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Abstract 3 

Due to their antimicrobial effects and their potential role as carbon sources, plant 4 

VOC emissions play significant roles in determining the characteristics of the 5 

microbial communities that can establish on plant surfaces. Furthermore, 6 

epiphytic microorganisms, including bacteria and fungi, can affect plant VOC 7 

emissions in different ways: by producing and emitting their own VOCs, which are 8 

added to and mixed with the plant VOC blend; by affecting plant physiology and 9 

modifying the production and emission of VOCs; and by metabolizing the VOCs 10 

emitted by the plant. The study of the interactions between plant VOC emissions 11 

and phyllospheric microbiotas is thus of great interest and deserves more 12 

attention. 13 

 14 

The phyllosphere 15 

The phyllosphere includes all aboveground plant surfaces that provide habitats for 16 

microorganisms. The total surface area of the global phyllosphere has been estimated to 17 

represent approximately 10
9
 km

2
, which could be colonized by bacterial populations of 18 

approximately 10
26

 cells [1,2]. Aboveground plant surfaces harbor hundreds of species 19 

of bacteria and fungi with deleterious or beneficial effects on plants [2,3]. Among these, 20 

bacteria are by far the most abundant phyllospheric colonists and can reach densities of 21 

10
7
 cells/cm

2
 of leaf surface [4]. These microbial communities are very biodiverse and 22 

can vary their composition between and within plant species, depending on several 23 

environmental factors [5–8]. The phyllosphere consists of various aboveground surfaces 24 

of plants, including the surfaces of stems (caulosphere), flowers (anthosphere), fruits 25 
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(carposphere) and leaves (phylloplane), all of which can significantly differ in their 26 

microbial composition [9,10]. 27 

 28 

Bidirectional effects between plant volatiles and phyllospheric microbiota 29 

Plant VOC (volatile organic compound) emissions play a relevant role in determining 30 

the characteristics of the microbial communities that inhabit plant surfaces, through 31 

their antimicrobial effects and their role as carbon sources for some microorganisms 32 

(Figure 1A). By contrast, plant phyllospheric microbiotas have the potential to affect 33 

plant physiology and modify plant biochemistry. Phyllospheric microorganisms reside 34 

at the interface between the plant surface and the atmosphere, where gases are 35 

exchanged, so the organisms can significantly modify the specific conditions of this 36 

microhabitat and interfere with plant VOC emissions [11] (1B). We review the current 37 

information on the bidirectional effects established between VOC emissions from 38 

aboveground plant surfaces and phyllospheric microbiotas. The interaction between 39 

plants and bacteria through VOCs is a research topic that warrants an increased research 40 

effort for providing useful information for understanding the emission of VOCs from 41 

vegetation. 42 

 43 

Effects of plant VOC emissions on phyllospheric microbiotas 44 

Plant VOCs can affect the phyllospheric microbiota by serving as carbon sources [12–45 

18]. Microorganisms such as the yeast Candida boidinii and the bacteria 46 

Methylobacterium extorquens use plant VOCs such as methanol or methane as 47 
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substrates for their growth, although they are facultative methylotrophs, so they do not 48 

rely only or mostly on the consumption of methanol for their subsistence [12–14]. 49 

Methylotrophic metabolism thus represents a selective advantage for bacterial 50 

colonization of the phyllosphere [12]. This advantage allows the microorganisms that 51 

use plant VOCs as substrates to grow preferentially on the surface of plants that are 52 

abundant emitters of these compounds. 53 

Plant VOCs play a significant role in determining the characteristics of the 54 

microbial communities that can establish on each plant tissue, also through their 55 

antimicrobial effects [10]. Several studies have reported growth-inhibiting effects of 56 

VOCs on microbes [19,20]. Terpenoids, phenylpropanoids and benzenoids are major 57 

constituents of plant VOC emissions that have antimicrobial properties and strongly 58 

influence phyllospheric microbial colonization [21–23]. Main constituents of plant 59 

VOC extracts such as the common monoterpenes limonene and β-pinene have inhibiting 60 

effects on bacterial growth [21]. Aldehydes such as benzaldehyde, acetaldehyde, and 61 

cinnamaldehyde also strongly inhibit microbial growth [21,24]. 62 

Although the VOC concentrations tested in most studies revealing antimicrobial 63 

effects of VOCs are high compared to the amounts that are probably present on plant 64 

surfaces, because these works test doses from leaf extracts, strong evidence suggests 65 

that plant VOC emissions play a relevant role in structuring plant-microbe interactions 66 

on aboveground plant surfaces [10,25–27]. The antibacterial and antifungal properties 67 

of plant VOC emissions may play a significant role in selecting the microorganisms that 68 

can establish on plant surfaces by limiting their ability to colonize and grow. 69 

Furthermore, different plant parts have developed different degrees of chemical 70 

protection by emitting different amounts and profiles of VOCs that may depend on the 71 
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relevance and function of each organ. It has been observed that the composition of the 72 

epiphytic bacterial communities of Saponaria officinalis and Lotus corniculatus plants 73 

differed significantly between petals and leaves, with less bacterial diversity on petals 74 

that was attributable to the antibacterial VOCs released by the floral tissues [10]. 75 

 76 

Effects of phyllospheric microbiotas on plant VOC emissions 77 

Emission of microbial VOCs 78 

Phyllospheric microbiotas consisting of bacteria and fungi contribute to plant volatile 79 

blends with their own emissions of VOCs from de novo biosynthesis [28–30] and 80 

biotransformation [15,31–33]. In general, bacterial VOC emission profiles have been 81 

described to be rich in alkenes, alcohols, ketones and terpenes, while in contrast, fungal 82 

VOC profiles are dominated by alcohols, benzenoids, aldehydes, and ketones (Figure 2) 83 

[30]. However, these VOC emission profiles were obtained from bacteria and fungi 84 

grown on rich media, and microorganisms growing on the phyllosphere that is much 85 

more limited in nutrients can probably show different profiles [34,35]. The composition 86 

of VOCs emitted by microorganisms is species-specific and can show different levels of 87 

complexity. The relative composition of microbial VOC blends varies with growth 88 

conditions (temperature, oxygen availability, pH), the carbon source availability and the 89 

age of the culture. Ultimately, the microbial VOC profile is a consequence of specific 90 

metabolic activities of the particular microorganism. Floral microbiotas, for example, 91 

can significantly affect the composition and the amounts of volatile terpenes emitted by 92 

flowers, which play crucial ecological roles in pollinator attraction. A comparison of 93 

floral terpene emissions and contents in untreated Sambucus nigra plants and plants 94 

submitted to fumigation with antibiotics showed that the removal of the microbiota 95 



6 
 

significantly decreased the rates of floral terpene emission, even though the floral 96 

terpene contents did not change. This suggests that the microbiota of the anthosphere 97 

significantly contributes to floral VOC emissions [31]. Microorganisms that live on fruit 98 

surfaces also produce and emit VOCs that can significantly contribute to fruit aroma. 99 

This was demonstrated by the clearly distinguishable patterns of VOC emission 100 

produced by the bacteria and fungi from the carposphere of wine grapes [32].  101 

 102 

Effects of microbial VOCs on plants 103 

Phyllosphere microbes emit different types of VOCs [30] and therefore have a great 104 

potential to affect plant physiology. Some microbial VOCs enhance plant growth and 105 

stress resistance [36]. The VOCs emitted by some non pathogenic microbes also prevent 106 

the colonization of plant tissues by fungal and bacterial pathogens [36]. The endophytic 107 

bacterium Enterobacter aerogenes increased plant pathogen resistance and affected 108 

tritrophic interactions in maize (Zea mays) plants by the production and release of 2,3-109 

butanediol, a VOC that acts as a phytohormone [37]. Microbial VOCs can mediate 110 

several interactions between bacteria and fungi that have negative or neutral effects on 111 

plants [38]. These studies indicate that phyllospheric microbiotas have significant 112 

effects on the host plant and its interactions with other organisms by emitting their own 113 

VOC profiles. 114 

 115 

Microbes induce plant VOC emission 116 
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Microbes can also alter the plant VOC emissions by inducing plant defensive responses. 117 

Some pathogenic microbes such as the fungi Melampsora epitea and Fusarium sp., or 118 

the bacteria Pseudomonas syringae affect VOC production when they elicit an immune 119 

response on the plant [39–41], but other species can be tolerated by the immune system 120 

of the host plant [42]. Some studies have reported the induction of plant VOC emission 121 

by bacterial and fungal pathogens. Among these, terpenoids play a major role as 122 

defensive VOCs that are emitted in greater amounts after fungal infection [39,40,43,44]. 123 

Also, VOCs from the lipoxygenase pathway are emitted from green leaves in 124 

considerable amounts after infection and play a relevant role in inducing defensive 125 

responses in neighboring plants [39,40,44,45]. This induction has a positive effect on 126 

total VOC emissions and may also change VOC composition when the production and 127 

emission of new compounds that are not among the constitutively emitted VOCs are 128 

elicited [46]. 129 

 130 

Transformation of plant VOCs 131 

Microbes can change the VOC compositions of plants by degrading and consuming 132 

plant VOCs as carbon sources [42]. Ubiquitous VOCs that are abundant in the 133 

atmosphere also accumulate in significant amounts on plant surfaces by uptake and 134 

deposition [47] and can thereby become accessible to phyllospheric microorganisms. 135 

Some foliar microorganisms can degrade these VOCs that are released by the plant or 136 

are adsorbed to the leaf cuticle in considerable amounts, such as methanol, methane, 137 

phenol and toluene [14,48–51]. Methanol, for example, is a prominent carbon source for 138 

epiphytic components of microbiotas, such as the methylotrophic bacterium 139 

Methylobacterium extorquens [12] or the methylotrophic yeast Candida boidinii [13]. 140 
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Bacteria in the genus Methylobacterium, facultative methylotrophs found on the surface 141 

of strawberry leaves, can consume the methanol that is constantly emitted by the plant 142 

[14]. Diverse common soil microorganisms that are also ubiquitous on plant surfaces 143 

can degrade other VOCs such as monoterpenes [15–17] and aromatic compounds [18]. 144 

Phyllospheric microorganisms are thus able to degrade the plant-emitted VOCs that 145 

play significant roles in the plant biotic and abiotic environments [52–54]. 146 

 147 

Concluding remarks and future directions 148 

Phyllospheric microbiology is an emerging research field at an initial stage. The 149 

inclusion of phyllospheric microbiota into ecological studies will allow making a key 150 

step forward in terrestrial ecology. The consideration of phyllospheric communities on 151 

the understanding of plant and community ecology will open the doors to a vast field of 152 

work. The composition of phyllospheric communities and their effects on plant 153 

physiology and on many ecological processes remain to be elucidated or investigated in 154 

more detail by exploiting the current genomic and metabolomic techniques [3]. Plant 155 

VOC emissions that play multiple relevant roles in plant and community ecology and 156 

also in atmospheric chemistry can be significantly affected by the activities of 157 

microorganisms living on the phyllosphere. Future research efforts should thus be 158 

devoted to continuing the study of the modes in which microorganisms can affect plant 159 

VOC emissions in various aboveground plant tissues, while also characterizing the 160 

magnitude of the changes and the resulting impacts on ecological interactions that are 161 

mediated through VOCs. This information may be of relevant interest for assessing the 162 

adequacy of different treatments applied in crop management to control fungal and 163 

bacterial plant pathogens (see also outstanding questions). Assuming that pesticide 164 
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application changes or removes the natural phyllospheric microbiota from crop plants, 165 

then plant VOC emissions as well as other plant traits may be affected, and as a result, 166 

interactions with other organisms such as pollinators, herbivores or parasitoids will be 167 

affected. Pesticides have strong effects on community composition in the phyllosphere, 168 

suggesting that pesticide treatments could interfere with the natural interactions between 169 

phyllospheric microbiotas and plant defenses [55–57], or even with flower scent [46]. 170 

Addressing this question in future experiments may reveal indirect impacts of antifungal 171 

and antibacterial pesticides on herbivory and pollination, which are very relevant for 172 

crop production. 173 

New studies should also assess the role of plant VOC emissions on determining 174 

the types and numbers of microorganisms that can establish and grow on the 175 

phyllosphere, relative to many other environmental variables. For example, the use of 176 

modified plant lines in which the expression of specific VOCs is suppressed can be used 177 

to assess this question in a more realistic way than exposing cultured monospecific 178 

microbial colonies to the VOCs. Tests with microbial cultures, however, can also 179 

complement and support the experiments by providing direct evidence of the 180 

antimicrobial effects of individual VOCs or complex VOC mixtures [19,20]. 181 

A better knowledge of the effects of phyllospheric microbiotas on VOC 182 

emissions from vegetation may also help to better understand and estimate the impacts 183 

of these microorganisms on atmospheric chemistry and even climate. A few recent 184 

studies indicate that phyllospheric microbiotas contribute greatly to the composition and 185 

amount of VOCs emitted by plants [46,58]. After better characterizing the effects of 186 

phyllospheric microbiotas on VOC emissions from a variety of plant species and under 187 
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different conditions, future models of VOC emission should implement this information 188 

to better predict VOC emissions from terrestrial ecosystems and vegetation. 189 
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GLOSSARY 345 

Aromatic compounds: the second largest class of plant VOCs, comprising 346 

phenylpropanoid and benzenoid compounds. They are synthesized from the aromatic 347 

amino acid phenylalanine via the shikimate biosynthesis pathway. 348 

Benzenoids: chemical group of VOCs that are characterized by containing a benzene 349 

ring. They are aromatic compounds. 350 

Biotransformation: chemical modification (or modifications) made by an organism on 351 

a chemical compound. 352 

Epiphytic: those organisms that live on the surface of a plant. 353 

Monoterpenes: a group of volatile terpenes that consist of two isoprene units. 354 

Phenylpropanoids: VOCs that are synthesized by plants from the amino 355 

acid phenylalanine through the shikimate/phenylpropanoid biosynthesis pathway. They 356 

are aromatic compounds. 357 

Terpenoids: the largest and most diversified class of secondary metabolites with many 358 

volatile constituents. They are synthesized through the mevalonic acid (MVA) and the 359 

methylerythritol phosphate (MEP) pathways. 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 
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Figure Legends 370 

Figure 1. (A) Effects of volatile organic compounds (VOCs) emitted by plants on 371 

phyllospheric microbiotas. Plant VOCs that have antimicrobial properties, such as 372 

some terpenoids and aldehydes, can inhibit the growth of microorganisms on the 373 

phyllosphere. Some plant VOCs, such as methanol or methane, can serve as substrates 374 

for bacteria and fungi that use them as carbon sources. (B) Effects of phyllospheric 375 

microbiotas on the emission of plant VOCs. Phyllospheric microorganisms can 376 

consume plant VOCs or biotransform them into new VOCs. Microorganisms can affect 377 

the physiology of the host plant, with resulting changes to their VOC emissions, and can 378 

also produce and emit their own VOCs. Microbial VOCs can have antimicrobial effects 379 

on potential plant pathogens that can colonize the phyllosphere and can also enhance 380 

plant growth and resistance to stress. 381 

 382 

Figure 2. Distribution of microbial volatile organic compound (VOC) emissions. 383 

Richness of VOCs emitted by bacteria (yellow columns) and by fungi (red columns) for 384 

different chemical classes. Chemical classes are ordered according to the number of 385 

different compounds within a class. Data from mVOC: a database of microbial volatiles 386 

[30]. 387 


