaches, the more important step for modeling 

of realized rather than potential trait variation is the spatialization step (Table S5). 
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Figure 8: Overview of the impact of different upscaling approaches on latitudinal trait distributions and the 

corresponding trait-environment relationships. a) latitudinal distributions of specific leaf area (SLA) for three 

different upscaling approaches applied to the same in-situ top-of-canopy weighted mean (TWM) data by Butler et 

al. (2017): the full upscaling model (‘PFT+Env’) using environmental predictors, plant functional type (PFT) and 

land cover information, the simplified categorical map (‘PFT’) only relying on land cover fractions and mean PFT 

trait values for 14 PFT categories, and the maps only relying on environmental predictors (‘Env’). For the sake of 

direct comparison, the Env spatial model was used here. The latitude values in a) correspond to the minimum value 

of 15 degree intervals. b) the relationships between solar radiation and the SLA values of the maps shown in a) 

stratified by land cover type (ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous 

broadleaf forest; SHR: shrubland; GRA: grassland). For each land cover type only grid cells with more than 50% 

cover are shown. For the categorical map (‘PFT’) in b) each land cover type can have multiple trait values as the 

14 PFT categories correspond to the five land cover types with sub-distinctions related to climate zone (e.g. 

temperate vs. tropical, temperate vs. boreal etc). The maps corresponding to the three columns shown here can 

be found in Fig. S7a. 

 

4.1.1 Upscaling with PFTs  

 

Three different perspectives on using PFT and land cover information in upscaling approaches 

emerge from our study that depend on the starting point or focus. These are addressed in 

more detail below. In practice, all three perspectives can be compatible with the same type of 

upscaling algorithm although we found different preferences for certain upscaling approaches 

depending on the motivation (Fig. 1) and different limitations may be more relevant for one or 

the other perspective.  
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(1) Refining the PFT representation in land surface modeling. For PFT-based 

land surface modeling schemes that aim at refining the simplified 

representation of PFTs as uniform in terms of foliar traits but do not aim to 

entirely remove PFT categories, the use of PFT and LCT information in the 

upscaling is an obvious choice. Essentially, the focus is on modeling trait 

variation within each PFT separately, using this information for e.g. modeling 

of carbon and water fluxes, and then combining the outputs with LCT cover 

weighting. It is therefore somewhat surprising that none of the approaches that 

were motivated by land surface modeling approaches such as Butler and 

Madani provided upscaled trait outputs separately by PFT. Except for the 

approach of Moreno, where the upscaling is not done separately for each PFT, 

the other PFT+Env approaches (Fig. 1, Table 2) are consistent with the land 

surface modeling framework of PFT-based trait upscaling. It is important to note 

that in contrast to the simplified PFT-based look-up tables of many land surface 

models that directly assign a trait value to each PFT, the PFT-based upscaling 

approaches do not directly constrain trait values with PFT information. Instead, 

the in-situ trait data determine the trait variation within each PFT and only the 

spatial occurrence of a given PFT is constrained by the land cover (LCT) 

products. An alternative strategy for better representing within-PFT trait 

variation without upscaling is to generate trait distributions per PFT (Butler et 

al., 2022). 

(2) PFT as a useful categorical predictor (spatialization). As trait-environment 

relationships can differ between PFTs (e.g. Wright et al., 2005; Fyllas et al., 

2020), including PFT information can considerably improve the predictive 

performance of trait-environment relationships (e.g. Reich et al., 2007; 

Kambach et al., 2023). Therefore, including PFT information appears attractive 

to improve upscaling regression models for the spatialization. Conceptually, 

this use of PFT information could be considered a special case of making use 

of trait-trait correlations for trait estimation (Reich et al., 2007): a set of 

categorical traits (growth form, leaf type, leaf phenology) is used to improve the 

estimation of leaf chemical and morphological traits. If the goal is not only to 

generate upscaled trait maps per PFT but also have a final trait map that 

combines all PFTs, the key aspect is to have PFT-related information also in 

grid cells for which no foliar trait in-situ data are available. For this, the LCT 

maps are crucial and used as proxy for the canopy cover of the dominant PFT. 

The upscaling approaches of Butler, Madani, and Vallicrosa are consistent with 
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the motivation of using PFTs as categorical predictors, while the approach of 

Moreno is not.  

(3) PFTs as tool to account for the lack of representativeness of in-situ 

observations regarding the (horizontal) trait variation within grid cells. 

The grid cells of upscaled maps are very large compared to the scale of in-situ 

observations, which were not designed to represent these grid cells but are 

collections from independent measurement campaigns for very different 

purposes (Kattge et al., 2011, 2020). More importantly, most of the in-situ 

observations used in the upscaling approaches fall into heterogeneous grid 

cells regarding land cover (Fig. 9a). Therefore, the in-situ data in most grid cells 

are unlikely representative of the entire grid cell. To account for this lack of 

representativeness, traits can be averaged first per dominant PFT within each 

grid cell and then weighted by the contribution from each dominant PFT with 

the corresponding area fractions from remote sensing based LCT cover 

products. This aspect of improving the representativeness of in-situ 

observations was most prominent in the Moreno approach, which, in contrast 

to Butler, Madani and Vallicrosa, only used PFT and LCT information in the 

leaf-to-grid scaling step (Fig. 1). However, the representativeness aspect is 

also relevant for the other approaches that used PFT information. Unweighted 

averaging of in-situ trait observations in a grid cell separately for each PFT 

assumes that the within-PFT trait variation is sufficiently small (Fig. 9b) and 

does not show strong systematic spatial patterns (Fig. 9c). One important 

aspect of the motivation to account for the lack of representativeness of  in-situ 

data is that, in theory, the performance of the PFT and LCT-based approaches 

should be relatively independent of the grid cell size. Even for large grid cells, 

the relevant sub-grid information is contained in the LCT cover fractions. The 

fact that we found the strongest agreement between the Butler and Moreno 

maps (Fig. 4) that used 50 km and 1 km grid cell sizes for upscaling, 

respectively, supports this reasoning. 

 

Limitations 

While PFT and LCT information can be very useful for trait upscaling, there are limitations. 

Most of these limitations are related to the use of LCT products, but some are related more 

directly to the use of in-situ PFT observations. 

 

Limitations of using LCTs. First, by definition, the LCT categories do not directly capture the 

actual cover fractions of the dominant PFT. For example, based on the IGBP land cover 
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classification scheme (Loveland & Belward, 1997) used in the widely used MODIS products 

(Friedl et al., 2002) that applies thresholds, a grid cell with 60% DBF and 40% ENF LCT cover 

could actually have canopy cover fractions of 40% deciduous broadleaf trees, 30% evergreen 

needleleaf trees and 30% shrubs, which translates into considerable uncertainties for grid-

cell-level foliar trait estimates. The LCT categories are therefore suboptimal for trait estimation 

based on the dominant PFT. Second, the maps of LCT cover can have considerable 

uncertainties even when considering only the original land cover class definitions (Congalton 

et al., 2014). While distinguishing evergreen from deciduous vegetation is rather 

straightforward with multi-spectral satellite data, finer differences within these categories can 

be more challenging to capture accurately (e.g., deciduous broadleaf shrubs versus deciduous 

broadleaf trees). Given these uncertainties and dominance impacts of the land cover 

information at both the global and more local scales (e.g. Fig. S6, Fig. S7), the differences 

between the PFT+Env maps could therefore be partly explained by discrepancies between 

the different land cover products used (Table S2). Third, since the LCT cover is not available 

for future time periods, or only with even larger uncertainties than the corresponding climate 

scenarios, using LCTs in upscaling is more suitable for diagnostic purposes, i.e., monitoring,  

than for predictive purposes. It is important to note, however, that the limitations of LCTs only 

affect the final step of recombining separately upscaled PFT trait maps in approaches such 

as Butler and Vallicrosa as the separately upscaled trait maps per PFT did not use LCT 

information (Fig. 1). Moreno used LCT information in the leaf-to-grid scaling, which therefore 

also at least partly propagates to the final map even though it was not used in the spatialization 

step (Fig. 1). 

 

Limitations of using in-situ PFT data. The definition of (dominant) PFTs we used based on 

growth form, leaf type and leaf phenology, is suboptimal for the purpose of decomposing the 

entire trait distribution into parts that minimize overlap and well cover the entire trait range 

(ideally in equidistant intervals without overlap) to reduce within-grid cell trait variability. 

Another limitation is that some species can change PFT categories depending on the 

environmental conditions (Wang et al., 2022a), which can make an assignment at the global 

scale challenging. Both these limitations could be partly addressed/reduced with finer PFT 

categories by adding climatic information (as done by Butler) as long as sufficient in-situ data 

for each of the finer categories is available. However, some of the original limitations will 

remain and the use of finer PFT categories might even make the upscaling unnecessary for 

some applications as we found that the PFT+Env map by Butler can be relatively well 

approximated by adjusting the mean trait values of the 14 PFT categories used, i.e., 

generating an optimized categorical map (Fig. S2).  
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Figure 9: Overview of the impact of different upscaling approaches on latitudinal trait distributions and key 

aspects related to the heterogeneity of the vegetated land surface. a) distribution of grid cells regarding the 

maximum land cover fraction irrespective of the land cover type: sPlotOpen (all plots, N~5000), TRY data selected 

by Butler et al. (2017)(N~500), or all global vegetated grid cells (N~60000  ). The maximum fraction represents a 

measure of land cover homogeneity. b) sPlotOpen global-scale within grid cell (50 km) trait variability as quantified 

by the coefficient of variation (CV) based on top-of-canopy weighted mean (TWM) or community weighted mean 

(CWM) data and all available trait data (bar showing median over the global-scale distribution) or stratified per PFT 

(boxplot summarizing the global medians of the individual plant functional types, i.e., PFTs). c) example of the 

impacts of unweighted averaging on sPlotOpen TWM and CWM trait distributions in the latitudinal range of 45°-

60° north either including all data (‘All’ in top row) or stratified by PFT for evergreen needleleaf forest (ENF) and 

deciduous broadleaf forest (DBF). Plot data are shown for reference and three different grid cell sizes with their 

corresponding size at the equator are given. Note that, conceptually, in c) the top row corresponds to the bars in 

b), while the bottom row corresponds to the boxplots in b). 
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4.1.2 Upscaling without PFTs  

There are several reasons to avoid the use of PFT information. First, using discrete 

and to a certain degree arbitrary PFT categories that show overlapping trait distributions might 

be unnecessary, if sufficient information is available from in-situ data and other suitable 

predictor variables. Especially if the focus is on upscaling CWMs, relying on PFT information 

can seem unattractive as differences between dominant PFTs are smaller than for TWMs (Fig. 

5b, 9b) and as the objective of CWMs is to use an integrative trait metric. Second, due to the 

limitations of LCT products (see paragraph above), it would be preferable not to use them to 

avoid introducing artifacts and additional uncertainties. Third, assuming that the predictors are 

available for future scenarios with a reasonable level of confidence, which is the case with 

climate variables, approaches that rely only on climate (and soil) predictors could then be used 

for estimating future changes in foliar traits, which is relevant for climate change-related 

applications (e.g. Boonman et al., 2022). 

 

Limitations  

 Upscaling approaches that do not rely on PFT information face important practical 

limitations. These limitations affect both the leaf-to-grid and spatialization steps, but the 

impacts on the leaf-to-grid scaling are considerably more important as information lost in this 

step cannot be recovered in the spatialization (for those approaches that conducted the 

spatialization at the end, i.e. excluding Schiller, see Fig. 1). The limitations affect upscaling of 

TWM more strongly than CWM but are relevant in both cases. 

 

Leaf-to-grid scaling. In the leaf-to-grid scaling, the unweighted averaging over available in-

situ data effectively assumes either that these data are representative of the grid cells (in the 

sense that the average over them is close to the average of an ideal, high-resolution trait map) 

or that there might be biases at smaller scales, but they tend to average out when looking at 

global scale trait patterns. These assumptions are addressed separately below. 

 

The assumption of representativeness is not well- justified for the following reasons. First, 

none of the relevant in-situ data sources like TRY, sPlotOpen, or citizen science images 

(Schiller) were sampled in a manner to provide representative trait information for 0.5 degree 

grid cells. Second, given the trait differences between PFTs Fig. 5b) and the fact that a large 

fraction of the global vegetated land surface is heterogeneous regarding LCT cover even at 

0.5° (Fig. 9a), the representativeness does not emerge simply from large numbers of samples 

if they are not designed specifically with this goal. Third, TRY and sPlotOpen data, which was 

used in almost all upscaling approaches (Fig. 1), is mostly located in heterogeneous grid cells 
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regarding land cover (Fig. 9a), i.e. the situation is even worse than a random sample of 

vegetated grid cells.  

 

The impact of the lack of representativeness of in-situ observations is not limited to small 

spatial scales. While the impacts can differ across the global land surface, they are most 

conspicuous when looking at the low values of SLA and N for ENF. The original plot-level 

sPlotOpen TWM (and in-situ TRY) data show a distinct double-peak distribution for SLA in the 

higher northern latitudes, the peak feature with lower SLA values associated with ENF is either 

strongly reduced or almost disappears when applying unweighted averaging the in-situ data 

within grid cells (Fig. 9c, Fig. S13). Due to the loss of information already for the reference or 

training grid cells, the lower trait signal of ENF cannot be well modeled in the spatialization. 

This results in the absence of a distinct signature of lower SLA and N values in the ENF-

dominated region of the northern hemisphere of the Env maps compared to other co-occurring 

PFTs such as SHR and DBF (Figs. 4, 5). In addition to the findings using sPlotOpen data 

without spatialization (Figs. 9, S13), the effect of suppression of the low trait values for ENF 

in upscaled maps without PFT information can be seen in the different versions of the Butler 

and Moreno upscaled maps based on the same in-situ data (Fig. S7, S14a). Interestingly, the 

use of the spatial information on the locations of in-situ data in the prediction can partly 

overcome this effect in regions with high in-situ data density but  not elsewhere (Figs. S7a, 

S14a,b) 

 

The limitations regarding unweighted leaf-to-grid scaling does not only apply to upscaling 

approaches that applied the leaf-to-grid scaling as first step (Boonman, Bodegom) but also to 

approaches that first spatialize and then scale a considerably larger number of observations 

or trait estimates to the grid cells as final step (Schiller) (Fig. 1). The reason for this is that a 

larger number of grid cells (e.g. one order of magnitude difference Fig. 9a) without targeted 

sampling towards more homogeneous grid cells does not noticeably change the level of 

heterogeneity (Fig. 9a). The approach by Wolf et al. (2022) is conceptually similar to the 

Schiller approach to which it is also most strongly correlated (results not shown) and 

consequently would fall into the group of Env maps although it did not actually use 

environmental predictor variables. 

 

Spatialization. In principle, not using PFT or LCT information in the spatialization implies 

using universal trait-environment relationships across all vegetation types (Figs. 8b, S15). 

However, trait-environment relationships can show considerable differences between 

vegetation types (e.g. Reich et al., 2007; Kambach et al., 2023) implying limitations in using 

universal relationships for upscaling. Among other things, only using environmental predictors 
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likely increases the uncertainties related with spatialization in regions where the regression 

models effectively extrapolate (Meyer & Pebesma, 2021). Consistent with this interpretation 

and in contrast to the PFT+Env maps, the differences between Env maps (Fig. 4) seems to 

be at least partly related to in-situ data availability (Fig. S1). Also, it is noteworthy that the Env 

maps that partly captured somewhat lower values for ENF only did so in smaller parts of the 

ENF-dominated regions (e.g. Boonman for N, Fig. S5) such as Europe that has a relatively 

high density of in-situ observations (Fig. S1). The failure to also capture the low ENF trait 

values in North America and Siberia therefore appears to be related to extrapolation in the 

environmental predictor space (Boonman et al., 2020) in addition to the aggregation effects 

due to heterogeneous grid cells in the leaf-to-grid scaling (Figs. 9c, S13).  

4.1.3 Limitations affecting both approaches with and without PFT information 

While the different limitations appear to clearly separate the approaches with and without PFTs 

at first sight, there actually is some overlap between them due to the characteristics of the 

underlying in-situ data. The key limitation of in-situ data is that it is mostly located in 

heterogeneous grid cells regarding land cover (Fig. 9a). This implies that even when weighted 

averages using LCT cover fractions are used in the leaf to grid scaling step, the result is a 

combination of trait values from different LCTs, which has a rather similar impact on latitudinal 

trait distributions as unweighted averages, i.e. making the distributions narrower and more 

unimodal (Fig.S18a). Based on this, even PFT+Env approaches such as the version by 

Moreno that only used PFT+LCT information in the leaf-to-grid scaling and Env in the 

spatialization (Fig. S7a, S14a,c) tend to effectively generate trait estimates that better 

represent heterogeneous grid cells (note that its ability to still partly capture the low values of 

SLA in ENF dominated regions could also be related to the use of 1 km instead of 50 km grid 

cells). This results in considerable discrepancies between upscaled maps and the plot-level 

in-situ data for more homogeneous grid cells, which account for an important part of the global 

vegetated land surface despite the dominance of heterogeneous grid cells (Fig. 9a). While the 

final model by Moreno used remotely sensed surface reflectance time series, which have a 

similar information content as the LCT cover products, in the spatialization, this model could 

apparently not fully recover the trait values of homogeneous grid cells (Figs. 5b, 6, S10a).  

 

Nevertheless, the impact of the mostly heterogeneous training data differs between the Env 

approaches and the Moreno PFT+ Env approach. While the Moreno SLA and N maps partly 

show more similarities to the absolute values and latitudinal trait distributions of the Env maps 

(Fig. 6), the relative spatial patterns of the Moreno map are more similar to the other PFT+Env 

maps that used LCT information in the spatialization step (Figs. 3, 4). This all suggests that 

the Moreno approach is intermediate between the Env approaches and the PFT+Env 
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approaches that separately upscaled per PFT (Butler, Vallicrosa, Madani) (Table S4). These 

latter approaches can, in principle, better represent trait variation in homogeneous grid cells 

despite relying on heterogeneous training data as they effectively model potential 

homogeneous grid cells separately per PFT and only re-generate heterogeneous grid cells 

via the LCT cover weighting in the final step after the spatialization (Fig. 1). 

 

Both the PFT+Env and the Env approaches apparently face challenges to capture the trait 

values of deciduous needleleaf forest (DNF).  Although we excluded DNF from most of our 

analyses due to the limited data availability, the discrepancies between sPlotOpen and 

upscaled maps tended to be larger for DNF than for other PFTs when applying the unmixing 

approach (results not shown) and larger differences between maps of the same category can 

also be seen in the DNF-dominated region (Fig. 4, S5). While the limitations affect both the 

PFT+Env and the Env upscaling approaches, the limitations are due to different aspects 

related to the shortage of in-situ data. The PFT+Env approaches that separately upscaled per 

PFT such as Butler, Madani and Vallicrosa simply lack enough in-situ data to well constrain 

DNF-specific models.  The Env approaches face the challenge that available in-situ data in 

locations not dominated by DNF are not representative of the environment where DNF is 

dominant (Boonman et al., 2020). Recent advances in optimality theory-based trait modeling 

could help to better constrain the trait values of SLA and N for DNF-dominated regions despite 

the current lack of in-situ observations (Dong et al., 2023, in press). 

 

4.2 Vertical variation of traits within the canopy: upscaling CWMs or TWMs ? 

Apart from the horizontal scaling aspects related to the use of PFTs and land cover, the 

differences in the upscaling approaches regarding the way vertical trait variation was 

accounted for (CWMs versus TWMs) is an important aspect to consider. While the use of 

CWMs versus TWMs has considerably smaller impacts on spatial trait patterns than upscaling 

with PFTs and LCTs or not (Figs. 7c,S18), it is an important additional factor resulting in 

differences between maps. Using CWMs tends to result in narrower and more unimodal trait 

distributions with smaller differences between PFTs than for TWMs (Figs. 5b, 6, S9). However, 

the differences between TWM and CWM depends on the trait. Among foliar traits, we found 

larger differences for SLA than for N and P (Fig.S18b), which is consistent with the known 

sensitivity of SLA to light availability (Evans & Poorter, 2001) and other evidence on vertical 

variation (Ellsworth & Reich, 1993; Davrinche et al., 2023). 

 

While none of the upscaling approaches used CWM or TWM in the same way as done in 

sPlotOpen, there are nevertheless tendencies towards one or the other. Boonman used an 
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unweighted community mean at the site level and the approach used by Schiller seems to 

integrate vertical trait variation to some degree via the information in the citizen science 

images and therefore tend more towards CWM. The other five approaches tend more towards 

TWM as they did not explicitly include vertical trait variation and the in-situ trait data in the 

TRY database tends to be collected from sunlit leaves in the top of the canopy. It is noteworthy 

that while the Bodegom map falls into the Env group, its trait metric at the site level is more 

similar to TWM, which can explain the considerable similarity in its latitudinal distributions (Fig.  

6) compared to the Butler Env map (Fig. 8a). A more detailed discussion on the motivations 

and limitations of CWMs and TWMs follows below. 

4.2.1 CWMs 

CWMs are the standard metric for many ecological analyses based on community trait data 

including trait-trait and trait-environment relationships (Bruelheide et al., 2018; Anderegg, 

2022; Guerin et al., 2022), and are routinely applied in the sPlot and sPlotOpen datasets 

(Bruelheide et al., 2019; Sabatini et al., 2021). The concept of CWMs was introduced in 

relation to the biomass ratio hypothesis, which states that species contribute to ecosystem 

characteristics based on their biomass ratio (Garnier et al., 2004), as should their traits. The 

weighting of traits is commonly done by the basal area, biomass, or leaf area (Anderegg, 

2022) or by fractional cover (Sabatini et al., 2021). The goal of CWMs is to integrate all trait 

variation present in a plant community in a single value that is expected to show more 

consistent trait-environment relationships than sub-selections of the community (Anderegg, 

2022). Applications of CWMs include, among other things, studies of community assembly via 

environmental sorting or historical biogeographic processes, deciphering the role of traits in 

ecosystem functioning, or modeling ecosystem properties using a range of approaches.  

4.2.2 TWMs 

Upscaling top-of-canopy-weighted means (TWMs) can have several different motivations 

related to land surface modeling, alternatives to the common cover/abundance-based 

weighting in CWMs, and remote sensing. From the perspective of land surface modeling, the 

higher levels of a canopy tend to dominate many processes of vegetation-atmosphere 

interactions such as photosynthesis due to the dominance of leaf area and light availability of 

top-of-canopy vegetation. Therefore, the trait values of sunlit leaves of dominant PFTs have 

been widely used in land surface models (Yang et al., 2015). Impacts of reduced light 

availability that can capture part of the trait variation in lower levels of a canopy are commonly 

modeled in land surface models (Hikosaka et al., 2016), therefore, the combination of such 

models with TWM trait values can be useful. 
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Even when ultimately aiming at CWMs, TWMs can be a relevant practical tool to approximate 

other weighting strategies when only relative cover fractions are available. The reason is that 

due to the lack of sufficient data on leaf area or leaf biomass in many datasets, CWMs are 

frequently calculated using fractional cover or abundance data, which is also the case in 

sPlotOpen (Sabatini et al., 2021). This, however, implies giving similar weight to understory 

vegetation as overstory trees as long as their cover fractions are comparable despite large 

differences in leaf area and leaf biomass. Therefore, when applying a weighting based on leaf 

area or leaf biomass, a CWM would likely tend more towards TWM than to a cover/abundance-

weighting CWM in most situations. Since the data necessary for a leaf area- or leaf biomass-

based weighting are not readily available, however, TWMs could be considered a pragmatic 

approximation to CWMs based on weighting with leaf area/biomass. 

 

From a practical remote sensing perspective, the widely used multi- and hyperspectral sensors 

used on airplanes and satellites are most sensitive to the top of the canopy. Therefore, if the 

goal is to compare upscaled maps with remote sensing-based maps, TWMs are a suitable 

metric. This applies to future global foliar trait maps based on hyperspectral satellite data (see 

section 4.6) and can also be illustrated with canopy height for which there are already global 

maps derived from satellite-based lidar instruments (Simard et al., 2011; Wang et al., 2016; 

Potapov et al., 2021; Lang et al., 2022). While canopy height is admittedly an extreme case 

due its large differences between CWM and TWM, it can serve as an intuitive example to 

illustrate the differences in these two metrics: clearly, TWM canopy height is expected to be 

much larger than CWM canopy height that includes understory vegetation. Unsurprisingly, 

upscaled canopy height maps based on TWM show a considerably higher level of similarity to 

satellite-based height maps using lidar information than CWM upscaled maps (Fig. S16). 

Importantly, the TWM and CWM upscaled maps differ not only considerably regarding their 

absolute values but also show large differences in their spatial patterns (Fig. S16). While the 

TWM maps used PFT and land cover information and the CWM maps did not, for canopy 

height the use of the PFT and land cover information is considerably smaller than the choice 

of TWM versus CWM, in contrast to the foliar traits (Fig.S18b).   

 

4.3 Evaluation of maps  

 While the comparison of different upscaling approaches and maps can give important 

insights into the factors explaining the differences, a higher level of consistency - as observed 

in the maps using PFT information (Fig. 3) - does not necessarily imply better performance. 

Therefore, it is important to take other criteria into account. We discuss Internal performance 

assessments and the evaluation compared to sPlotOpen data products. 
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4.3.1 Internal performance metrics.  

Most of the upscaling approaches provided cross-validation metrics, but their interpretation is 

complex. Overall, there was a clear pattern of considerably higher R2 for PFT+Env approaches 

compared to Env approaches (R2 about 0.6 or higher compared to 0.4 or lower), with larger 

differences for N compared to SLA. However, these findings can be misleading as the input 

in-situ trait observations differ considerably in terms of the number and the data sources (Fig. 

1) and there are limitations of random cross-validation approaches to evaluate mapping 

performance (Ploton et al., 2020; Meyer & Pebesma, 2021).  

 

Some of the upscaling products also provided estimates of the uncertainty of the mean 

(standard error) trait values per grid cell. However, these estimates differ considerably in terms 

of methodology and should be interpreted with caution. In some cases, a single algorithm 

provided uncertainty estimates (e.g. Bodegom, Vallicrosa), while in  one case the differences 

between different algorithms was used (Boonman). Overall, we found no indications that the 

uncertainty or variability estimates corresponded to the observed discrepancies between 

maps, even within the PFT+Env and the Env groups (Figs. 4, S19). An exception to this seems 

to be the apparent correspondence of the higher CV values for SLA in the Madani product 

with the higher values of the between-map CV of the PFT+Env maps (Fig. 4). This region of 

higher discrepancy values is dominated by DNF (Fig. 4 dominant LCT cover) for which trait 

values cannot be well constrained in the PFT-based upscaling approaches due to the sparsity 

of in-situ observations.  

4.3.2 External reference data (sPlotOpen) 

Despite its limitations, we think that sPlotOpen is currently the best available open access 

dataset for evaluating the upscaled maps given its global coverage and the fact that it is based 

on a characterization of entire plant communities in contrast to individual species. However, 

as the upscaling approaches differ in the way horizontal (within-grid-cell) and vertical (within 

canopy) trait variation was taken into account, there is no way to process sPlotOpen data such 

that it could be used as universal benchmark data for all upscaling approaches. Rather, 

sPlotOpen can be used as a basis for evaluating the differences in performance within a given 

upscaling framework/strategy regarding the leaf-to-grid scaling. While the above reasoning 

applies when aiming at direct comparisons between upscaled maps and sPlotOpen data at 

grid-cell-level (Figs. 7, 14c), the upscaling approach-specific adjustment to sPlotOpen data 

can be restricted to the choice of plot-level trait metric (CWMs or TWMs) when comparing plot-

level sPlotOpen data to upscaled maps (Figs. 2a, 6, S11). It is therefore instructive to conduct 

such a comparison of plot-level sPlotOpen data to upscaled maps by using latitudinal 

distributions which, in contrast to global trait distributions, contain some of the relevant spatial 
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information. Furthermore, the distribution-based comparisons of plot-level versus grid-level 

sPlotOpen (and TRY) data can provide insights on the impacts of the leaf- or plot-to-grid-

scaling step.  

 

We found that both for unweighted and LCT cover-weighted grid-cell averages, the trait 

distributions of sPlotOpen differed considerably from those of the original plot-level data with 

a clear tendency of narrower and more unimodal distributions at the grid-cell-level (Figs. 

9c,S18a). This is related to the high level of land cover and trait heterogeneity in the grid cells 

where sPlotOpen data are available (Fig. 9a,b). These results suggest that caution is 

warranted when interpreting comparisons of upscaled maps with grid-cell-level sPlotOpen 

data as the latter can differ strongly from the underlying plot-level data. In fact, the 

characteristics of sPlotOpen data aggregated to the grid-cell-level with unweighted averages 

strongly depend on the chosen grid cell size (Figs. 9b, S13), with smaller grid cell sizes 

showing trait distributions more similar to plot-level data. While there can, of course, be ‘real’ 

resolution dependencies of trait distributions, our analyses show that the impacts we observed 

are primarily due to the unweighted averaging as the PFT component distributions show a 

considerable level of robustness across grid cell sizes (Fig. 9b). The impact of resolution of 

unweighted averaging on sPlotOpen data itself is not surprising as e.g. in 1 km grid cells, most 

grid cells will only contain a single plot (or a small number or more similar ones), which strongly 

reduces the impacts of averaging. However, this does not mean that these grid cells are in 

fact homogeneous in terms of land cover (Yu et al., 2018) or trait variation (see versions of 

Moreno maps without PFT information in Fig. S7 based on 1 km grid cells).  

 

Regarding the evaluation of PFT+Env maps with grid-cell-level sPlotOpen data, our results 

indicate that a comparison stratified per PFT (Figs. S9, S10) is more meaningful than at the 

level of the final maps. First, when using the final maps after applying the LCT cover-weighted 

averages, highly simplified categorical trait maps, which were the motivation for improvement 

using PFT+Env upscaling, can achieve a similar level of agreement with sPlotOpen reference 

data (Fig. 7a). Second, the PFT-stratified evaluation directly quantifies the similarities between 

upscaled maps and sPlotOpen at the level of within-PFT trait variation that was the main 

motivation of the upscaling (e.g. Butler). Our findings also indicate that the between-PFT trait 

differences should be evaluated in addition to the within-PFT variations as, in contrast to what 

might be expected, they can differ considerably even between PFT+Env approaches (Figs. 

5b, S10). Therefore, future PFT+Env upscaling approaches should provide the intermediate 

trait maps upscaled per PFT in addition to the final maps to facilitate intercomparisons and 

evaluations. While we showed that the final maps can, in principle, be separated into PFT 
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components (Figs. S2, S3), this approach introduces unnecessary additional uncertainties 

which can be avoided by using the direct outputs from the upscaling. 

 

One limitation of the sPlotOpen dataset is that it ignores intra-specific trait  variations as global-

scale species mean trait values from the TRY database were used (Sabatini et al., 2021). 

While the impact on the global-scale trait pattern of this might be small in most regions due to 

the dominance of species composition and abundances on CWMs and TWMs, we found that 

the strong tendency towards higher trait values of the Butler maps at high latitudes was 

apparently at least partly caused by strong intraspecific variations in the in-situ trait data of 

some species (Fig. S20). Therefore, it remains unclear to what degree the discrepancies 

between sPlotOpen and the Butler maps in high latitudes for DBF and SHR (Fig. S10) are due 

to limitations of the Butler maps or sPlotOpen-based trait estimates. In any case, accounting 

for intra-specific variation in traits in biomes dominated by small numbers of widely distributed 

species (Bjorkman et al., 2018) will be critical for useful trait parameterization in land surface 

models (Reich et al. 2014), because populations within widely distributed species often vary 

markedly in traits due to both genotypic and phenotypic variation, both of which will be further 

influenced by climate change (Oleksyn et al., 2020). 

 

4.4  Synthesis maps 

A relevant question for applications is whether generating synthesis maps per upscaling group 

(PFT+Env, Env) that outperform the individual maps is feasible and defendable. While the 

simple average over all maps for a given trait and upscaling category is useful for illustrating 

some general differences between the two upscaling category (Figs. 4-6), we did not find any 

evidence that these average maps performed better than the best individual map when 

evaluated with sPlotOpen (Fig. 7).  

 

For PFT+Env maps, the preferred strategy for generating synthesis maps would be at the level 

of trait maps per PFT where averaging over different upscaling approaches could be 

conducted weighted by the agreement to suitable reference data such as sPlotOpen regarding 

the within-PFT trait variation. However, we could not apply this approach due to the limitations 

of the separation of upscaled maps into their underlying PFT components (Fig. 2). 

 

4.5  Trait ratios, trait-trait, and trait-environment relationships 

While our focus was on the comparison and evaluation of individual foliar traits other aspects 

of the upscaled maps such as trait ratios, trait-trait and trait-environment relationships are also 

relevant for ecological applications and could be seen as additional aspects to consider. 
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Trait ratios. Our focus was on SLA, and N and P concentrations (per mass) as they are key 

traits that also were among the most commonly upscaled foliar traits. However, trait ratios 

such as N:P are also of considerable interest as are N and P contents (per area). The foliar 

chemical contents can also be considered ratios of the corresponding trait (N or P) per mass 

and leaf mass per area (i.e. 1/SLA) and are therefore included in the reasoning related to trait 

ratios here. While it is straightforward to calculate trait ratios, such as N:P, from the individually 

upscaled traits and we found that the ratios appear to be somewhat more consistent between 

upscaling approaches than the individual traits (results not shown), trait ratios should be 

directly upscaled for optimal results (Vallicrosa et al., 2022). For N:P this has only been done 

in relatively few approaches (e.g. Moreno-Martínez et al., 2018; Vallicrosa et al., 2022; Wolf 

et al., 2022). 

 

Trait-trait correlations. Given the differences in individual trait maps, it is not surprising to 

also find considerable differences in trait-trait correlations, even within a given upscaling 

category. We indeed found considerable differences in trait-trait relationships both at the 

global scale and the local scales using the moving window approach (results not shown). 

Notably, there were considerable differences between the Butler and Moreno maps regarding 

the SLA-N relationships, partly differing relatively consistently in the sign of the local 

correlations (results not shown), despite the relatively high level of correlation for the individual 

traits (Fig. 3).  

 

Trait-environment relationships. Regarding trait-environment relationships, given the 

differences between upscaled maps it is to be expected that they also differ as they are an 

important part of the upscaling methodology. In a sense, comparing trait-environment 

relationships can be another approach to quantify, illustrate, or understand the differences 

between the upscaled maps. We did this with the PFT stratified maps and sPlotOpen data, 

which reveals considerable differences both between the two upscaling categories and within 

them (Figs. 8b, S15). Note that for PFT-based maps, it is crucial to either select homogeneous 

grid cells (regarding trait variability, not only land cover homogeneity) or the separately 

upscaled (or unmixed) maps per PFT/LCT for such analyses as otherwise the land cover 

information strongly distorts the trait-environment relationships (results not shown).  

 

4.6  Future opportunities 

Future upscaling efforts will benefit from progress in areas relevant for foliar trait upscaling 

related to both the leaf-to-grid and spatialization steps (Fig. 1). In-situ trait databases such as 



42 

TRY have already been increasing in the volume of available data (Kattge et al., 2020) and 

the combination of different trait databases can further maximize the available data as shown 

by Vallicrosa. Furthermore, plot databases such as sPlot are also rapidly growing 

(https://www.idiv.de/de/sdiv/working-groups/wg-pool/splot/splot-database.html) and can also 

be used as the basis for upscaling. However, increases in the amount of in-situ data do not 

necessarily lead to increased representativeness for grid cells (Fig. 9a). Regarding the 

evaluation, sPlotOpen data could be refined to at least partly include intraspecific trait variation 

for species where sufficient data is available. 

 

To reduce the uncertainties stemming from the leaf-to-grid scaling step in the upscaling, a 

logical approach is to decrease the size of grid cells to better match the resolution of the in-

situ observations and increase the fraction of homogeneous reference grid cells. Promising 

efforts in this respect have made use of high-resolution air- and spaceborne imagery to directly 

link tree canopies to satellite remote sensing predictors and generate regional or national-

scale trait maps (Asner et al., 2016; Aguirre-Gutiérrez et al., 2021), but have not yet been 

applied at the global scale.  

 

Given the increase in the availability of satellite imagery with both high spatial and temporal 

resolution (e.g. Houborg & McCabe, 2018), there is potential to improve LCT cover maps to 

better approximate actual PFT cover fractions. Several improved products have already been 

generated (Macander et al., 2022; Wang et al., 2022b; Harper et al., 2023). Harper et al. 

(2022) used high-resolution (30 m) tree cover and canopy height maps to refine global, long-

term land cover products in an attempt to better approximate actual PFT canopy cover. Wang 

et al. (2022) applied a somewhat similar approach using only tree cover to Canada and Alaska. 

Macander et al. (2022) generated long-term, high resolution (30 m) top cover for seven PFTs 

across Alaska and parts of Canada. Also, individual tree crowns can now be detected at large 

scales (e.g. Mugabowindekwe et al., 2022; Wang et al., 2023) and could be further classified 

into PFTs with time series data or combined with existing high-resolution land cover products 

in approaches similar to Harper et al. (2022). All these efforts could help reduce uncertainties 

in upscaled maps that use PFT information. 

 

Different approaches have been developed that try to use stronger predictors of foliar traits 

than environmental drivers and PFT information. On the one hand, species occurrence data 

from large databases such as GBIF or iNaturalist have been combined with machine learning 

techniques (Wolf et al., 2022) (Moreno-Martínez et al., in prep.) in an effort to make use of the 

strong predictive power of species and phylogeny(Kattge et al., 2011; Vallicrosa et al., 2021; 

Maynard et al., 2022). On the other hand, hyperspectral reflectance of plant canopies in the 

https://www.idiv.de/de/sdiv/working-groups/wg-pool/splot/splot-database.html
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visible and near-infrared range has already been successfully used to map foliar traits at 

regional scales based on airborne remote sensing (Asner & Martin, 2016; Wang et al., 2020). 

Importantly, these applications demonstrated the ability to capture spatial, intra- and inter-

annual temporal (Chlus & Townsend, 2022)(Zheng et al., in prep.) and vertical trait variation 

(Chlus et al., 2020). Therefore, the hyperspectral-based trait mapping approach has great 

potential for operational, global-scale foliar trait estimation monitoring (Jetz et al., 2016), 

especially given that hyperspectral satellite imagery is increasingly becoming available (Zeng 

et al., 2022).  

 

5. Conclusions and recommendations 

We identified two categories of upscaling approaches that result in global, upscaled maps with 

strongly differing, and partly even opposed spatial patterns. Despite differences in many 

aspects of the upscaling approaches across these two categories, the use of PFT and land 

cover information was the dominant factor explaining the differences between the resulting 

maps. Differences in accounting for vertical trait variation (top-of-canopy versus community 

mean) were also relevant but had smaller impacts on the spatial patterns of foliar traits than 

the use of PFT and land cover data. Maps that used PFT and land cover information showed 

larger trait differences between PFTs and agreed better with sPlotOpen data than the maps 

only relying on environmental predictor information. Not accounting for within-grid-cell trait 

variation tends to suppress extremes of the trait distributions, which effectively reduces trait 

differences between PFTs and leads to more unimodal trait distributions with larger impacts 

on top-of-canopy trait values. Importantly, these effects also show a strong dependence on 

grid cell size with stronger impacts at larger grid cell sizes. While the use of PFT and land 

cover information can partly counteract these effects, the land cover information introduces 

other uncertainties and has dominant impacts on the global spatial patterns of trait variation.  

 

Based on the insights from our study, we identified four recommendations that are relevant for 

future upscaling and/or evaluation efforts: 

1. Upscaling products should clearly (and prominently) specify the type of trait metric 

used at the site or plot level (e.g. top-of-canopy versus community; weighted versus 

unweighted means; type of weighting factor), the type of scaling to the grid cell level 

(weighted/unweighted, type of weighting factor) and the type of predictor information 

used (i.e. environmental drivers, remote sensing data, land cover products etc.). 
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2. In the evaluation of maps with reference data such as sPlotOpen at grid cell sizes 

much coarser than the in-situ plots, comparable scaling as for the upscaled maps 

should be applied (for grid-cell-level evaluation). Furthermore, comparisons of the 

distributions of plot-level reference data with those of upscaled maps can provide 

valuable additional insights. For maps using PFT and land cover information, an 

evaluation at the level of separately upscaled maps per PFT is recommended to 

directly quantify the agreement of between- and within-PFT trait variation 

independently of the impacts of land cover that dominate the final maps per trait. 

3. Future upscaling efforts should aim at reducing uncertainties by better matching the 

scale of in-situ observations with high-resolution predictor data and ideally also by 

using predictors with a stronger link to foliar traits than environmental variables.  

4. Future trait sampling efforts should consider the aspect of homogeneous grid cells in 

terms of land cover as well as representativeness at the global scale regarding 

geographic aspects and covering the full range of key environmental drivers. 
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