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Abstract: Monitoring gross primary production (GPP) is necessary for quantifying the terrestrial
carbon balance. The near-infrared reflectance of vegetation (NIRv) has been proven to be a good
predictor of GPP. Given that radiation powers photosynthesis, we hypothesized that (i) the addition
of photosynthetic photon flux density (PPFD) information to NIRv would improve estimates of GPP
and that (ii) a further improvement would be obtained by incorporating the estimates of radiation
distribution in the canopy provided by the foliar clumping index (CI). Thus, we used GPP data from
FLUXNET sites to test these possible improvements by comparing the performance of a model based
solely on NIRv with two other models, one combining NIRv and PPFD and the other combining
NIRv, PPFD and the CI of each vegetation cover type. We tested the performance of these models
for different types of vegetation cover, at various latitudes and over the different seasons. Our
results demonstrate that the addition of daily radiation information and the clumping index for
each vegetation cover type to the NIRv improves its ability to estimate GPP. The improvement was
related to foliage organization, given that the foliar distribution in the canopy (CI) affects radiation
distribution and use and that radiation drives productivity. Evergreen needleleaf forests are the
vegetation cover type with the greatest improvement in GPP estimation after the addition of CI
information, likely as a result of their greater radiation constraints. Vegetation type was more
determinant of the sensitivity to PPFD changes than latitude or seasonality. We advocate for the
incorporation of PPFD and CI into NIRv algorithms and GPP models to improve GPP estimates.

Keywords: GPP; clumping index; NIRv; photosynthetically active radiation; evergreen needleleaf
forest; vegetation cover type

1. Introduction

As one of the principal processes controlling land–atmosphere interaction, gross
primary productivity (GPP) is a key component of the terrestrial carbon balance [1,2].
Continuous and accurate monitoring of GPP is necessary for quantifying how the dynamics
of carbon cycles at regional to global scales respond to climate variability, and for addressing
related issues including the terrestrial carbon sink, vegetation dynamics and ecosystem
vulnerability [3–5], above all in the context of climate change. Forecasted changes in
temperature, precipitation and atmospheric CO2 are likely to lead to changes in terrestrial
productivity [6].
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The near-infrared reflectance of vegetation (NIRv) has been proposed as a new ap-
proach for estimating GPP [7,8]. NIRv captures the fraction of NIR reflectance attributable
to vegetation and addresses the confounding effects of leaf area, background brightness
and the distribution of the photosynthetic capacity with depth in canopies. It has been
shown to correlate well with GPP throughout the world’s biomes [7–9].

The NIRv approach does not take into account radiation and light-use efficiency, since
it assumes that plants allocate resources efficiently, so this measure of plants’ investment in
capturing light should correlate with their capacity to fix CO2 [7,8]. However, radiation
plays an important role in linking vegetation greenness to photosynthesis [10] and, despite
not usually being the most important limiting factor, radiation does, in fact, constrain vege-
tation growth over 27% of the Earth’s vegetated surface area [11]. In the light-use efficiency
(LUE) concept developed by Monteith [12], GPP acts as a function of the photosynthetically
active radiation (PAR), the fraction of absorbed PAR (fPAR) by plants and the conversion
efficiency of absorbed light energy (ε). Recently, NIRVP [13,14], defined as the product of
the near-infrared reflectance of vegetation and incoming PAR, has been shown to be closely
correlated with GPP on different spatial and temporal scales [13,15,16]. The benefits of
adding incoming PAR to NIRv are also evident in the work of Jiang et al. [17].

The effect of radiation on GPP varies with latitude and the time of year. In boreal
and temperate European forests, radiation and temperature are the main drivers of the
latitudinal gradient and interannual patterns in GPP [18,19]. Carbon assimilation in many
boreal coniferous forest ecosystems has been shown to be light-limited in autumn [20,21].
Regarding seasonality, radiation can also affect GPP due to its effect on the phenology of
carbon uptake caused by the radiation constraints on photosynthesis, since radiation is
a major factor limiting photosynthetic activity during the end of the season [11,22]. The
carbon uptake period is also sensitive to changes in radiation in evergreen forests [23].

Radiation use is related to canopy structures and levels of foliage organization, which
vary between vegetation cover types [24]. The clumping index (CI) is a measure of the
level of foliage grouping within canopy structures relative to a random distribution [24,25].
Leaf organizational structures exist for various ecological reasons, and affect radiation
interception and distribution within canopies and, consequently, carbon uptake [26]. Ne-
glecting the CI increases the uncertainty of GPP estimates [26,27]. In fact, the estimation
of GPP from sun-induced fluorescence (SIF) improved after accounting for the canopy
structure effects [28].

We aimed to explore how radiation as a modulator of NIRv could improve GPP
estimates, especially at high latitudes and in the latter part of the year, given that pho-
tosynthetic photon flux density (PPFD) drives the GPP of the green biomass. We also
hypothesized that the incorporation of information on foliar clumping would provide more
accurate estimates of radiation distribution and, therefore, of its use in the canopy. Using
eddy covariance flux measurements to test these hypotheses, we compared the ability of
a model based solely on NIRv with the ability of two other models—a combination of
NIRv and PPFD, and a combination of NIRv, PPFD and CI—to better estimate GPP in situ
and, thus, analyse the need to include the structural information of foliage organization in
GPP models.

2. Materials and Methods
2.1. Carbon Flux

We downloaded meteorological and CO2 flux data collected by eddy covariance towers
from the FLUXNET2015 Dataset Tier 1 (https://fluxnet.org/data/fluxnet2015-dataset/,
accessed on 25 February 2023) available from 2000 to 2014. We used the daily mean
radiation data estimated from average half-hourly records (SW_IN) and daily values of
GPP based on methods of daytime partitioning (GPP_DT_VUT_USTAR50) [29].

We selected 26 sites that fulfilled the criteria of (i) high-quality continuous data and
(ii) homogeneous vegetation types in pixel areas to match satellite data (Figure 1, Table 1).
Site homogeneity in an area of 1 × 1 km2 was visually evaluated using high-resolution
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satellite images in Google Earth. Sites with homogeneous land cover were selected at high
(53–70◦N, 5 sites), middle (45–53◦N, 9 sites) and low (30–45◦N, 12 sites) latitudes, with eight
vegetation cover types: evergreen needleleaf forest (ENF, 10 sites), evergreen broadleaf
forest (EBF, 2), deciduous broadleaf forest (DBF, 7), mixed forest (MF, 2), open shrubland
(OSH, 2), grassland (GRA, 1), woody savanna (WSA, 1) and wetland (WET, 1). Vegetation
cover types were provided by FLUXNET using the International Geosphere–Biosphere
Programme (IGBP) land classification (https://fluxnet.org/data/badm-data-templates/
igbp-classification/, accessed on 25 February 2023).
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Figure 1. Sites used in this study.

Table 1. Coordinates, vegetation cover type and time period of data used in the studied sites. OSH
(open shrubland), ENF (evergreen needleleaf forest), MF (mixed forest), WET (wetland), DBF (decidu-
ous broadleaf forest), EBF (evergreen broadleaf forest), GRA (grassland) and WSA (woody savanna).

Site ID Latitude (◦) Longitude (◦) Vegetation
Cover Type Time Period

CA-NS6 55.9 −99.0 OSH 2001–2005
CA-SF2 54.3 −105.9 ENF 2001–2005
CA-SF3 54.1 −106.0 OSH 2001–2006
CH-Lae 47.5 8.4 MF 2004–2014
CZ-BK1 49.5 18.5 ENF 2004–2014
DE-Obe 50.8 13.7 ENF 2009–2014
DE-Spw 51.9 14.0 WET 2010–2014
DE-Tha 51.0 13.6 ENF 2000–2014
FI-Hyy 61.8 24.3 ENF 2000–2014
FR-Fon 48.5 2.8 DBF 2005–2014
FR-LBr 44.7 −0.8 ENF 2000–2008
FR-Pue 43.7 3.6 EBF 2000–2014
IT-Cpz 41.7 12.4 EBF 2000–2008
IT-Ro1 42.4 11.9 DBF 2000–2008
IT-SRo 43.7 10.3 ENF 2000–2012
JP-MBF 44.4 142.3 DBF 2004–2005
JP-SMF 35.3 137.1 MF 2005–2006
NL-Loo 52.2 5.7 ENF 2005–2014
RU-Fyo 56.5 32.9 ENF 2000–2014
US-Ha1 42.5 −72.2 DBF 2007–2009
US-Me6 44.3 −121.6 ENF 2000–2012
US-MMS 39.3 −86.4 DBF 2011–2014
US-SRG 31.8 −110.8 GRA 2000–2014
US-SRM 31.8 −110.9 WSA 2008–2014
US-UMB 45.6 −84.7 DBF 2004–2014
US-UMd 45.6 −84.7 DBF 2000–2014
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2.2. Remotely Sensed Data

We used the MCD43A4 Version 6 dataset obtained from the MODIS instrumentation
aboard the Terra and Aqua satellites available from 2000 to 2014 in the different sites. This
data set contains daily reflectance at a 500 m spatial resolution for the MODIS bands 1
to 7. The reflectance was corrected for atmospheric effects and was nadir bidirectional
reflectance distribution function (BRDF)-adjusted to simulate the observations collected
from a nadir view. Data were provided by NASA’s LP DAAC portal (https://doi.org/10.5
067/MODIS/MCD43A4.006).

The near-infrared reflectance of the vegetation (NIRv) was calculated as the product
of the NIR nadir normalized top-of-the-canopy reflectance (ρNIR) and the normalized
difference vegetation index (NDVI) [7]:

NIRv = ρNIR × NDVI

where
NDVI = (ρNIR − ρred)/(ρNIR + ρred)

and ρred and ρNIR are the reflectance values for MODIS band 1 (620–670 nm) and band 2
(841–871 nm), respectively.

2.3. Clumping Index (CI)

The canopy CI is defined as a ratio of the effective leaf area index (LAIe) to the leaf
area index (LAI) [30], with LAIe being the LAI value that would produce the same indirect
gap measurement as observed assuming a simple random distribution of the foliage [31].
The values of the CI for each vegetation type were obtained from He et al. [24] and are as
follows: ENF = 0.53, DBF = 0.7, EBF = 0.66, GRA = 0.75, OSH = 0.71, WET = 0.67, WSA = 0.76
and MF = 0.69. In addition, we also used the 8 days 500 m clumping index product (LIS-CI-
A1) [32,33], interpolated at daily steps to match with the remote sensing and carbon flux
data. The method for interpolation was cubic interpolation. Cubic interpolation estimates
values between known data points by fitting a third-degree polynomial using the four
closest points to the interpolation date.

2.4. GPP Models

We trained three linear models using the whole dataset:

GPPnirv = f(NIRv)

GPPnirvppfd = f(NIRv + PPFD)

GPPnirvppfdci = f(NIRv + PPFD + CI)

We then checked the performance of each model after grouping the different sites into
three latitudinal ranges—low (30–45◦), middle (45–53◦) and high (53–62◦) latitudes◦—given
how much the irradiance depends on latitude.

Since radiation seems to mostly affect vegetation productivity in autumn [28], we also
compared the performance of the models after adding radiation to NIRv both before and
after the summer solstice (21 June).

2.5. Statistical Analyses

All data treatment and analyses were conducted using R statistical software (version
3.2.5) [34]. The modelling and assessment of the predictive performance of the models
was conducted using the k-fold cross-validation approach [35] (k = 10; 10% of the data
was left for validation purposes at each validation run) with “lmStepAIC” from the R
package caret [36]. We used the coefficient of determination (R2), the root mean square
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error (RMSE), a measure of uncertainty, and the mean error (bias; mean differences between
predicted GPP and measured GPP) to measure the accuracy of the estimates of the linear
regression models.

3. Results

The comparison between ground-measured and satellite-estimated GPP using the
different models shows that the GPP estimates improved after adding radiation information
to the NIRv–GPP model (from R2 = 0.57, RMSE = 2.51, Akaike information criterion (AIC)
= 49,522 to R2 = 0.62, RMSE = 2.36, AIC = 46,212), and even more so after adding the CI for
each biome (R2 = 0.73, RMSE = 1.97, AIC = 36,622) (Figure 2). The improvement was lower
(R2 = 0.69, RMSE = 2.23, AIC = 37,756) (Figure S1) when using the 8 days 500 m LIS-CI-A1
product in the model instead of using a fixed CI value per biome type from He et al. [24].
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Figure 2. Relationship between the measured GPP and the GPP estimated from (i) NIRv, (ii) NIRv
+ PPFD and (iii) NIRv + PPFD + CI, for the whole dataset. CI used in the model was the CI per
vegetation cover type from He et al. [24]. Data correspond to daily mean data from 26 sites from 2000
to 2014. The red line corresponds to the linear regression and the black line to the 1:1 line. Different
colours identify the vegetation cover types.

The addition of PPFD information to NIRv improved the GPP estimates for all except two
sites and for all vegetation cover types except grasslands and woody savanna (Figure 3). This
improvement in the estimates after adding PPFD information was significantly correlated with
the CI (Figure 3); the higher the foliage organization (lower CI), the greater the improvement
in terms of correlation and certainty (higher increase in R2 and greater decrease in RMSE,
respectively). ENF, the vegetation cover type with the lowest CI (i.e., the highest foliage
organization), was the cover type that improved the most after adding the PPFD information
(Figure 3).

When adding the CI information for each biome to the NIRv + PPFD model, the bias
decreased, above all in ENF, for all vegetation cover types except WET (the improvement
ranged from −1.97 in ENF to −0.06 in EBF; see Figure 4 and Figure S2).

The GPP estimates improved at all latitudes after adding the radiation information,
although bias increased, and no differences were detected between latitudes (Figure S2).
After adding CI information, both uncertainty and bias decreased in all latitudinal groups.
Of the vegetation cover types, ENF contributed most to the decrease in dispersion in all
latitudinal ranges after adding the CI information (Figure S2).

Finally, we checked the performance of each model when the data of evergreen needle-
leaf forests—the most sensitive vegetation cover type to PPFD and CI—were separated
in the three latitudinal ranges. The improvement in the GPP estimates was similar at all
latitudinal ranges when PPFD was added to the model. Similarly, the improvements in
the evergreen needleleaf GPP estimates when the CI information was added were not
latitudinally dependent, and the bias decreased from 2.05 to 0.09 as evaluated over the
whole dataset (Figure S3). The predictive ability of the three models fell as the latitude
decreased. We found no differences in the improvements to the GPP estimates after adding
radiation before and after the summer solstice (Table S1).
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to the NIRv model (GPPnirppfd vs. GPPnirv) in black for the different studied sites (Table 1) (CI
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open shrubland (OSH), grassland (GRA), woody savanna (WSA) and wetland (WET).
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4. Discussion
4.1. Adding PPFD and CI to NIRv to Remotely Assess GPP

The addition of information on radiation to NIRv improved the GPP estimates for
different vegetation cover types. Only in grasslands did radiation not improve the estimates,
although this was expected given that canopy development in grasslands occurs in parallel
to photosynthetic activity [37]. In addition, changes in GPP are often linked to water
availability rather than to radiation, since grasslands are often water-constrained [38,39].

The improvement in GPP after adding radiation to NIRv was related to foliage or-
ganization. When PPFD was included in the model, the improvement increased with
decreasing CI (higher leaf organization). This is due to the light distribution and its use
inside the canopy. If leaves are more clumped on shoots, branches and crowns, more light
can penetrate the canopy, making it less light-saturated and more sensitive to light changes.
The incorporation of a variable of vegetation structure, such as CI, into the NIRv + PPFD
algorithm improved the global GPP estimate in terms of uncertainty and bias. NIRv ad-
dresses the distribution of the photochemical capacity of the complete canopy since plants
allocate their photosynthetic capacity to be able to fully exploit captured sunlight, and so
the photochemical capacity of the complete canopy is directly related to the performance
of the topmost leaves in the canopy [40]. However, the effects of the changes in PPFD
differ depending on how the radiation is distributed throughout the canopy as a result of
differences in structure and leaf distribution. Leaf structure and distribution also affect
the reabsorption intensity and the scattering directions of PPFD within the canopy [41,42]
and, therefore, its reflectance and NIRv. Thus, the addition of CI information for each
vegetation type corrected for the effects of the PPFD distribution in the canopy on GPP
and improved the global GPP estimates. The incorporation of vegetation structure and
foliage organization into GPP models should be advantageous given their key role in light
use efficiency.

4.2. Vegetation Cover Types

The vegetation cover type with the greatest improvement in GPP estimation after
the addition of CI information was evergreen needleleaf forests. In this biome, radiation
limitation was found to have the greatest effect on productivity (16%) [19]. Evergreen
ecosystems tend to have greater radiation constraints [11] and, after temperature, radiation
is the most limiting climatic variable in this type of forest [43]. The greater sensitivity of
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ENF to PPFD variations could be related to the facts that conifer canopies are particularly
effective in distributing light throughout the canopy due to the clumping of needles around
stems [44] and that the leaf area index (LAI) in needleleaf canopies is higher than in other
vegetation cover types [45,46]. The total leaf area supported by a given crown is the
most basic structural property affecting the amount of absorbed solar radiation and plant
gas exchange [47–49], although it is also important to take into account how leaves are
distributed. Of all vegetation types, evergreen needleleaf forests have the lowest CI [24].
They are highly organized, with structures composed of shoots of needles, branches, whorls,
tree crowns and tree stands [50]. This organization allows more radiation to penetrate
into the canopy and, thus, permits a greater use of light. The structure of these forests
increases both canopy photosynthesis—since more light can reach the lower levels of the
canopy—and the contribution of non-light-saturated shaded leaves to whole canopy rates,
thereby resulting in a higher GPP than the GPP estimated considering only the green
biomass. Thus, including CI in the model corrected for this effect, and values for ENF fitted
the general model better.

Our study area was limited to northern latitudes, and no tropical areas were included.
Radiation also plays an important role in tropical forests since it is the main factor limiting
CO2 uptake during the rainy season. Seasonal and interannual variation in light availability
may also limit CO2 uptake [51]. Light may significantly regulate net ecosystem exchange
and carbon storage in this biome, and possible changes in the distribution of cloud cover
associated with climate change could cause significant future changes in carbon storage [52].
Tropical forests account for 32–36% of global terrestrial net primary production [53]. Un-
fortunately, given the frequent cloud cover in tropical areas, it is often difficult to obtain
high-quality remote sensing data from tropical biomes in the spectral domain involved in
NIRv computation and in the optical spectra in general.

We did not analyse water stress effects on GPP, so caution should be taken when using
the corrected NIRv in drought-prone areas.

4.3. Latitudinal Ranges

The improvement in the GPP estimates in ENF after the addition of PPFD was inde-
pendent of latitude (Figures S2 and S3). This suggests that the vegetation type is more
determinant in the sensitivity to PPFD changes than latitude, and that PPFD already in-
trinsically takes into account latitudinal variation. The importance of PPFD in driving
GPP changes at middle and high latitudes [19] may, in part, be related to the dominance
of ENF at these latitudes. However, the effect of greater radiation limitation with latitude
on GPP [11] should also be considered. At high latitudes, radiation limits vegetation
productivity, since incoming solar radiation is restricted to the summer season and high
cloud cover may greatly reduce the radiation received by the vegetation and, thus, limit
vegetation productivity. At middle and low latitudes, a combination of either temperature
and radiation or temperature and water availability limits the net primary productivity [43].
The addition of radiation information also improved the GPP estimates at low and middle
latitudes, where temperature and water can be limiting factors. The fact that the models
perform worse with decreasing latitude in the ENF sites (Figures S2 and S3) could be related
to the interference of drought or temperature stresses.

4.4. Seasonality

The dynamics of carbon uptake can also be sensitive to the seasonality of incoming
radiation. Light is a key factor exerting control on photosynthesis in autumn [11,22].
Radiation can play an important role in regulating the end of the growing season in
temperate and boreal ecosystems [23]. Greater autumn radiation in evergreen forests
results in a later end date for net carbon uptake and is associated with higher autumn and
annual net ecosystem productivity [23]. Some studies have shown that carbon assimilation
in many boreal coniferous forest ecosystems is light-constrained in autumn [20,21]. Greater
radiation may enable more net carbon gain in autumn as the days become shorter and
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radiation is often limited [54]. Therefore, we would expect more improvement in the
GPP estimates after the addition of radiation in autumn since it is in this season that
radiation seems to play a more important role [22]. However, we found no differences in
the improvements in the GPP estimates after considering radiation before and after the
summer solstice (Table S1). In fact, radiation has been found to be limiting both at the start
of the season and end of the season in temperate Europe. This result reinforces the value of
our model, which uses NIRv, PPFD and CI to remotely assess daily GPP throughout the
whole year.

5. Conclusions

Our results demonstrate that the addition of daily radiation information (photosyn-
thetic photon flux density, PPFD) and the clumping index (CI) for each vegetation cover
type to the NIRv algorithm improves its ability to estimate GPP. The improvement is related
to foliage organization, given that the foliar distribution in the canopy (CI) affects radiation
distribution and use, and radiation drives productivity. Evergreen needleleaf forest is the
vegetation cover type with the greatest improvement in GPP estimation after the addition
of CI information. Vegetation type is more determinant in the sensitivity to PPFD changes
than latitude or seasonality. Our results highlight that foliar organization and tree structure
play an important role in productivity. We advocate for the incorporation of PPFD and CI
into NIRv algorithms to improve GPP estimates and GPP models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15082207/s1, Table S1. Coefficient of determination (R2) and
RMSE of the relationship between GPP and the different models according to whether data from
before (DOY < 182) or after (DOY > 182) the summer solstice were used. Figure S1. Relationship
between the measured GPP and the GPP estimated from NIRv + PPFD + CI, for the whole dataset
using the 8 days clumping index product (LIS-CI-A1) [32,33]. Different colours identify the vegetation
cover types. Figure S2. Measured GPP vs. the GPP estimated by the different models after grouping
the sites according to latitude. Different colours identify the vegetation cover types. Figure S3.
Measured GPP vs. GPP estimated with NIRv, NIRv + PPFD and NIRv + PPFD + CI, fitting the model
with the whole dataset and after grouping ENF data according to latitude: low (30–45◦, 3 sites),
middle (45–53◦, 4 sites) and high (53–62◦, 3 sites) latitudes. The root mean square error (RMSE), the
coefficient of determination (R2) and the bias are indicated (statistics of the general model are shown
in red). The red line corresponds to the linear regression and the black line to the 1:1 line. Different
colours identify the vegetation cover types.
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