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Abstract
Microbial communities in soils are generally considered to be limited by carbon (C), 
which could be a crucial control for basic soil functions and responses of microbial 
heterotrophic metabolism to climate change. However, global soil microbial C limita-
tion (MCL) has rarely been estimated and is poorly understood. Here, we predicted 
MCL, defined as limited availability of substrate C relative to nitrogen and/or phos-
phorus to meet microbial metabolic requirements, based on the thresholds of ex-
tracellular enzyme activity across 847 sites (2476 observations) representing global 
natural ecosystems. Results showed that only about 22% of global sites in terrestrial 
surface soils show relative C limitation in microbial community. This finding challenges 
the conventional hypothesis of ubiquitous C limitation for soil microbial metabolism. 
The limited geographic extent of C limitation in our study was mainly attributed to 
plant litter, rather than soil organic matter that has been processed by microbes, serv-
ing as the dominant C source for microbial acquisition. We also identified a significant 
latitudinal pattern of predicted MCL with larger C limitation at mid-  to high latitudes, 

mailto:
https://orcid.org/0000-0002-8624-2785
https://orcid.org/0000-0001-5098-726X
https://orcid.org/0000-0002-6499-576X
https://orcid.org/0000-0003-3541-7853
https://orcid.org/0000-0002-5479-3486
https://orcid.org/0000-0001-9858-7943
https://orcid.org/0000-0002-7146-7180
https://orcid.org/0000-0001-7026-6312
https://orcid.org/0000-0002-2219-2571
https://orcid.org/0000-0003-2879-3498
https://orcid.org/0000-0002-7754-7026
https://orcid.org/0000-0003-1923-7908
https://orcid.org/0000-0002-3460-5302
https://orcid.org/0000-0002-7215-0150
mailto:cuiyongxing.cn@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.16765&domain=pdf&date_stamp=2023-06-05


    |  4413CUI et al.

1  |  INTRODUC TION

Global soils store at least twice as much carbon (C) as Earth's at-
mosphere (Bond- Lamberty et al., 2018; Friedlingstein et al., 2022), 
with C pool size determined mainly by the balance of C inputs from 
plants and C losses via soil microbial heterotrophic respiration (Rh). 
Compared with plants, whose production is generally limited by soil 
nitrogen (N) and phosphorus (P) (Du et al., 2020; Elser et al., 2007), 
heterotrophic microbial communities in soil are considered to be in-
herently C limited (Hobbie & Hobbie, 2013; Soong et al., 2020). The 
C constraints on microbial catabolic processes thus potentially de-
termine the retention of detrital organic C and, ultimately, the size of 
the soil C pool (Liang et al., 2017; Sinsabaugh et al., 2009; Sinsabaugh 
& Follstad Shah, 2012) and have consequently gained increasing at-
tention in the context of global climate change (Soong et al., 2020).

Metabolic theory predicts that labile C, as a source of both energy 
and structural material to microbes, is ubiquitously limiting to micro-
bial metabolism in soils (Hobbie & Hobbie, 2013; Soong et al., 2020). 
Empirical studies, however, have not provided strong evidence for it 
(Cheng et al., 1996; Demoling et al., 2007; Ekblad & Nordgren, 2002; 
Hursh et al., 2017), partly because almost all of these studies involved 
manipulation experiments. Although such experiments can infer the 
extent of C limitation on microbial activities by directly measuring re-
sponses of microbial growth and respiration to added C, the addition 
of C at any level can induce cascading responses of microbial metab-
olism to other resources (Chen et al., 2020; Cui et al., 2022; Spohn & 
Kuzyakov, 2013), thus creating uncertainty in identifying the real C- 
limiting status. Meta- analyses based on manipulation experiments have 
also not found robust spatial patterns of microbial C limitation (MCL), 
potentially due to combining different microbial response indicators or 
using effect- size metrics not standardized by the level of C addition. On 
a global scale, C limitation probably constrains microbial functions in 
detrital food webs and their responses to climate change (Sinsabaugh 
& Follstad Shah, 2012; Soong et al., 2020). Understanding the patterns 
and mechanisms of MCL in global soils, therefore, remains a high priority.

Both theory and empirical evidence notably raise a fundamental 
question: are heterotrophic microbial communities widely limited by soil 
C, even in C- rich surface soils? According to the principles of matter and 
energy conservation and ecological stoichiometry (Allen & Gillooly, 2009; 
Peñuelas & Baldocchi, 2019; Sterner & Elser, 2002), MCL depends on the 

availability of substrate C relative to other nutrients (generally N and/or 
P), a notion also supported by many empirical studies, from molecules 
to ecosystems (Chakrawal et al., 2022; Tamale et al., 2021). The degree 
of MCL may also be highly variable among substrates due to the broad 
stoichiometric gradient across diverse C components that range from 
plant litter to complex soil organic matter (SOM) (Fierer, 2017; Liang 
et al., 2017; Xu et al., 2013). We used the concept of the threshold el-
ement ratio (TER), defined as the elemental C:N or C:P ratio that con-
trols the switch of microbial metabolism from the acquisition of energy 
(C) to limiting nutrients (N and/or P) (Allen & Gillooly, 2009; Sinsabaugh 
et al., 2009), to calculate an approximate C limitation of soil microbial 
communities fed by two broad categories of substrates, plant litter and 
SOM (Figure 1). Our calculations indicated that the supply of C for micro-
bial metabolism should be generally adequate, relative to the supplies of 
N and P, when plant litter is the dominant substrate. In contrast, C limits 
microbial communities more frequently when SOM is the dominant sub-
strate. In fact, microbes can acquire C more readily from plant litter than 
SOM with recalcitrant molecular structures protected by minerals and 
aggregates, when both are available (Cotrufo et al., 2019; Fierer, 2017; 
Fontaine et al., 2007). We thus hypothesized that C would not be the 
primary limiting resource to microbes in terrestrial surface soils.

To test our hypothesis and investigate the patterns and mecha-
nisms of MCL in soils globally, we employed our proposed metric 
(MCL) that integrates four C- , N-  and P- acquiring ecoenzymatic activ-
ities (Table S1) based on TER, Liebig's Law of the Minimum, and eco-
logical stoichiometric theory (Allen & Gillooly, 2009; Cui et al., 2023; 
Sinsabaugh & Follstad Shah, 2012; von Liebig, 1840). The MCL, de-
fined as limited availability of substrate C relative to N and/or P to 
meet microbial metabolic requirements, was calculated using a newly 
compiled global ecoenzyme database to estimate the global distribu-
tion of MCL in natural ecosystems (see Method section 2.2 for details). 
The predicted results were further compared against two independent 
global datasets of available soil nutrients and field- diagnosed microbial 
responses to plant litter manipulations (Table S2). We then assessed 29 
environmental variables, including variables of climate, vegetation and 
soil, to identify potential mechanisms responsible for patterns of MCL. 
Rh is a critical pathway of terrestrial C release and may depend on the 
levels of MCL, so we also linked the predicted MCLs to the average 
daily and annual rates of soil Rh. It should be noted that the responses 
of microorganisms directly utilizing dissolved organic matter, such as 

whereas this limitation was generally absent in the tropics. Moreover, MCL signifi-
cantly constrained the rates of soil heterotrophic respiration, suggesting a potentially 
larger relative increase in respiration at mid-  to high latitudes than low latitudes, if 
climate change increases primary productivity that alleviates MCL at higher latitudes. 
Our study provides the first global estimates of MCL, advancing our understanding 
of terrestrial C cycling and microbial metabolic feedback under global climate change.

K E Y W O R D S
decomposer community, ecological stoichiometry, global climate change, heterotrophic 
respiration, resource limitations, soil carbon cycling, soil- climate feedback
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4414  |    CUI et al.

rhizosphere symbionts, may not be captured by the ecoenzyme- based 
approach. Thus, this study focuses on the detritus food web only, not 
on microbes feeding on dissolved substrates.

2  |  METHODS

2.1  |  Data collection

2.1.1  |  Global data of community- level 
ecoenzymatic activities

We compiled a global database of ecoenzymatic activities at the 
community level from a survey of the literature using the Web 

of Science (http://isikn owled ge.com) and the Google Scholar 
Resource Integrated Database (https://schol ar.google.com). 
Combinations of keywords such as “extracellular enzyme,” “exo-
enzyme,” “ecoenzyme,” and “microbial nutrient limitation” were 
used to search studies published from 1980 to 2021. The crite-
ria for inclusion were: (1) the studies included the activities of C- , 
N- , and P- acquiring enzyme (BG (β- 1, 4- glucosidase), NAG (β- 1, 
4- N- acetylglucosaminidase) and/or LAP (L- leucine aminopepti-
dase), and AP (acid or alkaline phosphatase)) (Table S1), and (2) the 
ecoenzymatic activities were measured fluorometrically using a 
200 μM solution of substrate labeled with 4- methylumbelliferone 
or 7- amino- 4- methylcoumarin. The data were extracted from ta-
bles or figures (using GetData Graph Digitizer software v.2.25) 
of selected studies. We excluded data for intensively managed 

F I G U R E  1  Conceptual diagram depicting an increasing strength of C limitation to soil heterotrophic microorganisms with substrates along 
a continuum of plant litter to soil organic matter (SOM). Threshold element ratios (TERs) of microbial metabolism indicate that microbial 
metabolism is not C limited when plant litter is the dominant substrate (SC:N (71) >> TERC:N (21) and SC:P (3000) >> TERC:P (126)). Microbes, 
however, would be gradually limited by C when SOM becomes the dominant substrate (SC:N (17) < TERC:N (21)), even though SC:P (SC:P (287) > 
TERC:P (126)) is not followed this case. TER is calculated to assess the potential limitation of microorganisms by C, N, or P (Sterner & Elser, 2002) 
as: TERC:X = BC:X ×

AX

CUE
, where X is N or P, BC:X is the microbial biomass C:N or C:P ratio, AX is the efficiency of microbial N or P assimilation with 

a theoretical maximum of 0.9 (Allen & Gillooly, 2009; Sinsabaugh et al., 2009), and CUE is the microbial C- use efficiency with a global average 
of 0.3 (Sinsabaugh et al., 2013). The molar C:N:P ratios for microbial biomass and SOM are reported averages from global data sets compiled 
by Xu et al. (2013), and the molar C:N:P ratios in plant litter are represented by senesced leaves from global data sets compiled by Yuan and 
Chen (2009). Consistent conclusions were drawn using the mean molar C:N:P ratios of plant litter (3000:46:1), SOM (186:13:1), and microbial 
biomass (60:7:1) from Reich and Oleksyn (2004) and Cleveland and Liptzin (2007). [Colour figure can be viewed at wileyonlinelibrary.com]
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ecosystems (e.g., agroforests, fertilized plantations, sown pas-
tures, croplands, and urban forests) to avoid misattributing natu-
ral nutrient limitations due to anthropogenic disturbances. Our 
database contained 2476 observations from 290 studies across 
847 sites (Figure S1). We also recorded corresponding information 
from the literature on site locations (longitude and latitude) and 
vegetation types.

2.1.2  |  Datasets of available soil nutrients and 
microbial responses

To test our predictions of MCL based on ecoenzyme activities, 
we simultaneously compiled two other datasets: (1) concentra-
tions of labile soil C, N, and P across the globe (DOC, NO3

−- N 
and/or NH4

+- N, and Olsen- P) and (2) the responses of microbial 
biomass (including microbial biomass C [MBC] and phospholipid 
fatty acids [PLFAs]) and Rh to experimental additions of plant lit-
ter in natural ecosystems. For the first dataset, we converted in-
dices into ratios of labile soil C and N (Lc:n) and labile soil C and 
P (Lc:p). We obtained totals of 1159 and 1147 data points of Lc:n 
and Lc:p, respectively. These data were extracted from the same 
pool of studies used to build the global ecoenzyme database, so 
their coordinates were identical. Published experiments were re-
quired to satisfy two criteria for inclusion in the second dataset 
from 290 publications: (1) the plant litter- addition experiments 
were conducted in the field and included litter- manipulation 
and control treatments in the same ecosystem under the same 
environmental conditions and included measurements of MBC, 
PLFAs, or Rh in both the litter- addition and control treatments 
and (2) the control treatment was not fertilized either before the 
start of the experiment or during the experiment. We excluded 
experiments in which litter and inorganic nutrients (N and/or P) 
were added in combination for assessing the effects of nutrients 
on microbes. Of course, plant litter contains not only C but also 
N and P, but here, we just consider litter effects as the C source 
on heterotrophic microbial metabolism because of much higher 
C concentrations than other nutrients. In total, we obtained 28 
studies of paired observations of the responses of MBC to litter 
addition, 18 studies of paired observations of the responses of 
PLFAs to litter addition, and 17 studies of paired observations of 
the responses of Rh to litter addition, at a global scale (Table S2; 
Figure 3a).

2.1.3  |  Environmental variables

We retrieved a variety of variables for climate, vegetation, topogra-
phy, and soil from multiple sources of data at relatively fine spatial 
resolution (see Table S5 for details) to identify the effects of poten-
tial environmental drivers on MCL and the relationship between the 
limitation and geographical pattern. We obtained data for a total of 

29 environmental variables at each of the spatial coordinates in the 
predicted MCL data set.

2.1.4  |  Global data of average daily and annual Rh

We collected data for two types of Rh (average daily and annual Rh) 
from relevant publications or existing databases to identify their 
relationships to MCL. We collected data for average daily Rh from 
the same studies as those used for the global ecoenzyme data-
base. These data were derived from field measurements of natural 
soils that had not been disturbed or manipulated by humans. After 
the data were filtered, we obtained a total of 517 observations of 
average daily Rh at 83 sites from 43 published studies (Figure S9) 
and expressed as mg C g−1 day−1. We extracted average annual Rh 
from the Soil Respiration Database (SRDB, Version 5.0, https://
daac.ornl.gov/cgi- bin/dsvie wer.pl?ds_id=1827) contributed by 
Jian et al. (2021). We obtained a total of 2476 data points of aver-
age annual Rh at corresponding spatial coordinates with the MCL 
data set.

2.2  |  Quantifying microbial C limitation using the 
ecoenzyme- based method

The MCL was quantified via our recently proposed ecoenzyme- 
based approach. The rationale and details can be found in Cui 
et al. (2023):

The normalization constants n0 and p0 for the model were ob-
tained from standardized major axis regressions of the ecoenzymatic 
activities (Table S3), that is, n0 = eintercept in the regressions for ln(BG) 
versus ln(NAG+LAP) and p0 = eintercept in the regressions for ln(BG) 
versus ln(AP).

Finally, our predicted global values of MCL were normally dis-
tributed (Anderson- Darling normality test, A = 0.30 and p = .57) 
and had a global mean of −1.92 (ranging from −9.64 to 3.66) 
(Figure S3).

2.3  |  Meta- analysis

We used a meta- analysis to evaluate the responses of MBC, PLFAs, 
and Rh to litter- addition at each paired observations (Hedges 
et al., 1999). For these analyses, our databases included means, 
standard deviations (SDs), and sample sizes (n) extracted from the 

(1)MCL = ln

(

EEAC:N × EEAC:P

2.25
(

n0 × p0
)

)

EEAC:N =
C − acquiring enzymes

N − acquiring enzymes
, and EEAC:P =

C − acquiring enzymes

P − acquiring enzymes
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studies. We calculated SDs when standard errors (SEs) rather than 
SDs were reported:

If neither SD nor SE was reported, we approximated the missing 
SDs by multiplying the reported means by the average coefficient 
of variance of our complete data set. We estimated the SDs for the 
control and the litter- addition treatments.

We evaluated the microbial responses to litter- addition using the 
natural logarithm of the response ratio (LRR):

where Xt and Xc are the arithmetic means in the litter- addition and 
control treatments, respectively.

The data for the meta- analysis were evaluated using the “rma.
mv” function in the “metafor” R package (Viechtbauer, 2010). Several 
studies contributed more than one response ratio, so we included 
the variable “Article” as a random factor.

2.4  |  Environmental drivers of geographic variation 
in microbial C limitation

We assessed the effects of climate, vegetation, topography, and 
soil properties on MCL by training random- forest models with all 
29 environmental variables using the “RandomForest” R package. 
The default node size, a key parameter, was accepted throughout 
the training based on parameter optimization (Figure S5). A 10- fold 
cross- validation was conducted to identify the best models and 
the potential importance of the variables using the “rfcv” function. 
Model significance and cross- validated R2 were assessed using 1500 
permutations of the response variable and the “A3” package. The 
random- forest regression models constructed for predicting MCL 
explained 76.8% of the variation.

We calculated the values of increased node purity for each po-
tential predictor in our constructed random- forest models using the 
“rfPermut” R package to identify the relative importance of all envi-
ronmental variables in explaining the variations of MCL. The values 
were further transformed into relative importance (%) to facilitate 
interpretation (Figure 4a). Similarly, the significance of each predic-
tor on the response variables was assessed using the “rfPermute” R 
package.

Finally, we divided 11 significant variables into eight categories 
(latitude, elevation), climate (mean annual temperature [MAT] and 
mean annual precipitation [MAP]), temperature seasonality (TSEA), 
gross primary production (GPP), plant- derived C (aboveground bio-
mass [AGB], plant- litter production [Litter], and belowground bio-
mass [BGB]), CaCO3 concentration, and pH) to explore cascading 
relationships between MCL and these key drivers. We used par-
tial least squares path models to identify possible pathways where 

variables controlled MCL. A variance inflation factor (VIF) <10 for all 
variables in the model was required for removing the internal fac-
tor collinearity of the block (module). Loading in the outer models 
required VIFs >0.7 for removing independent variables with small 
contributions. The models were constructed using the “innerplot” 
function in the “plspm” R package (Sanchez et al., 2016).

2.5  |  Relationships of microbial C limitation with Rh

We identified correlations between MCL and Rh by first performing 
a linear- regression analysis between MCL and average daily and an-
nual Rh (Figure 5a,b) and then conducted a partial correlation analy-
sis of MCL with average daily and annual Rh by controlling the other 
two key factors (MAT and MAP) using the “pcor.test” function in the 
“ppcor” R package (Figure 5c). We also used a variation- partitioning 
analysis to quantify the independent and joint effects of MAT, MAP, 
and MCL on average daily and annual Rh using the “varpart” function 
in the “vegan” R package (Figure 5d,e). To simplify interpretation, 
we calculated the independent and joint relative influences of MAT, 
MAP, and MCL on Rh:

2.6  |  Other statistical analyses

We used a quadratic function model to describe latitudinal trends 
in MCL (Figure 2a). and then identified the potential latitudinal 
breakpoints from a piecewise linear- regression analysis (Figure 2b; 
Table S4). The regression relationships between MCL and latitude 
were fitted and tested with linear models using the “segmented” 
R package (Muggeo, 2008). The confidence intervals of the break-
points were calculated using 1000 bootstrap samples and the 
“SiZer” R package (Toms & Lesperance, 2003). A linear mixed- 
effects model was used to identify the differences in MCL among 
climatic zones (Figure 2c) and the main types of natural vegetation 
(Figure S4). The model was constructed using the “lme” function in 
the “nlme” R package, with “climatic zones” and “vegetation types” 
as fixed factors and “sampling site” as a random factor. Pearson 
correlation coefficients were used to identify correlations be-
tween the response variable (MCL) and potential predictor varia-
bles (the 29 environmental factors) (Figure S6). Generalized linear 
models examined relationships of MCL with LRR, logarithmically 
transformed ratios of available soil nutrients, and 10 key predic-
tor variables (Figure 3; Figure S7); of logarithmically transformed 
ratios of available soil nutrients with plant- derived C production 
and soil organic C (SOC) concentration (Figure S8); and of SOC 
concentration with average daily and annual Rh (Figure S11). We 
also tested and visualized the interactions of each pair of variables 

(2)SD = SE
√

n

(3)LRR = Ln

(

Xt

Xc

)

= Ln
(

Xt
)

− Ln
(

Xc
)

Independent relative influence =
Independent explanation of each variable

Total explanation of all variables
;

Joint relative influence =
Joint explanation of one with others

Total explanation of all variables
.
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    |  4417CUI et al.

among MAT, MAP, and MCL on soil Rh in regression models 
using the “lm” and “visreg2d” functions in the “visreg” R package 
(Figure S10). All statistical analyses were performed using R soft-
ware (v.3.3.2) (Development Core Team R, 2016).

3  |  RESULTS

3.1  |  Microbial C limitation in global terrestrial 
surface soils

We found that only 22% of 847 globally distributed sites (2476 ob-
servations) showed microbial C limitation (>0) (Figure 2a; Figure S1). 
A unimodal latitudinal pattern of MCLs was identified, with minimal 
C limitation near the equator (Figure 2a,b). Significant differences in 
MCLs among five climatic zones indicated that MCL was lowest in 
the tropics, with a mean of −3.76, and highest in polar regions, with a 
mean of 0.334 (p < .001; Figure 2c). Across biomes, we observed the 
lowest MCL in surface soils of tropical/subtropical forests and the 
highest in grassland, tundra, and temperate broadleaf/mixed forests 
(p < .001; Figure S4).

Two independent approaches were used to verify the ef-
fectiveness of the ecoenzyme- based method of MCL. First, we 
identified the responses of MBC, PLFAs, and associated Rh to the 
addition of plant litter across experimental sites that matched 

MCL locations (Figure 3a). Significant and positive correlations 
of MCLs with these responses indicated that the predicted MCL 
can be supported by the results of field manipulation experi-
ments (p < .05). Second, microbial resource limitation theoretically 
responds non- linearly to the availability of soil resources as de-
scribed by the Michaelis– Menten function (Sinsabaugh & Follstad 
Shah, 2012), so we tested whether the estimated MCLs were asso-
ciated with relative availability of soil C across sites using available 
data. We found significant negative relationships of MCLs with 
ln(Lc:n) and ln(Lc:p) (ln- transformed DOC (dissolved organic C): 
(NO3

−- N + NH4
+- N) and DOC:Olsen- P, respectively) at the global 

scale (p < .001; Figure 3b,c), which further demonstrates the utility 
of MCL to identify microbial metabolic limitation imposed by the 
availability of soil C relative to N or P. Overall, the MCL metric was 
a generally useful metric for quantifying MCL.

3.2  |  Environmental drivers of microbial 
C limitation

To identify the factors driving MCL, we used a random- forest ap-
proach to construct predictive models using 29 potential predic-
tors suggested in the literature (Ma et al., 2021; Soong et al., 2020). 
Climate and vegetation properties were generally the most im-
portant drivers affecting MCLs in our predictive models (p < .001; 

F I G U R E  2  Spatial patterns of soil microbial C limitation (MCL) at the global scale. (a) Spatial patterns of MCL across latitude fitted by a 
quadratic model. (b) The latitudinal breakpoint for MCL was estimated using piecewise regression analyses, and correlations of MCL with 
latitude before and after the latitudinal breakpoint were identified using generalized linear models. The shaded circle indicates breakpoint 
latitude, and the shaded area is the 97.5% confidence interval of the breakpoint. Solid black lines indicate model fits between MCL and 
latitude. (c) Differences in MCL among five climatic zones. Tropical, mean = −3.76, SD = 1.80; Arid, mean = −0.801, SD = 1.76; Temperate, 
mean = −1.09, SD = 1.88; Cold, mean = −0.870, SD = 1.59; and Polar, mean = 0.334, SD = 2.06. The numbers in brackets below the violin 
charts represent the sample sizes (n). Different letters indicate significant differences (p < .001) among the climatic zones based on an 
analysis of linear mixed- effect models followed by Tukey's tests. [Colour figure can be viewed at wileyonlinelibrary.com]
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explaining 77% of the variation (cross- validated R2), Figure 4a). The 
models included the following 10 most important predictors for de-
scribing MCLs: GPP, TSEA, Litter, MAT, MAP, Depth to Bedrock, 
Elevation, Slope, BGB, and AGB. Pearson correlation analysis and 
generalized linear models further supported our random- forest re-
sults, and also identified soil CaCO3 concentration and pH as im-
portant predictors of MCLs (p < .001; Figures S6 and S7). However, 
SOC concentration that is generally considered as the measure 
of C availability was not significantly correlated to MCLs (p > .05; 
Figure S6). These analyses indicated that MCLs significantly in-
creased with TSEA, Depth to Bedrock, Elevation, CaCO3 concen-
tration, and pH, but decreased with MAT, MAP, GPP, AGB, Litter, 
and BGB.

We then used a partial least- squares path model to investigate 
the direct and indirect associations between selected environmen-
tal factors and MCLs (Figure 4b,c). AGB, Litter, and BGB, regulated 
positively by latitude- dependent MAT and MAP, played negative 
central roles in MCL. This finding suggested that plant litter rather 
than SOM was the main source of C for the microbes in terrestrial 
surface soils. The significant and positive relationships of ln(Lc:n) 
and ln(Lc:p) with GPP, AGB, Litter, and BGB (p < .001; Figure S8), 
and having no or weak correlations with SOC concentration, pro-
vide further support for this argument. These results confirmed our 
hypothesis based on theoretical calculations that C availability is 
sufficient for microbial metabolism when plant litter was the domi-
nant C source (Figure 1).

3.3  |  The effect of microbial C limitation on Rh

By linking MCLs with soil Rh, we further found that MCL was sig-
nificantly and negatively correlated with both average daily and an-
nual Rh (p < .01; Figure 5a,b). This result was supported by a partial 
correlation analysis showing controls exerted by MAT and MAP 
(p < .01; Figure 5c) because climatic conditions dominate soil Rh on 
a large spatial scale (Bond- Lamberty et al., 2018; Hursh et al., 2017; 
Steidinger et al., 2019). Taking these three factors as the primary 
drivers of soil Rh, we found that their joint influences played more 
important roles in determining both soil average daily and annual Rh 
than their independent influences (Figure 5d,e), consistent with in-
teractions between any pair of variables among MAT, MAP, and MCL 
on Rh (Figure S10). In contrast, SOC concentration had minor effects 
on average daily and annual soil Rh (Figure S11), despite being tradi-
tionally considered as a critical control (Bond- Lamberty et al., 2018; 
Hursh et al., 2017). This finding indicated that SOM would not likely 
be the dominant C source for microbial heterotrophic metabolism 
in the surface soil, partly because SOM, includes more microbial- 
processed products with recalcitrant molecular structures that are 
protected by soil minerals and aggregates (Cotrufo et al., 2015, 
2019; Jastrow, 1996). These results suggested that C availability 
relative to N and/or P for microbial metabolism instead of total soil 
C concentration was the key control determining soil Rh, and thus 
MCL could be a promising functional trait linking microbes to the 
release of soil C.

F I G U R E  3  Relationships of soil 
microbial C limitation (MCL) with the 
LRRs of microbial biomass C (MBC), 
phospholipid fatty acids (PLFAs), and 
heterotrophic respiration (Rh) under 
litter- addition and with the ratios of 
available soil nutrients. The relationships 
were identified using generalized linear 
models at p < .05. (a) The logarithmic 
response ratio (LRR) of MBC, PLFAs, and 
Rh with experimental additions of plant 
litter. (b) and (c), ln(Lc:n), logarithmically 
transformed ratio of soil available C 
(DOC) and N (NO3

−- N + NH4
+- N); and 

ln(Lc:p), logarithmically transformed ratio 
of soil available C (DOC) and P (Olsen- P), 
respectively. [Colour figure can be viewed 
at wileyonlinelibrary.com]
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F I G U R E  4  Key environmental factors affecting microbial C limitation (MCL). Random- forest models identify the relative influences 
of 29 environmental factors on MCL (a). Partial least squares path modeling determines the major pathways of the influences of climate, 
vegetation, topography, and soil properties on MCL (b). (a) The annular chart represents the percentages of cumulative relative contributions 
of four categories of environmental factors (climate, vegetation, topography, and soil). The climatic factors are mean annual temperature 
(MAT), mean annual precipitation (MAP), precipitation seasonality (PSEA), temperature seasonality (TSEA), and aridity index (AI). The 
vegetation factors are the Shannon diversity of enhanced vegetation index (Shannon EVI), the leaf area index (LAI), gross primary production 
(GPP), aboveground biomass (AGB), litter production (Litter), belowground biomass (BGB), and root depth. The topographical factors are 
elevation and slope. The soil factors are depth to bedrock, bulk density (BD), soil moisture (Moisture), cation- exchange capacity (CEC), 
soil pH (pH), particle composition (percentages of Sand, Silt, and Clay), CaCO3 concentration, soil organic C concentration (SOC), total N 
concentration (TN), total P concentration (TP), SOC:TN ratio (Sc:n), SOC:TP ratio (Sc:p), and TN:TP ratio (Sn:p). *p < .05; **p < .01. (b) The 
pathways of the influences of climate, vegetation, topography, and soil properties on MCL. (c) Total and indirect effects of these variables 
on MCL. Blue solid and orange dotted arrows indicate positive and negative flows of causality (p < .05), respectively. The numbers near 
the arrows indicate significant standardized path coefficients. R2 indicates the variance of the dependent variable explained by the model. 
***p < .001. Note that the gray dashed lines indicate potential relationships of Latitude with CaCO3 concentration and Elevation, but with no 
theoretical supporting rationale that latitude could affect them, so we did not connect them in the figure. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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4  |  DISCUSSION

4.1  |  Pattern of microbial C limitation and its 
mechanisms

Our global estimates indicated that MCL did not dominate surface 
soils of natural terrestrial ecosystems at least from the ecoenzy-
matic perspective, contradicting the long- standing dogma that soil 
heterotrophs are predominately C- limited (Conant et al., 2011; 
Hobbie & Hobbie, 2013; Soong et al., 2020). The classic paradigm 
in terrestrial soils is that heterotrophic microbes are always con-
strained by the C source that they need but cannot produce on 
their own. However, we found that plant litter C was the domi-
nant source of C for heterotrophic microbes in surface soils and 
could be sufficient for microbial metabolism relative to N and P 
supply (Figure 4). Because large quantities of polymeric plant de-
tritus are produced annually both above-  and belowground, and 
require catalysis by extracellular enzymes for microbial acquisition 
(Sinsabaugh & Follstad Shah, 2012), profiles of enzymatic activity 
integrating microbial demands across available resources reflect 
long- term temporal trajectories of microbial metabolic limitation in 
the detritus food web.

Two underlying mechanisms may determine the patterns of MCL 
we found in global surface soils. First, surface soils (Figure S2) are 
naturally C- rich due to the sustained input of plant litter with high 
C:N:P ratios, especially at low latitudes where primary productivity 
is high (Lehmann & Kleber, 2015; Xu et al., 2013). In particular, C in-
puts from C- rich root detritus and rhizodeposition may be sufficient 
for heterotrophic microbial metabolism. This supply of C may be 
further increased via root exudates stimulated by competition be-
tween plants and microbes for N and P in the rhizosphere (Kuzyakov 
& Xu, 2013). Moreover, plant- derived carbohydrate- rich inputs are 
easily decomposed by ecoenzymes, especially under favorable envi-
ronmental conditions at low latitudes (Cotrufo et al., 2019; Fontaine 
et al., 2007; Jastrow, 1996).

Second, in contrast to low latitudes, soils at high latitudes with 
low primary production and relatively high MCL are dominated by 
SOM that contains transformed compounds with complex molecu-
lar structures that are difficult to decompose (Cotrufo et al., 2015; 
Fontaine et al., 2007; Liang et al., 2017). The physical protection 
of organic matter with the soil matrix also hinders microbial ac-
cess to C from these substrates (Cotrufo et al., 2019; Lehmann & 
Kleber, 2015). As a result, microbes must allocate more resources to 
enzyme production for C acquisition in SOM- dominated food webs. 

F I G U R E  5  Effect of microbial C limitation (MCL) on soil heterotrophic respiration (Rh). (a and b) Linear relationships of average daily 
and annual Rh with MCL, respectively. (c) Partial correlation analysis of Rh with mean annual temperature (MAT), mean annual precipitation 
(MAP), and MCL. (d and e) Variation- partitioning analysis of the effects of MAT, MAP, and MCL on average daily and annual Rh, respectively. 
The bar charts on the right show independent and joint relative influences for MAT, MAP, and MCL on Rh. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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The energetic trade- offs between use of litter versus SOM lead to 
differences in respiration and growth that may promote dormancy 
or minimal maintenance metabolism in SOM- dominated commu-
nities (Fontaine et al., 2007). As a result, relatively high C limiting 
status indicated by ecoenzymatic patterns at high latitudes is associ-
ated with low metabolic activities, as indicated by Rh.

4.2  |  Implications of microbial C limitation for soil 
C cycling

MCL is not ubiquitous in terrestrial surface soils (Figure 2), but as 
a physiological measure of soil C availability, it would essentially 
constrain Rh (Figure 5). The relatively high constraint we found at 
high latitudes, however, may be mitigated if primary productivity in-
creases with climate change, which will lead to higher soil Rh and C 
release. For example, climatic warming, atmospheric N deposition, 
and CO2 fertilization may provide more plant- derived C for microbes 
by promoting plant growth (Huang et al., 2019; Peñuelas et al., 2017; 
Terrer et al., 2019; Zhang et al., 2022). Given a generally high N limi-
tation at high latitudes (Du et al., 2020), these global change factors 
could also increase microbial C demand by reducing soil N limitation 
through direct N deposition or an indirect increase in biological N 
fixation and mineralization at high latitudes (Meunier et al., 2016; 
Peñuelas & Sardans, 2022; Terrer et al., 2021). As a result, soils 
at high latitudes, despite receiving more plant C input, could also 
loss more C via higher microbial metabolic activities under climate 
change.

In contrast, more- widespread terrestrial surface soils (about 
78% of the geographic area) without MCL, especially at low lat-
itudes (even the deep rhizosphere), may have the potential to se-
quester more surplus plant- derived C with an increase in primary 
productivity under climate change. This argument is supported 
by a recent study indicating that N deposition can increase soil C 
sequestration in tropical forests (Lu et al., 2021). This potential C 
sequestration benefit may be further strengthened by the inherent 
P limitation at low latitudes (Du et al., 2020; Vitousek et al., 2010), 
as P limitation can suppress microbial growth and metabolism (Cui 
et al., 2022). From the perspective of microbial resource limitation, 
climate change may thereby decouple the potential benefits of MCL 
from the soil C sink at high latitudes but increase the soil C sink at 
low latitudes.

Our findings also highlight that MCL may be one of the import-
ant reasons for soil C accumulation at high latitudes, which generally 
have larger stocks of SOC than ecosystems at low latitudes. The re-
lationships between MCL and Rh suggested that high C limitation at 
high latitudes means low Rh (Figure 5). Also, microbial communities 
generally have a relatively high C use efficiency at high latitudes, 
because they maintain low metabolic rates at low environmental 
temperatures (Allison et al., 2010). Higher C use efficiency generally 
means more production of microbial biomass and other microbial 
products when the total uptake of C remains constant, potentially 
beneficial for the accumulation of microbially derived C in soils and 

contributing to soil C storage (Cotrufo et al., 2015; Wang et al., 2021). 
However, the high stocks of SOC at high latitudes may be increas-
ingly unstable under global warming due to high- temperature sen-
sitivity of microbial growth coupled to increased availability of 
plant- derived C.

4.3  |  Uncertainties

Previous studies, ranging from theoretical predictions to experi-
ments, provide important but limited insights into patterns and 
mechanisms of C limitation to soil heterotrophic microorganisms 
(Cheng et al., 1996; Cui et al., 2021; Demoling et al., 2007; Ekblad & 
Nordgren, 2002; Soong et al., 2020). Our global predictions, com-
bining an ecoenzyme- based method with geographically extensive 
databases, provide mechanistic understandings of global patterns 
of MCL in surface soils. However, there are several uncertainties in 
this study. First, our use of ecoenzymatic activities as indicators of 
microbial nutrient acquisition cannot unequivocally define the sta-
tus of C demand in all microbial communities in all systems. For ex-
ample, ecoenzymes are rarely involved in the microbial acquisition 
of C when simple plant- derived compounds such as rhizospheric 
carboxylic acid are directly used by microbes (Ding et al., 2021), 
because they do not require enzyme catalysis to form assimilable 
products (Schimel et al., 2022). Similarly, inputs of inorganic nu-
trients, such as atmospheric N deposition, may also skew patterns 
of relative C- , N- , and P- acquiring enzyme activities (Moorhead 
et al., 2023). Nonetheless, turnover of resulting microbial biomass 
is driven by catalytic enzymes so that impacts of these effects are 
constrained.

A second area of uncertainty in the present study is that we 
only investigated surface soils. We suspect that MCL increases 
along depth profiles due to sharply reduced C input of plant lit-
ter and generally lower C:N and C:P ratios in deeper soils (Don 
et al., 2013). However, C limitation in hotspots of deep soils such 
as in the rhizospheres of deep roots may be relieved by exudates 
or debris (Cheng et al., 1996; Kuzyakov & Xu, 2013). In addition, 
different community composition and functional taxa such as r-  
versus K- strategist- dominated communities may generate distinct 
resource limiting status. Deep soils are functionally different from 
surface soils because the limited supply of C drives microbial com-
munities to conserve C, including a higher relative abundance of 
autotrophic microorganisms that increases re- fixation of respired 
CO2 (Šantrůčková et al., 2018) and a lower relative abundance of 
heterotrophic microorganisms, specifically saprotrophic fungi (Gittel 
et al., 2014). Third, we have not accounted for the widespread sym-
biotic relationships between microbes and plants, whereby microbes 
can directly acquire C from plants in exchange for nutrients (N and 
P) without the need to use ecoenzymes (Martin et al., 2016; Zak 
et al., 2019). Of course, the turnover of these microbial symbionts 
in turn requires catalytic activities of extracellular enzymes. In the 
future, studies would thus benefit from analyses of function- specific 
gene expressions in microbial communities and isotopic labeling of 
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polymeric substrates, to provide greater mechanistic insights into 
ecoenzyme- based methods.

Finally, the interpretation and extrapolation of microbial- 
mediated biochemical reactions across global scales integrate mul-
tiple levels of resolution, which can obscure differences in controls 
at finer grains (Bradford et al., 2021). For example, in this study we 
found different patterns of enzyme activities in polar versus tropi-
cal systems, likely due to different strengths of underlying controls 
(above). Indeed, Prescott (2010) described different thresholds for 
dominant influences of key factors on decomposition, including a 
pervasive temperature limitation emerging at a MAT below 10°C, 
whereas wet tropical systems are often most limited by P availability 
(Cui et al., 2021). Thus, global patterns of ecoenzymatic responses 
to global environmental controls may not reflect the patterns of 
dominant controls operating within specific ecosystems or shifts 
in the dominant controls across environmental thresholds between 
ecosystems. These may be examples of Simpson's Paradox inherent 
to characterizing microbial- mediated global processes (Bradford 
et al., 2021).

Despite these uncertainties, our findings of global patterns in 
MCL have a robust base in both metabolic theories and stoichiom-
etry methods, are mechanistically interconnected with key environ-
mental drivers, and are strongly supported by results from both field 
experiments and labile nutrient ratios (Figures 3 and 4). These find-
ings provide a novel view of how soil C pools may respond to envi-
ronment change, given varying patterns of plant- litter utilization by 
heterotrophic microorganisms along environmental gradients. The 
microbially mediated release of soil C is one of the largest sources of 
uncertainty in predicting terrestrial C dynamics, so our identification 
of a strong link between a predictable metric of MCL and the highly 
variable patterns of Rh observed across global scales represents a 
potentially valuable step toward better quantifying soil C release 
in a way that allows integration into current models of terrestrial C 
cycling.
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