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Abstract
The existence of a large- biomass carbon (C) sink in Northern Hemisphere extra- 
tropical ecosystems (NHee) is well- established, but the relative contribution of dif-
ferent potential drivers remains highly uncertain. Here we isolated the historical role 
of carbon dioxide (CO2) fertilization by integrating estimates from 24 CO2- enrichment 
experiments, an ensemble of 10 dynamic global vegetation models (DGVMs) and 
two observation- based biomass datasets. Application of the emergent constraint 
technique revealed that DGVMs underestimated the historical response of plant 
biomass to increasing [CO2] in forests (�Mod

Forest
) but overestimated the response in 

grasslands (�Mod

Grass
) since the 1850s. Combining the constrained �Mod

Forest
 (0.86 ± 0.28 kg 

C m−2 [100 ppm]−1) with observed forest biomass changes derived from inventories 
and satellites, we identified that CO2 fertilization alone accounted for more than half 
(54 ± 18% and 64 ± 21%, respectively) of the increase in biomass C storage since the 
1990s. Our results indicate that CO2 fertilization dominated the forest biomass C sink 
over the past decades, and provide an essential step toward better understanding the 
key role of forests in land- based policies for mitigating climate change.

K E Y W O R D S
carbon cycling, CO2 fertilization, CO2- enrichment experiments, dynamic global vegetation 
models, emergent constrain

1  |  INTRODUC TION

Terrestrial ecosystems have absorbed approximately 32% of 
the anthropogenic emissions of carbon dioxide (CO2) since 

preindustrial times, broadly taken as the years 1850 to the present 
day (Friedlingstein et al., 2020). Such absorption has appreciably 
slowed the rate of global warming (Ballantyne et al., 2012; Schimel 
et al., 2015; Shevliakova et al., 2013). The substantial increase in the 
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amount of biomass carbon (C) stored in Northern Hemisphere extra- 
tropical ecosystems (NHee) is thought to be an important part of 
the overall enhanced global terrestrial C sink (Liu et al., 2015; Pan 
et al., 2011; Tagesson et al., 2020; Xu et al., 2021). Such an increase 
in biomass is simultaneously regulated by multiple covarying factors, 
such as the CO2 fertilization effect (CFE), climate change, nitrogen 
(N) deposition and land- use change, complicating the quantification 
of their individual effects (Fernández- Martínez et al., 2019; Peylin 
et al., 2013; Reich et al., 2020; Sitch et al., 2015). Previous studies 
have generally suggested that CO2 fertilization drove the primary 
gain in stores of biomass C (Huntzinger et al., 2017; Piao et al., 2013; 
Schimel et al., 2015; Walker et al., 2021; Wenzel et al., 2016), but the 
direct impacts of climate change could ultimately suppress such gains 
in the future (Jiao et al., 2021; Peñuelas et al., 2017; Piao et al., 2020; 
Yuan et al., 2019), while limited N availability may eventually lower 
the ability to “draw down” atmospheric CO2 concentrations ([CO2]; 
Norby et al., 2010; Terrer et al., 2019; Zaehle et al., 2015). Isolating 
and accurately quantifying the magnitude of CO2 fertilization and 
its contribution is accordingly essential, with implications for the 
formulation and implementation of land- based mitigation strategies 
that may maximize the offset of CO2 emissions.

Considerable efforts have been made in recent decades to im-
prove our knowledge of the CFE on the terrestrial C cycle, in partic-
ular by conducting CO2- enrichment experiments, many, but not all, 
of which report that elevated [CO2] has stimulated plant growth and 
biomass C sequestration (McCarthy et al., 2010; Terrer et al., 2019; 
Walker et al., 2021). Site- scale measurements can provide critical 
local information on CFE, but they have limited ability to represent 
geographically extensive changes or long- term results due to their 
relative scarcity and short duration (~5 years on average; Terrer 
et al., 2021). As an alternative, dynamic global vegetation models 
(DGVMs) can provide complete geographical coverage and be con-
figured to isolate and quantify long- term CFE around the globe, but 
require accurate parameterization. DGVMs collectively agree that 
CFE is the dominant cause of the increase in biomass, but large 
inter- DGVMs exist, causing uncertainty in their projections (Haverd 
et al., 2020; Schimel et al., 2015). For example, an ensemble of 
DGVMs from the Trends in Net Land Atmosphere Carbon Exchanges 
project version 9 (TRENDYv9) showed that the simulated increase 
in CFE- induced plant biomass in NHee during 1850– 2019 varied 
from 11.25 Pg C in the LPX- Bern model to 54.15 Pg C in the CABLE- 
POP model. Observations from site- based CO2- enrichment exper-
iments and the outputs from DGVMs are not directly comparable, 
so a newly emerged mathematical approach, the so- called emergent 
constraint (Cox et al., 2013; Eyring et al., 2019; He et al., 2020; Lian 
et al., 2018; see Section 2), can be used to reconcile the spatial– 
temporal mismatch between them, for better understanding the his-
torical effect of CO2 fertilization on plant biomass.

Our overall aim is to quantify the specific role of CO2 fertiliza-
tion, based on both models and observations, in driving the biomass 
C sequestration in NHee ecosystems. We first used emergent con-
straint approach to derive the response of plant biomass to increas-
ing [CO2] (parameter �) in NHee from 1850 to 2019, resolving into all 

total vegetation, or forest/grassland only (see Section 2). Then, for 
the shorter period of 1990– 2019, we presented much more specific 
information, with the fertilization effect disaggregated into further 
biome classifications and for six key different countries/regions in 
NHee. Using the inferred constraints in combination with observed 
forest biomass changes reported previously (Pan et al., 2011; Xu 
et al., 2021), we thus estimated the contribution of CFE for whole 
NHee and each of the six major countries/regions since the 1990s. 
Our database is comprised of 41 field observations collected at 
24 CO2- enrichment experiments in forest and grassland systems 
(Table S1; Figure S1), together with the outputs of the 10 DGVMs 
from the TRENDY ensemble. Since CO2- enrichment experiments 
and DGVMs have very different settings for [CO2] increases (∆CO2), 
there are two important transformations to be addressed to align the 
models with the data before emergent constraint (Figure 1). First, to 
simulate the step increase in [CO2] common in CO2- enrichment ex-
periments, we calibrated the DGVM outputs, originally simulating a 
gradual increase in [CO2], over the grid cells corresponding to the ex-
perimental sites using a two- box model (Liu et al., 2019). Second, to 
match the magnitude of ∆CO2 at historical levels (e.g., from 286.46 
to 409.39 ppm during 1850– 2019), we converted the experimental 
CFE, originally conducted at future [CO2] levels (e.g., from ~380 to 
~610 ppm) using a theoretical model of photosynthesis (P- model; see 
Section 2).

2  |  MATERIAL S AND METHODS

2.1  |  Study region

Our study region was restricted to NHee, defined as the areas be-
tween 23° N and 90° N including a southern part of China below 
23° N for integrity (Figure S1). We used the Collection- 5 MODIS 
land- cover product (MCD12C1) with the classification scheme of 
the International Geosphere- Biosphere Programme at a resolution 
of 0.05° for 2001. This NHee vegetation map was first aggregated 
to a resolution of 0.5° by dominant types of land cover, and the 17 
land- cover types were then reclassified into four classes by biome: 
temperate forest (forests <55° N), boreal forest (forests >55° N), 
grassland, and other biomes. We divided the NHee forest areas into 
six major countries/regions to further determine the CFE at a re-
gional scale following the region map in Pan et al. (2011): Canada, 
northern Europe, Russia, the United States, temperate Europe, and 
China. Note that boreal forests are mainly distributed in Canada, 
northern Europe, and Russia and that temperate forests are mainly 
distributed in the United States, temperate Europe, and China.

2.2  |  Observed CFE on plant biomass from  
CO2- enrichment experiments

We collected data on the effect of CO2 fertilization on plant biomass in 
forest and grassland ecosystems by assembling the CO2- enrichment 
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studies from Song et al. (2019) and Terrer et al. (2019). We screened 
all these data using the following criteria: (1) experiments containing 
fertilized/high water/high temperature/drought treatments were all 
excluded because of the interactions; (2) measurements from the 
same experiment but different years were not independent, so only 
observations in the last year were selected; (3) different species 
in the same experiment were considered independent; and (4) ex-
periments were only included when both above-  and below- ground 
biomass per unit area were provided. A factor of 0.5 was used to 
convert dry- matter content to carbon content. In total, we compiled 
41 plant biomass data (under the elevated [CO2] and control treat-
ments) from 24 CO2- enrichment experiments (Figure S1; Table S1). 
For each site, the response of plant biomass to increasing [CO2] (�Obs

Site
)  

was then estimated as:

where BiomassT and BiomassC are the values of observed plant biomass 
C density under elevated [CO2] treatment (COT

2
) and control ambient 

concentration (COC
2
) during the experiment, respectively. Both COT

2
 

and COC
2
 were likely different among the experimental sites (Table S1). 

Note that COT
2
 was approximately twofold higher than preindustrial 

levels (~286.46 ppm in 1850), because the general purpose of the CO2- 
enrichment experiments was to realistically simulate future [CO2] and 
analyze the response of plant biomass to elevated [CO2] above current 
levels (Walker et al., 2021).

2.3  |  Simulated CFE on plant biomass from an 
ensemble of DGVMs

We used the outputs of biomass C stock (variable ‘cVeg’) during 
1850– 2019 from an ensemble of 10 DGVMs in the TRENDYv9 
project (CABLE- POP, DLEM, IBIS, ISAM, ISBA- CTRIP, JSBACH, 
JULES- ES- 1.0, LPJ- GUESS, LPX- Bern, and ORCHIDEEv3). All 
DGVMs were coordinated to perform consistent factorial simula-
tions based on the TRENDY intercomparison protocol using the 
same climate forcings, increasing atmospheric [CO2], and prod-
ucts of changes in land use and land cover (Ballantyne et al., 2012; 
Sitch et al., 2015). All modeled outputs were resampled to a com-
mon spatial resolution of 0.5° × 0.5° using the nearest neighbor 
method.

We first extracted the CFE- induced change in biomass over time 
(written here as Biomass) as the difference in simulated cVeg between 
the S1 (time- varying [CO2] only) and S0 (constant [CO2]) simulations 

(1)�Obs
Site

=
BiomassT − BiomassC

COT
2
− COC

2

,

F I G U R E  1  Schematic overview of the methodology used for the transformation of [CO2]- related settings between model and data. Green 
arrows show the methodological steps to convert observed site- scale CO2 fertilization effect (CFE) on plant biomass at future [CO2] levels 
(�Obs

Site
) to CFE at historical [CO2] levels (�Hist

Site
) for the CO2 experiments. Brown arrows represent the methodological steps to convert simulated 

site- scale CFE on plant biomass with a gradual increase in [CO2] to a step increase in [CO2] (�Mod

Site
 ), and this value together with the simulated 

Northern Hemisphere extra- tropical ecosystems (NHee)- scale CFE (�Mod

NHee
) were then used to build a linear relationship across the dynamic 

global vegetation models for further emergent constraint. All [CO2] values shown are rounded down to integral numbers for clarity. More 
detailed information can be found in Section 2.
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for each model. The simulated response of plant biomass to increasing 
[CO2] in NHee (�Mod

NHee
) for each model was then calculated as:

where BiomassLast and BiomassFirst represent the area- weighted aver-
age of CFE- induced change in biomass C density (S1– S0) in NHee for 
the last year and the first year of the simulated period, respectively, 
COLast

2
 and COFirst

2
 represent the atmospheric [CO2] for the last year 

and the first year of the simulated period, respectively. The first year 
was 1850 when estimating �Mod

NHee
 for 1850– 2019 and was 1990 when 

estimating �Mod
NHee

 for 1990– 2019. We applied the same approach to fur-
ther estimate the response of plant biomass C density to increasing 
[CO2] for different biomes (Figure S2) and different countries/regions 
(�Mod

Reg
, Figures S3– S8).

2.4  |  Conversion of simulated site- scale CFE on 
plant biomass with a gradual increase in [CO2] to a 
step increase in [CO2]

Atmospheric [CO2] increased gradually in the DGVMs, similar to the 
real world, but increased abruptly in the CO2- enrichment experi-
ments (Figure 1). To align the [CO2] changes in the models with the 
data, we used a two- box model (Liu et al., 2019) to transform the 
gradual increase in [CO2] for each DGVM to replicate the step in-
crease in [CO2] at the experimental sites.

First, we obtained the simulated CFE- induced change in net pri-
mary productivity (NPP) and biomass C density (S1– S0) for 1850– 
2019 for each experimental site and each model by averaging the 
simulated values within a 4.5° × 4.5° window around the corre-
sponding site. Our choice of the window size was adopted from Liu 
et al. (2019). We assumed that the turnover rate of the biomass C 
pool (μ) was constant, so the change in biomass C density resulted 
from the change in NPP could be represented by:

where ΔBiomass(i) is the CFE- induced change in biomass C density 
(S1– S0) in year i relative to the first year, and NPP(i) is the CFE- induced 
mean annual NPP (S1– S0) in year i.

We then calculated the analytical solution to Equation (3) as:

Second, the original simulated ΔBiomass and NPP for 1850– 
2019 were used to fit the parameter μ for each site and each model 
based on Equation (4). As a result, site- scale ΔBiomass (ΔBiomasssite) 
emulated by the two- box model generally agreed well with the origi-
nal simulated ΔBiomasssite in most of the DGVMs, indicating that the 

fitted parameter μ could be used to represent the turnover rate of 
biomass in this study (Figure S9).

Third, we assumed that [CO2] increased abruptly from COFirst
2

 
to COLast

2
 and then remained stable during the simulation period for 

each experimental site and each model, that is, simulated NPP would 
also increase abruptly in response to increasing [CO2], which was as-
sumed to be constant during the experimental period (i in Equation 4) 
and calculated as the difference between the CFE- induced mean 
annual NPP under COLast

2
 and COFirst

2
. ΔBiomasssite for each model 

could thus be reproduced using Equation (4), applying the constant 
parameter μ obtained above. At last, the simulated site- scale CFE on 
plant biomass C density (�Mod

Site
) was equal to ΔBiomasssite divided by 

the difference between COLast
2

 and COFirst
2

 (Equation 2).

2.5  |  Conversion of observed site- scale CFE on 
plant biomass at future [CO2] to CFE at historical [CO2]

The difference in atmospheric [CO2] between the control (e.g., about 
380 ppm) and elevated [CO2] treatments (e.g. about 610 ppm) in the 
CO2- enrichment experiments was much larger than the difference in 
the DGVMs (e.g., from 286.46 ppm in 1850 to 409.39 ppm in 2019), 
preventing the direct comparison between the DGVMs and the CO2- 
enrichment experiments (Figure 1). To transform the observed CFE on 
plant biomass at future [CO2] levels in the experiments to that at histori-
cal [CO2] levels, we needed to extrapolate the change in plant biomass 
from COC

2
 to COT

2
 to the change in plant biomass from COFirst

2
 to COLast

2
.

Assuming that the turnover rates of the biomass C pool were 
unchanged with an increase in [CO2] in the DGVMs (Figure S10), 
changes in biomass caused by a step increase in [CO2] at historical 
(ΔBiomassHist

Site
) and future (ΔBiomassObs

Site
) [CO2] levels could be calcu-

lated using Equation (4) as:

thus,

where ΔNPPHist
Site

 and ΔNPPObs
Site

 are changes in CFE- induced NPP at his-
torical and future [CO2], respectively. C- use efficiency (CUE, the ratio 
of NPP to gross primary productivity (GPP)) was assumed to be con-
stant across historical and future [CO2] in the models (Figure S11), so 
the site- scale CFE on plant biomass C density at historical [CO2] (�Hist

Site
) 

could be expressed as:

(2)�Mod
NHee

=
BiomassLast − BiomassFirst

COLast
2

− COFirst
2

,

(3)dΔBiomass(i)

di
= NPP(i) − �ΔBiomass(i),

(4)ΔBiomass(i)=∫
i

0

[

exp
(

−�i’
)

×NPP
(

i− i
’
)]

di’ .

(5)ΔBiomassHist
Site

(i)=∫
i

0

[

exp
(

−�i’
)

×NPPHist
Site

(

i− i
’
)

]

di’ ,

(6)ΔBiomassObs
Site

(i)=∫
i

0

[

exp
(

−�i’
)

×NPPObs
Site

(

i− i
’
)

]

di’ ,

(7)ΔBiomassHist
Site

(i) =
ΔNPPHist

Site

ΔNPPObs
Site

× ΔBiomassObs
Site

(i),

(8)

�Hist
Site

=
ΔBiomassHist

Site

COLast
2

− COFirst
2

=

ΔNPPHist
Site

COLast
2

−COFirst
2

∕CUE

ΔNPPObs
Site

COT
2
−COC

2

∕CUE

×
ΔBiomassObs

Site

COT
2
− COC

2

=

ΔGPPHist
Site

COLast
2

−COFirst
2

ΔGPPObs
Site

COT
2
−COC

2

× �Obs
Site

,

 13652486, 2023, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16806 by JO

SE
P Penuelas - C

sic O
rganización C

entral O
m

 (O
ficialia M

ayor) (U
rici) , W

iley O
nline L

ibrary on [05/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  4317HE et al.

where ΔGPPHist
Site

 and ΔGPPObs
Site

 are changes in CFE- induced GPP at his-
torical and future [CO2], respectively, which could be simulated using 
an optimality- based model of light- use efficiency (P- model; Wang 
et al., 2017).

The validity of the P- model for predicting GPP has been success-
fully evaluated based on extensive measurements of ecosystem flux 
and field studies (Wang et al., 2017). The rpmodel R package provides 
us with a simple but effective way to estimate CFE- induced GPP 
change under historical and future [CO2] on the basis of several en-
vironmental variables (Table S2). A summary of how the P- model de-
rives CO2 fertilization effects is provided in Supporting Information. 
The underlying optimality assumption of the P- model implies that it 
can represent the effects of climate (e.g., temperature, water vapor 
pressure deficit, atmospheric pressure) based on the first principles 
rather than imposed empirical functions. The formulation of the P- 
model thus allows us to account for the CO2 fertilization effects on 
the LUE, which were mainly ignored in previous LUE frameworks (De 
Kauwe et al., 2016). We simulated GPP for each site at four [CO2] 
(COLast

2
, COFirst

2
, COT

2
, and COC

2
) based on the P- model corresponding 

to the sampling years in the CO2- enrichment experiments (Table S1). 
ΔGPPObs

Site
 and ΔGPPHist

Site
 in Equation (8) were thus equal to the differ-

ence between GPPT and GPPC and between GPPLast and GPPFirst, 
respectively. Based on this, the observed site- scale CFE on plant 
biomass at future [CO2] levels (�Obs

Site
) can be extrapolated to the CFE 

at historical [CO2] levels (�Hist
Site

). We note that there is a substantial 
geographical spread in �Hist

Site
, with a small proportion of observations 

yielding negative values.
To conduct further emergent constraint analysis, it is essential to 

obtain the cross- site- average �Hist
Site

 and its corresponding uncertainty. 
This can be accomplished through a bootstrap resampling approach. 
First, we randomly selected one �Hist

Site
 from each site and then aver-

aged all selected �Hist
Site

 across sites. Second, we repeated the first step 
1000 times to generate a sample of 1000 �Hist

Site
. Third, we calculated 

the mean (�Hist
Site

) and standard deviation 
[

�
(

�Hist
Site

)]

 of all the 1000 �Hist
Site

 
samples, assuming a Gaussian distribution for all observations.

2.6  |  Emergent constraints of CFE on plant biomass

The concept of emergent constraint is founded on the premise that the 
ensemble of models may be applicable for establishing a heuristic re-
lationship between a variable that can be directly measured/observed 
and another (i.e., the variable of interest) that cannot, even though large 
uncertainties remain between models (Cox et al., 2013). To constrain 
the response of plant biomass C density to increasing [CO2] in NHee, 
we first used least- squares linear regression to assess the relationship 
between �Mod

Site
 and �Mod

NHee
 across the ensemble of DGVMs, defined as:

where a is the slope and b is the intercept of the regression line, 
respectively.

The least- squares error of this regression model was calculated as:

where M is the number of DGVMs, (M − 2) is the degrees of freedom of 
the linear regression, and �̃

Mod

NHee
 represents the predicted �Mod

NHee
 based 

on Equation (9).
We then re- estimated �Mod

NHee
 and its uncertainty given the 

observation- based �Hist
Site

. The sum of squared errors of prediction for 

�̃
Mod

NHee

|

|

|

�Hist
Site

 was estimated as:

where �Hist
Site

 is the average of series �Hist
Site

 across experimental sites.
Assuming a normal distribution of �̃

Mod

NHee

|

|

|

�Hist
Site , the probability 

density function (PDF) of �̃
Mod

NHee
 given �Hist

Site
 was:

The PDF for emergent- constrained �̃
Mod

NHee
 could thus be esti-

mated as:

where P
(

�Hist
Site

)

 is the PDF of the variable �Hist
Site

.
We also applied the same method of emergent constraint to 

explore the model performance in different biomes and different 
regions/countries separately. Correlating simulated �Mod

Reg
 and �Mod

Site
 

for each of the six major countries/regions, however, was difficult, 
because not all the regions have the corresponding CO2 experi-
mental sites (Figure S1). We found that simulated �Mod

Reg
 in the United 

States increased linearly across the DGVMs, with both regional site- 
averaged �Mod

Site
 for all temperate- forest sites (Figure S6) and forest 

sites in the United States only (Figure S12). That is to say, �Mod
Site

 of 
boreal or temperate forests could be used to replace regional �Mod

Site
 

to correlate with regional CFE- induced increase, as an alternative. 
We thus used observed site- average �Hist

Site
 of boreal and temperate 

forests to constrain the simulated �Mod
Reg

 in boreal (Figures S3– S5) and 
temperate (Figures S6– S8) countries/regions, respectively.

2.7  |  Analysis of robustness

The robustness of the constrained CFE on plant biomass was con-
firmed by reducing the number of experimental sites. We first se-
lected (n − m) experimental sites from a total of n sites to constrain 
the simulated response in the DGVMs, where m is the number of 

(9)�Mod
NHee

= a �Mod
Site

+ b,

(10)s
2 =

∑M

m=1

�

�̃
Mod

NHee
−�Mod

NHee

�2

(M − 2)
,

(11)�

�

�̃
Mod

NHee

�

�

�

�Hist
Site

�2

= s
2

⎧

⎪

⎨

⎪

⎩

1+
1

M
+

�

�Hist
Site

−�
Hist

Site

�2

M�
�

�Hist
Site

�2

⎫

⎪

⎬

⎪

⎭

,

(12)

P

�

�̃
Mod

NHee

�

�

�

�Hist
Site

�

=
1

�

2��
�

�̃
Mod

NHee

�

�

�

�Obs
Site

�

exp

⎧

⎪

⎨

⎪

⎩

−

�

�̃
Mod

NHee
−�Mod

NHee

�2

2�
�

�̃
Mod

NHee

�

�

�

�Mod
Site

�

⎫

⎪

⎬

⎪

⎭

.

(13)P

(

�̃
Mod

NHee

)

=∫
+∞

−∞

P

(

�̃
Mod

NHee

|

|

|

�Hist
Site

)

P
(

�Hist
Site

)

d�Hist
Site

,

 13652486, 2023, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16806 by JO

SE
P Penuelas - C

sic O
rganización C

entral O
m

 (O
ficialia M

ayor) (U
rici) , W

iley O
nline L

ibrary on [05/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4318  |    HE et al.

experimental sites (m = 1, 2, 3) removed before the calculation. We 
then repeated this step until all combinations were selected. The 
combinatorial number was Cn−m

n
=

n !

(n−m) ! (n− (n−m)) !
. Finally, we calcu-

lated the mean and standard deviation for all the above combina-
tions to represent the average constrained CFE and its uncertainty.

2.8  |  Calculation of the observed changes in forest 
biomass since the 1990s

The observed changes in forest biomass over the last three dec-
ades in NHee were collected from an inventory- based study (Pan 
et al., 2011) and a satellite- based product (Xu et al., 2021), respec-
tively. Since forest inventory data have documented changes in for-
est area for different countries/regions, both the observed change in 
the density of biomass C (ΔDensityObs, g C m−2 year−1) and change in 
the storage of biomass C (ΔStorageObs, Tg C year−1) for whole NHee 
and each of the six major countries/regions in NHee were analyzed.

First, we extracted the ΔDensityObs and ΔStorageObs during 
1990– 2007 from inventories as follows, since the area of forest 
cover has changed over time:

where Area1990 and Area2007 denote the total forest area for 1990 and 
2007, respectively, and Storage1990 and Storage2007 denote the total 
storage of biomass C for 1990 and 2007, respectively, all of which 
could be obtained from tables S2 and S3 in Pan et al. (2011). Δyear is 
the length of the study period which is set to 18.

Second, we estimated ΔDensityObs and ΔStorageObs using a newly 
released satellite- based dataset of global C stocks in woody vegeta-
tion during 2000– 2019 (Xu et al., 2021). This data set was produced 
at a spatial resolution of 10 km by compiling a large number of ground 
inventories, airborne laser scanning, and satellite lidar data to train a 
self- improving machine- learning model using systematic time series 
observations from microwave and optical satellite imagery. The con-
version of above-  to below- ground live biomass was based on vege-
tation specific root: shoot ratios (see table S5 in Xu et al., 2021). Note 
that detecting biomass gain in intact forests with high biomass can 
be challenging due to the “slow in– fast out” characteristic, as well 
as the potential saturation of satellite signals in dense forest (Harris 
et al., 2016; Smith et al., 2020). To address this, Xu et al. (2021) estab-
lished an approach to adjust the long- term estimates of C changes in 
large- biomass forests. We follow the same approach. We first separate 
the biomass changes in large- biomass forests (defined as areas with 
AGB > 100 Mg ha−1) and low- biomass forests (defined as areas with 
AGB ≤ 100 Mg ha−1). Specifically, the biomass changes in large- biomass 
forests were estimated by multiplying the biome- specific growth rates 
(see table S4 in Xu et al., 2021) by the areas of the regions, whereas the 

biomass changes in low- biomass forests were estimated using linear 
regression over time. The sum of the biomass changes in large- biomass 
forests and low- biomass forests was considered as the ΔStorageObs. 
Furthermore, the change in the density of forest biomass C was esti-
mated as ΔDensityObs =

ΔStorageObs

Area
, where Area is the total forest 

area in 2001 in NHee based on MODIS land- cover data, without con-
sidering the changes in forest area over time.

2.9  |  Calculation of the CFE- induced changes in 
forest biomass since the 1990s

We calculated the CFE- induced changes in the density of biomass C 
(ΔDensityCFE, g C m−2 year−1) and changes in the storage of biomass 
C (ΔStorageCFE, Tg C year−1) in NHee as follows:

where �Mod
Forest

 is the response of forest biomass C density to increas-
ing [CO2] in NHee for 1990– 2019, �Mod

Forest,S
 is the response of forest 

biomass C storage to increasing [CO2] in NHee for 1990– 2019, ΔCO2 
is the difference in the global atmosphere [CO2] between 2019 and 
1990, and Δyear is the length of the study period which is set to 30. 
The uncertainty associated with ΔDensityCFE and ΔStorageCFE was 
propagated by the uncertainty associated with �Mod

Forest
 and �Mod

Forest,S
, 

respectively.

3  |  RESULTS

3.1  |  Constrained CFE on plant biomass in  
extra- tropical Northern Hemisphere

The simulated response of plant biomass to time- evolving smoothly 
increasing [CO2] in the entire NHee (�Mod

NHee
) was tightly correlated 

with the simulated site- average response of plant biomass to short- 
term step increases in [CO2] (�Mod

Site
) across the DGVMs (r = .73, 

p = .0175; Figure 2b). This strong linear relationship confirmed the 
existence of our proposed emergent constraint, and models with a 
large site- scale �Mod

Site
 also produced a large NHee- scale �Mod

NHee
, as ex-

pected. Combined with the observed site- average response meas-
urement, with a value at historical [CO2] levels (�Hist

Site
) of 0.29 ± 0.02 kg 

C m−2 [100 ppm]−1 (mean ± standard deviation), the model- derived 
heuristic relationship provided a constrained �Mod

NHee
 of 0.49 ± 0.12 kg 

C m−2 [100 ppm]−1 for period 1850– 2019. This more refined emer-
gent constraint- based �Mod

NHee
 was slightly lower than the original 

multi- model average (0.53 ± 0.15 kg C m−2 [100 ppm]−1). Furthermore, 
the relationship shown in Figure 2b generated a constrained PDF 
of �Mod

NHee
, which was narrower than the unconstrained PDF for the 

(14)ΔDensityObs =

Storage2007

Area2007
−

Storage1990

Area1990

Δyear
,

(15)ΔStorageObs=
Storage2007−Storage1990

Δyear
,

(16)ΔDensityCFE =
�Mod
Forest

× ΔCO2

Δyear
,

(17)ΔStorageCFE =
�Mod
Forest,S

× ΔCO2

Δyear
,

 13652486, 2023, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16806 by JO

SE
P Penuelas - C

sic O
rganización C

entral O
m

 (O
ficialia M

ayor) (U
rici) , W

iley O
nline L

ibrary on [05/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  4319HE et al.

F I G U R E  2  Constrained CO2 fertilization effect (CFE) on plant biomass in Northern Hemisphere extra- tropical ecosystems (NHee) 
during 1850– 2019. (a) CFE- induced change in plant biomass during 1850– 2019 in the dynamic global vegetation models (DGVMs). Note 
that changes in plant biomass were all shown with a 30- year moving window for demonstration purposes. (b) Relationship between the 
simulated response of plant biomass to increasing [CO2] in NHee (�Mod

NHee
) and the simulated site- average response of plant biomass to 

increasing [CO2] (�Mod

Site
) across the DGVMs. The vertical gray area represents the observed response of plant biomass to increasing [CO2] 

from CO2- enrichment experiments (�Obs

Site
, mean ± standard deviation). The horizontal pink lines represent the constraint estimate of �Mod

NHee
 

(solid line) ± standard deviation (dashed lines). (c) Probability density function of �Mod

NHee
 before (black line) and after (pink line) constraint. (d– g) 

Same as (b) and (c) except the field observations of �Obs

Site
 are divided into forest and grassland to constrain CFE on plant biomass in (d, e) forest 

(�Mod

Forest
) and (f, g) grassland (�Mod

Grass
).
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DGVMs, lowering the range of uncertainty of �Mod
NHee

 by 20% after 
constraint (Figure 2c). Additional sensitivity analyses are performed 
that confirm the robustness of the constrained �Mod

NHee
 when using 

less observational CO2- enrichment sites in the emergent constraint, 
separately (Figure S13).

We then applied the same method of emergent constraint to 
explore DGVM performance, and again provided enhanced esti-
mates of fertilization, but disaggregated into two different biomes 
separately (forest vs. grassland). For forests, the constrained value 
for �Mod

Forest
 was 0.94 ± 0.27 kg C m−2 [100 ppm]−1 during 1850– 2019 

(r = .64, p = .0483; Figure 2d), which was about 11% higher than 
the original multi- model average (0.85 ± 0.28 kg C m−2 [100 ppm]−1; 
Figure 2e). For grassland, the constrained �Mod

Grass
 value in NHee during 

1850– 2019 was estimated to be 0.04 ± 0.06 kg C m−2 [100 ppm]−1 
(r = .82, p = .0039; Figure 2f), which, unlike for forest, was much 
lower (decrease of 78%) than the unconstrained multi- model mean 
(0.18 ± 0.08 kg C m−2 [100 ppm]−1; Figure 2g).

3.2  |  Contribution of CFE to forest biomass change

The growing amount of inventory data and the development of satellite 
remote sensing enable a rigorous characterization of the growth trajec-
tory of forest biomass over the past three decades (Harris et al., 2021; 
Liu et al., 2015; Pan et al., 2011; Xu et al., 2021). Such data provided 
us with an excellent opportunity to examine the contribution of CFE to 
the observed overall increases in NHee forest biomass (see Section 2). 
Unlike the CO2- enrichment experiments, which are designed to cap-
ture in isolation the impacts of elevated [CO2], the satellite retrievals 
and inventories capture the trends in plant biomass due to all forcings 
combined (notably climate change, CFE, N deposition, and land- use 
change). To match the temporal extent of the biomass observations 

from inventories (Pan et al., 2011) and satellites (Xu et al., 2021), 
our emergent constraint analysis of Figure 2 was revisited, but now 
for a shorter period of years 1990– 2019. Using the same data from 
CO2- enrichment sites, in tandem with the emergent constraint, we 
obtained a lower response of plant biomass to rising [CO2] in NHee- 
scale total forests (�Mod

Forest
, 0.86 ± 0.28 kg C m−2 [100 ppm]−1, Figure 3) 

compared to that for 1850– 2019. As before, the robustness of the 
constrained �Mod

Forest
 was confirmed by the analyses using fewer obser-

vational CO2- enrichment sites for the emergent constraint (Figure 3; 
Figure S2). We then multiplied this constrained �Mod

Forest
 with a historical 

∆CO2 of 56.19 ppm (from 353.20 in 1990 to 409.39 ppm in 2019), the 
result indicated that CFE has increased the forest biomass C storage 
by 248.04 ± 80.87 Tg C year−1 (ΔStorageCFE; Figure S14). This CFE- 
driven change was then compared against the observed total changes 
(ΔStorageObs) from our two datasets for biomass. We therefore identi-
fied that CO2 fertilization alone explained 54 ± 18% of the observed 
increase (461.11 Tg C year−1) reported from forest inventories over the 
past three decades (Table S3). Using an independent satellite- derived 
biomass product, the dominant role of CFE was further confirmed, sug-
gesting a contribution of 64 ± 21% for the same period (Table S3).

The CFE may be different between temperate and boreal for-
ests due to their contrasting environmental limitations (Terrer 
et al., 2019). Splitting our analysis into these biomes, we found a 
major difference, where the constrained �Mod

Temp
 of 1.04 ± 0.31 kg 

C m−2 [100 ppm]−1 for temperate forests was three times the size 
of the constrained value for boreal forests, �Mod

Boreal
 of 0.36 ± 0.26 kg 

C m−2 [100 ppm]−1 (Figure 3; Figure S2). Combining these two values 
with the estimates of satellite- derived biomass increase (country- 
level inventory data cannot be recalculated to match the regional 
extent of each biome), the contribution of CFE was found to have 
made a larger contribution to temperate forests (71 ± 21%) than bo-
real forests (34 ± 25%).

F I G U R E  3  Constrained CO2 fertilization effect (CFE) on temperate and boreal forest biomass in Northern Hemisphere extra- tropical 
ecosystems during 1990– 2019. The first number in each circle indicates the multi- model average of originally simulated CFE (Unconstrained), 
constrained CFE using all observational sites (Constrained) and constrained CFE using one (Robustness1), two (Robustness2), or three 
(Robustness3) fewer observational sites for total forest, boreal forest, and temperate forest, respectively. The standard deviation of CFE is 
shown in brackets.
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    |  4321HE et al.

3.3  |  Regional differences in the contribution of 
CFE to forest biomass change

Carbon loss and gain in forest biomass may be strongly influenced by 
direct human disturbance and other environmental changes, which 
may alter the relative contribution of CFE at the regional scale. To 
further identify the role of CFE for the six major countries/regions in 
NHee, that is, Canada, northern Europe, Russia, the United States, 
temperate Europe, and China, we used the same fractional approach 
as outlined above (i.e., the calculation of ΔStorageCFE/ΔStorageObs; 
Materials and Methods). Our analyses showed that CFE contributed 
the most to the inventory- based forest biomass increase in China 
(56 ± 19%), followed by northern Europe (39 ± 20%), the United 
States (29 ± 9%), and Russia (28 ± 24%), with a lesser contribution for 
about 13 ± 5% in temperate Europe (Figure 4; Table S3). Of particular 
note is that in Canada, a negative contribution of CFE was detected 
(−117 ± 71%; Figure 4; Table S3). Additional to our analysis based on 
forest inventory data (black regular triangles in Figure 4), we also ex-
amined results from an independent satellite- based biomass dataset 
(red inverted triangles in Figure 4), which inferred similar or larger 

proportions of CFE among most countries/regions. These satellite- 
derived values have some similarities with the estimates from forest 
inventories, although there are particular differences for temperate 
Europe.

4  |  DISCUSSION

By constraining the DGVM simulations against CO2- enrichment 
experiments, we have shown that the historical response of for-
est biomass to increasing [CO2] was underestimated by DGVMs 
(Figure 2d,e). Specifically, this underestimation may be associated 
with a simulated N- cycle in DGVMs that overly restricts predicted 
CO2 fertilization on photosynthesis, as models with C– N interac-
tions generally produced a strong and progressive N limitation on 
net primary production for increasing [CO2]. These models, specifi-
cally, may underestimate plant N uptake compared to observations 
(Zaehle et al., 2014), probably because of the missing simulation 
of high N uptake through ectomycorrhizal tree– fungal associa-
tions (Terrer et al., 2016, 2018). Furthermore, the effect of CO2 

F I G U R E  4  Contribution of CFE to changes in forest biomass for Northern Hemisphere extra- tropical ecosystems (NHee) and each 
of the six major countries/regions since the 1990s. Panels (a) to (g) represent the regions of NHee, Canada, northern Europe, Russia, the 
United States (USA), temperate Europe, and China, respectively. For each panel, the left side shows the CFE- induced change in the density 
of biomass carbon (ΔDensityCFE), and the right side shows the CFE- induced change in the storage of biomass carbon (ΔStorageCFE). Bars 
represent the changes in biomass caused by CFE before (gray bars) and after (blue bars) the emergent constraint. The error bars represent 
the standard deviations of the CFE- induced changes in biomass. Observed changes in biomass carbon density (ΔDensityObs) and storage 
(ΔStorageObs) over the last three decades are derived from Pan et al. (2011; black regular triangles) and Xu et al. (2021; red inverted triangles) 
respectively. The green areas represent forest areas, and the gray areas represent non- forest areas. Map lines delineate study areas and do 
not necessarily depict accepted national boundaries.
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fertilization on plant biomass is dependent on a fine balance between 
changes in photosynthesis and changes in turnover, where the lat-
ter is mainly dependent on the C allocation to different plant com-
ponents, simulated tissue lifespan as well as whole- plant mortality 
rates (Koven et al., 2015). Current models focus more on photosyn-
thesis, with a common lack of representation of the mechanisms be-
hind turnover- related processes (Friend et al., 2014; He et al., 2021; 
Koven et al., 2015; Sullivan et al., 2022). For example, most models 
estimate an overall higher baseline woody turnover rate, as well as 
divergent turnover response to rising [CO2], when compared to the 
observations at Oak Ridge and Duke free- air CO2 enrichment sites. 
This deficiency in process representation and parameterization fur-
ther leads to large uncertainties in biomass carbon accumulation (De 
Kauwe et al., 2014).

In addition, our results show that the historical response of 
grassland biomass to increasing [CO2] in grassland was generally 
overestimated by DGVMs (Figure 2f,g). We considered four possible 
explanations that may account for this major difference. First, grass-
lands are mainly distributed in temperate regions (Figure S1), where 
seasonal variations in precipitation could strongly regulate terres-
trial plant growth (Hovenden et al., 2014; Obermeier et al., 2017). 
A previous study suggested that annual CFE on biomass production 
was largely offset by the opposite response of CFE between the in-
crease in spring and non- spring precipitation (Hovenden et al., 2019), 
but such mechanism is not considered in current models. Second, 
most land- surface models have only a limited description of plant 
functional types, including models for grasses. Recent studies have 
found that changes in the composition of grassland species due to 
higher [CO2] may lead to the loss of C, generating a lower (and ob-
served) impact of CFE on grassland biomass (Mueller et al., 2016; 
Song et al., 2019; Zhu et al., 2020). Third, a global synthesis of CO2 
experiments suggested that grasslands tend to accumulate more C in 
soils, rather than in biomass, when exposed to elevated [CO2] (Terrer 
et al., 2021). However, this tradeoff, as well as the complex interac-
tions of root−microbe−mineral in grass rhizosphere, are not currently 
reproduced in models. Finally, our inferred low CFE- induced biomass 
increases in grassland may be also associated with the low efficiency 
in N uptake in arbuscular mycorrhizal plants, including grassland 
species (Terrer et al., 2018), and that once again is not represented in 
DGVMs. All these possible omissions in models may account for the 
overestimation of simulated CFE, indicating that the biomass C sink 
capacity of grassland is far lower than previously expected.

In terms of the contribution of CFE to plant biomass since the 
1990s, our findings suggest a larger contribution of CFE in temper-
ate forests compared to boreal forests. This difference could be 
explained by the stronger limitations on plant growth due to N con-
straints (Du et al., 2020; Terrer et al., 2019; Vallicrosa et al., 2021) 
and low temperatures (Keenan & Riley, 2018; Zhu et al., 2016) in 
boreal ecosystems. However, we also observed a negative contribu-
tion of CFE in Canada. One possible reason for this negative contri-
bution is that the storage- based metric (ΔStorageCFE/ΔStorageObs) 
used here is more reliable in regions with substantial increases in 
forest area (Figure S15), while a density- based metric (ΔDensityCFE/

ΔDensityObs) may be better suited for regions undergoing forest 
loss, that is, Canada. Nevertheless, even when using the density- 
based metric, the contribution of CFE in Canada was still negative 
(−97 ± 59%; Figure 4; Table S3). Therefore, we suggested that the 
negative impacts on forest biomass were primarily due to the sig-
nificant influence of disturbances in Canadian forests, and in partic-
ular pest attacks and wildfires (Kasischke & Turetsky, 2006; Wang 
et al., 2015). These disturbances were so severe that they exceed 
any potential positive effects of CFE, as well as any other factors, 
resulting in a net decrease in forest biomass.

Considering the differences in CFE contribution between satellite-  
and inventory- based estimates (Table S3), there are several possible 
explanations. For example, some lack of agreement may be attribut-
able to the differences in the observational periods. The satellite data 
were integrated over years 2000– 2019, and therefore potentially cap-
tured more loss of forest biomass C from post- 2007 disturbances in 
boreal and temperate regions (Forzieri et al., 2021; Seidl et al., 2014), 
which was not captured by the forest inventory data based on the 
years 1990– 2007. In addition, previous studies have suggested that 
optical and microwave satellite data with short wavelengths may have 
inadequate sensitivity to detect gradual forest gain, compared with 
their good ability to observe more abrupt forest loss signals, such as 
deforestation (Bartels et al., 2016; Li et al., 2017; Tian et al., 2015). 
This deficiency is more evident in dense forests, where the data may 
underestimate the increase in observed woody biomass due to CFE- 
induced increases in light- use efficiency (Smith et al., 2020), and thus 
result in a greater fraction of CFE contribution.

An additional theoretical possibility of finding low CFE contri-
butions is for regions characterized by large- scale forest areal ex-
pansion. A large C accumulation for trees may be expected due 
to rapid growth through direct afforestation/reforestation (Chen 
et al., 2019), rather than the fertilization effect, in areas of planting 
and regrowth. Contrary to expectations, however, the country with 
the largest gain in forest area (Pan et al., 2011), that is, China, also 
had the highest percentage contribution of CFE compared to that 
of other regions (Figure 4; Table S3). We do, though, suggest some 
caution regarding the robustness of our predicted contributions at 
the regional scale due to a dearth of sufficient CO2 experiments, 
including both above-  and below- ground information, to adequately 
constrain regional CFE. Further validation is also necessary, poten-
tially through enhanced spatial sampling with longer- duration CO2- 
enrichment experiments (Jones et al., 2014).

Furthermore, recent studies have indicated an increasing con-
straint of climate on vegetation growth, which may ultimately coun-
teract the potential growth benefits of CFE (Green et al., 2019; Jiao 
et al., 2021; Peñuelas et al., 2017; Yuan et al., 2019). Our analysis 
revealed a small decrease in constrained CFE for forests from 1850– 
2019 (0.94 ± 0.27 kg C m−2 [100 ppm]−1) to 1990– 2019 (0.86 ± 0.28 kg 
C m−2 [100 ppm]−1), caution should be exercised in drawing conclu-
sions about a decline in CFE solely based on these findings. We 
note that same site- scale CO2- enrichment observations at future 
[CO2] levels were used to estimate �Hist

Site
 at different historical [CO2] 

levels (1850– 2019 and 1990– 2019, respectively; see Section 2). 
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Additionally, the application of the P- model, as needed to convert 
site- scale response of GPP to rising [CO2] to expected changes be-
tween historical [CO2] levels and future [CO2] levels, contains im-
plicitly a saturation effect over time (Figure 1; Liu et al., 2019), which 
may eventually result in a predicted slowdown of CFE between the 
two time periods. Whether the positive effects of CFE on biomass 
carbon enhancement may be expected to continue to outweigh the 
negative effects of climate- induced biomass losses in the immediate 
future remains an important issue to be addressed.

5  |  CONCLUSION

In summary, our study presents a simple, highly intuitive, and ef-
fective approach to determine the magnitude of the large- scale in-
fluence of CO2- induced fertilization on plant biomass. Of particular 
interest is that we have formally isolated the contribution of CFE 
from other non- CFE drivers. We have achieved this by exploiting 
multiple observational constraints, dynamical global vegetation 
models, and an emergent constraint technique to fuse together such 
observational data and models. Our study indicated that CO2 fertili-
zation is the dominant driver of the observed forest biomass increase 
over the last decades across the NHee. Specifically, inventory-  and 
satellite- based evidence suggested the fertilization contribution 
was 54 ± 18% and 64 ± 21%, respectively. Eventually, the positive 
effect of CO2 fertilization may slow down and saturate in the pro-
cess of achieving carbon neutrality (Franks et al., 2013; Peñuelas 
et al., 2017; Piao et al., 2022; Winkler et al., 2021), which will further 
lower the terrestrial ecosystem C sink capacity. Consequently, the 
presentation of CFE as a solution for long- term climate mitigation 
merits caution, potentially requiring additional CO2- offset options 
(e.g., renewable power utilization, deliberate afforestation/refor-
estation), to achieve carbon neutrality.
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