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Abstract  23 

Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter 24 

quality and the soil environment remain elusive. We conducted a litter decomposition 25 

experiment across different topographic levels within the landscape replicated in two rainforest 26 

sites providing natural gradients in soil fertility to test the hypothesis that low nutrient 27 

availability in litter and soil increases the strength of fauna control over litter decomposition. 28 

We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic 29 

microenvironment of each sampling point and found that microbe-driven Carbon (C) and 30 

Nitrogen (N) loss from leaf litter were 10.1 and 17.9 % lower in the nutrient-poorest site but 31 

this among-site difference was equalized when meso- and macrofauna had access to the 32 

litterbags. Further, on average soil fauna enhanced by 22.6 % the rate of litter decomposition, 33 

and this contribution consistently increased as nutrient availability in the microenvironment 34 

declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C 35 

and N cycling in tropical rainforests and that is able to equalize differences in microbial 36 

decomposition potential thus buffering to a significant extent nutrient shortages at an 37 

ecosystem level. 38 
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Introduction 42 

More than 90% of the net primary production of global terrestrial ecosystems is channeled into 43 

the detrital food web [1], and soils store the majority of the Earth’s organic carbon (C) 44 

(Crowther et al., 2016). Identifying the drivers of organic-matter decomposition is therefore 45 

crucial to understanding and predicting global ecosystem functioning. Abiotic factors like 46 

climate and litter quality, have traditionally been recognized as the dominant controls on 47 

decomposition at large spatial scales, while decomposer organisms would operate as 48 

additional, but secondary, local agents [3,4]. Recent evidence, however, indicates that the effect 49 

size of microbial biomass on decomposition rates can be equivalent to that of soil temperature 50 

and litter moisture, suggesting that biotic factors may explain as much or even more variation 51 

than climate in multi-site comparisons, thus questioning such a hierarchical model of litter 52 

decomposition [5–7]. In addition, soil fauna has recently been reported to consistently increase 53 

the rates of litter decomposition across biomes by 37% [8] and losses in their functional 54 

diversity are expected to slow global cycling of C and nutrients [9]. Consequently, the role of 55 

biota (i.e. microorganisms and soil fauna) should attain a more central position in the emerging 56 

biogeochemical models, to emphasize their ability to modulate the effects of the environment 57 

and a changing climate on organic-matter decomposition [10–14].  58 

Leaf litter fall is a dominant pathway for returning nutrients to the soil [15], and soil 59 

fauna plays a fundamental and often undervalued role in the litter decomposition process 60 

[9,16]. Assemblages of soil animals stimulate litter breakdown by a variety of interconnected 61 

mechanisms that alter the composition and performance of the microbial community, which 62 

ultimately transform complex plant-derived compounds into CO2, mineral and organic 63 

nutrients and humus [12,13,16]. Despite their identification as key agents of organic-matter 64 

decomposition, the interaction between soil fauna with litter traits, and particularly, with the 65 

soil microenvironment have remained elusive so far. A descriptive example is the hypothetical 66 

link between litter quality and the contribution of soil fauna to decomposition. Through 67 

selective feeding soil invertebrates could preferentially increase the decomposition of litter 68 

with a low C to N or C to P ratio (C:N and C:P, respectively), i.e. litter with a high nutritional 69 

value [17,18]. Other studies, however, have suggested that the primary effect of soil fauna is 70 

precisely to promote the decomposition of low-quality litter [19–23]. Likewise, a landmark 71 

study documented that increasing diversity of leaf-litter within a litterbag substantially 72 

enhanced the rate of disappearance of the more recalcitrant litter types, but only in presence of 73 



soil fauna, suggesting that animals could bolster the effects of litter diversity through a top-74 

down mechanism [24]. Notwithstanding, evidence supporting this hypothesis is still sparse and 75 

comes from single-site or laboratory-based microcosmic experiments [25,26], which may 76 

underestimate the large small-scale variability of decomposition rates in natural conditions 77 

[5,27]. Moreover, the nutritional status of the soil and the litter microenvironment may affect 78 

microbial communities and interact with soil fauna influencing its contribution to 79 

decomposition [28]. For instance, the decomposition of low-quality litter may be bottom-up 80 

controlled especially in nutrient-poor environments, thus being more dependent on the 81 

fragmentation and the microbial stimulation driven by soil fauna [18,28–31]. Still, multi-site 82 

litterbag decomposition studies often fail to incorporate high enough within-site replicates 83 

along with data of environmental features like nutrient availability measured at the same spatial 84 

and temporal grain, therefore masking underlying local variability and hampering our ability 85 

to identify alternate regulatory factors [7].   86 

We hypothesize that low nutrient concentrations in the litter substrate and in the 87 

surrounding litter and soil microenvironment should increase the importance of soil fauna 88 

promoting decomposition. To test this avoiding the limitations of lab microcosms or single-89 

site studies, we conducted a litterbag experiment at two rainforest sites in the Guiana shield 90 

(Table 1), and additionally including a high within-site replication to take into account the 91 

natural biogeochemical variability typically associated with the topography in these nutrient-92 

poor ecosystems [32,33]. To determine the contribution to the loss of litter mass by mesofauna 93 

alone and by meso- plus macrofauna (i.e., invertebrates with body widths smaller and larger 94 

than 2 mm, respectively [3]), we used litterbags with three mesh sizes (hereafter referred to as 95 

microbes (< 70 µm), mesofauna (< 2 mm) and macrofauna (< 7 mm) for clarity) and filled 96 

them with leaf litter substrates from two native tree species with contrasting C:P ratios and 97 

their combination: 1561 ± 337 for Goupia glabra Auble. and 2773 ± 307 for Platonia insignis 98 

Mart. [34] (hereafter referred as Goupia and Platonia). We focused on P because recent 99 

findings have indicated that this element is the predominant limiting nutrient for microbial 100 

decomposers in tropical forests [35,36]. Additionally, we also assessed the dependency of the 101 

effect of soil fauna on decomposition on a wide range of biotic and abiotic environmental 102 

factors, by compiling a unique data set of 44 variables characterizing the below- and 103 

aboveground compartments (see Table S1). These variables included soil and litter elemental 104 

compositions, activities of extracellular enzymes associated with CNP stoichiometry as 105 

indirect measures of the nutritional status of microbial communities [36,37], community-level 106 



metrics of functional foliar traits in tree canopies, and abundance and richness of the main 107 

orders of litter-dwelling arthropods. Importantly, all these potential regulatory factors were 108 

quantified -where appropriate- at the same spatial scale as our individual experimental 109 

observation unit (i.e. each block of litterbags). Therefore, by explicitly including this high 110 

heterogeneity at a landscape and at a within-plot scale as a set of continuous covariates, we 111 

were able to test our hypothesis across the natural environmental gradient included in our study 112 

sites, which ranged from low availability to extreme nutrient scarcity.  113 

Materials and Methods 114 

Study sites and sampling design 115 

This study was conducted in two primary tropical forests in French Guiana near the research 116 

stations of Nouragues (04°04′53″N, 52°41′13″W) and Paracou (05°16′38″N, 52°55′38″W). 117 

Both sites have a mean annual temperature of 25.2 and 25.8 ºC and a tropical climate, with a 118 

wet season typically from December to June and a dry season from August to November. 119 

Rainfall at the annual scale is similar (2849 vs 3280 mm y-1) although Paracou has a more 120 

pronounced dry season due to a higher evapotranspirational demand (mean precipitation and 121 

temperature during the driest quarter are 22.3 mm mo-1 and 26.3 ºC at Paracou vs 29.9 mm mo-122 

1 and 25.7 ºC at Nouragues, respectively; Fig. SM1 in Supporting Information). The bedrock 123 

at Paracou and Nouragues is Precambrian schist and Caribbean granite, respectively. Soil 124 

texture and biogeochemistry in tropical forests can fluctuate with topography due to variations 125 

in drainage capacity and erosion, which are usually associated with topographic position. Soils 126 

between hills are nutrient-poor sandy Podzols, with clay minerals (kaolinite) and oxides 127 

contents increasing toward the tops where Acrisols dominate (Margalef et al. unpublished 128 

results). We established 12 plots of 0.25 ha at each site stratified by three topographic positions 129 

to account for this heterogeneity: at the top, at the middle and at the bottom between slopes 130 

(henceforth referred to as top, slope and bottom plots). We delimited a central 20-m quadrat in 131 

each plot where we marked five evenly spaced sampling points around which we focused all 132 

our measurements (Fig. SM2). This design thus contained a total of 120 sampling points (2 133 

sites × 3 topographic positions × 4 replicate plots per topography × 5 sampling points in each 134 

plot).   135 

Litterbag experiment 136 



We assessed the contribution of invertebrate meso- and macrofauna (body widths smaller and 137 

larger than 2 mm, respectively) to the rates of litter-mass loss using 10-cm square polyamide 138 

litterbags differing in mesh size: 70 µm (PA-21-71 SEFAR NYTAL, Heiden, Switzerland) 139 

excluding both faunal groups but allowing microbes (i.e. fungi and prokaryotes) to decompose 140 

the litter substrates, and 2 mm (06-2000/53 SEFAR NYTEX, Heiden, Switzerland) and 7 mm 141 

(PE-01903-013 FIBERCORD, Alicante, Spain) allowing the entry of mesofauna and meso- 142 

plus macrofauna, respectively. The bottom layers of the litterbags with the largest opening size 143 

was made of 0.5-mm mesh [26] (06-500/38 SEFAR NYTEX, Heiden, Switzerland) to prevent 144 

the loss of litter fragments. Each litterbag was filled with 2 g of dried leaf litter in three 145 

combinations: 1) only Goupia, 2) only Platonia and 3) equal proportions by weight of both 146 

species. These native tree species were chosen due to their contrasting C:P and N:P ratios (1561 147 

± 337 and 36.9 ± 3.1 for Goupia vs 2773 ± 307 and 80.7 ± 1.3 for Platonia; mean ± standard 148 

error, data from [34]).  149 

Freshly fallen leaf litter was collected with litter traps placed under trees in monocultured 150 

plantations established by the Center for the International Cooperation in Agronomic Research 151 

for the Development (CIRAD) in 1983-84 near the Paracou research station. The traps were 152 

harvested monthly, and the plant material was dried at 40 °C in a heater to a constant weight. 153 

The leaf litter was placed inside the litterbags and visually inspected. Any material in an 154 

advanced stage of degradation was discarded. All individually tagged litterbags were closed 155 

and fixed to the soil surface with stainless-steel staples and wire. Each block of nine litterbags 156 

(3 mesh sizes × 3 litter combinations) was tied with polyamide thread at each sampling point 157 

in November 2015 (end of the dry season) and retrieved in June 2016 (end of the wet season) 158 

in the same order as they were initially placed. All harvested litterbags were dried at 40 °C in 159 

a heater to constant weight, root and soil residues were gently removed, litter fragments were 160 

identified to species for the Goupia-Platonia mixture and were then weighed. A subsample 161 

representative of all site, topographic, mesh-size and litter-composition combinations, along 162 

with five random samples of each litter type, were milled and analyzed to obtain initial and 163 

final C and N contents. Losses of these two elements from the litter were calculated as 100 × 164 

[(Mi × CNi)-(Mf × CNf)]/(Mi × CNi), where Mi and Mf are the initial and final litter dry masses, 165 

respectively, and CNi and CNf are the initial and final C or N concentrations (% of litter dry 166 

mass), respectively [9]. Using C loss (%) in addition to total litter-mass loss allowed us to 167 

assess the potential effects of any possible inorganic contamination of the litter retrieved from 168 

the field [9].     169 



Environmental biotic and abiotic data  170 

We compiled data for 44 variables describing the below- and aboveground biophysical and 171 

biological components surrounding each sampling point (i.e. block of litterbags) to identify the 172 

potential microenvironmental and biotic drivers behind the effect of fauna on decomposition. 173 

Briefly, we determined the concentrations of nutrients (C, N, P, K, Ca, Mg and Na) in the litter 174 

(organic horizon) and soil (0-15 cm depth) pools at each sampling point by means of coupled 175 

plasma/optical emission spectrometry. Additionally, the concentration of available P in the soil 176 

was determined by both the Olsen and Bray methods. We also determined the activities of the 177 

extracellular enzymes β-glucosidase, leucine and glycine aminopeptidases and acid and 178 

alkaline phosphatases (henceforth referred to as βgluc, leu, gly, acidP and alkP, respectively) 179 

in the litter and soil at each sampling point by means of colorimetric assays. We sampled the 180 

communities of arthropods in the litter surrounding each sampling point by means of 181 

Winkler/Moczarsky traps and then classifying each collected specimen into 33 Order or sub-182 

Order taxonomic categories covering all major lineages within Arthropoda. And finally, all 183 

trees (diameter at breast height ≥10 cm) within the 0.25-ha plots were mapped, tagged and 184 

identified to species or genus with herbarium vouchers for determining the tree species 185 

richness, phylogenetic diversity and three complementary indexes of functional trait diversity 186 

for each plot (please see Table S1 and supplementary methods for detailed procedural 187 

descriptions).    188 

Data analyses 189 

All statistical analyses were carried out with R v3.4.3 [38]. The variation of litter mass lost 190 

from the litterbags after the incubation was assessed using a linear mixed model as 191 

implemented in the lme4 package [39], including site, topography, mesh size, litter composition 192 

and the interaction between site and mesh size as fixed-effects terms. Sampling point was 193 

added as a random intercept term nested within plot, topography and site, thus representing the 194 

spatial structure of our experimental design. Higher-order interactions were sequentially 195 

removed when not significant (P > 0.05), additionally assessing the Akaike Information 196 

Criterion (AIC) and retrieving the coefficients of determination (r2). Parameter-specific P-197 

values for the mixed models were calculated by normal, Satterthwaite and Kenward-Rogers 198 

approximations to the number of degrees of freedom, and all approaches yielded qualitatively 199 

identical results. The same models were used for C and N losses, although the lower number 200 

of samples precluded the inclusion of a random-effects structure.  201 



We determined the distribution of all environmental biotic and abiotic variables using 202 

a Principal Components Analysis (PCA). We confirmed the apparent differences between sites 203 

and across topographic levels for the first and second PCA axes using a linear mixed model 204 

with the PC1 and PC2 scores as response variables. Then, we analyzed the variation of the 205 

most relevant environmental variables, i.e. those with larger loadings on these first two axes of 206 

the PCA. The effects of soil fauna on leaf-litter decomposition were measured as the difference 207 

in mass loss between the litterbags with and without fauna access [34]. To visualize these fauna 208 

effects within the multivariate environmental space we repeated this PCA including the six 209 

corresponding fauna-effect variables (two mesh sizes crossed with three litter combinations).  210 

The relationship between the contribution of soil fauna to decomposition with the 211 

microenvironment was assessed using a linear mixed model with fauna effect as a response 212 

variable and replacing site and topographic categorical factors by the scores of each sampling 213 

point over the PC1 and PC2 (obtained from the PCA without fauna-effect variables included), 214 

as surrogates of variations in nutrient availability associated to the environment. This analytical 215 

approach allowed us to synthesize a complex multidimensional scenario of regional and 216 

topographically associated variation in the environment into a more tractable and interpretable 217 

output [18,40]. Furthermore, by including this environmental heterogeneity as continuous 218 

covariates, we were able to assess the effect of soil fauna on decomposition across the natural 219 

gradient of nutrient availability encompassed in our study sites. Finally, we additionally 220 

explored the potential contribution of the first six PCA axes (which together explained a 221 

cumulative proportion of variance of 58%) over the effects of the fauna on decomposition using 222 

automated model selection with the dredge function from the MuMIn package [41]. However, 223 

the subset of models with the lowest AIC only included PC1, therefore discarding all other 224 

axes.  225 

Results 226 

Loss of litter mass and nutrients. After seven months of incubation, between 68 and 70% of 227 

the initial leaf-litter mass was lost when meso- and macrofauna had access to the litterbags. 228 

However, in litterbags with the smallest mesh size (microbial decomposition only), litter mass 229 

loss dropped to 48% on average in Nouragues, and to only 40% in the relatively nutrient-poorer 230 

site at Paracou (Fig. 1 and Table 2, site × size interaction). Models assessing C and N losses 231 

yielded qualitatively similar results, although this between-site difference in microbial 232 

decomposition potential was even larger for N, being 18% lower at Paracou than at Nouragues 233 



(Table 2, site × size interaction). The soil fauna in Paracou was nevertheless able to compensate 234 

this lower baseline of microbial decomposition, so that the loss rates of litter mass and nutrients 235 

were equalized between sites when both meso- and macrofauna had access to the litterbags 236 

(Fig. 1 and Table 2).  237 

Additionally, the decomposition rates of the comparatively P-richer litter of Goupia and 238 

the P-poorer Platonia were unexpectedly similar, although the mass losses for the combination 239 

of the two species was larger (+3.4%), indicating that when mixed both species decomposed 240 

faster (Table 2, species).  241 

Environmental variation between and within study sites. A principal component analysis 242 

(PCA) combining 44 potential regulatory controls with the effect of soil fauna on litter 243 

decomposition, measured as the difference in the loss of litter mass between the litterbags with 244 

and without faunal access [34], showed that the first two axes comprised 29.7% of the total 245 

variation between and within sites, underlining the high environmental heterogeneity at large 246 

and small spatial scales (Fig. 2, see Table S1 for descriptions of the variables). Despite this 247 

variability, the clear separation of the sampling points at both sites indicated that PC1 captured 248 

regional-scale disparities mostly associated to nutrient-related variables in the litter layer. 249 

Conversely, PC2 mainly identified within-site soil-related variation linked with topographic 250 

position of sampling plots (Fig. S1). All fauna effects appeared to consistently correlate with 251 

lower scores on the PC1 (Fig. 2, red vectors). Repeating this PCA excluding the fauna effect 252 

variables resulted in very subtle changes but a slight increase in the amount of total variance 253 

explained by PC1 and PC2 (32.6%, Fig. S2). Total N concentration in all compartments, foliar 254 

C:nutrient ratios in the canopy and litter and phosphatase and aminopeptidase activities in the 255 

litter were the most important variables in PC1 (Fig. S3). Overall, the Nouragues site was richer 256 

in N in all compartments, from the canopy to the soil (Table 1 and Fig. S4), whereas the higher 257 

litter C:nutrient ratios at Paracou suggested that the activity of microbial decomposers could 258 

be constrained to some degree.  259 

Indeed, we also found that the activities of the extracellular aminopeptidases and 260 

phosphatases in the litter were lower at Paracou, indicating either a lower microbial biomass, 261 

restricted microbial performance [37], or lower substrate availability [42]. The stoichiometry 262 

of extracellular enzymes is a good indicator of the relative nutrient demands of microbial 263 

communities [36,37]. The relative allocation between N- and P-acquiring enzymes was similar 264 

at both sites, despite the lower activity of all extracellular enzymes at Paracou, suggesting that 265 



the microbial communities there were generally nutrient-limited instead of stoichiometrically 266 

unbalanced (Fig. S5). In contrast to the organic horizon, enzymatic activity in the topsoil 267 

mostly varied across topographic levels, generally increasing toward the top as total nutrient 268 

concentrations did in that compartment (Fig. S1).  269 

Environmental dependency of the effect of fauna on decomposition. We assessed the 270 

relationship between the contribution of soil fauna to decomposition and the microenvironment 271 

using a linear mixed model with fauna effect as a response variable and replacing site and 272 

topographic categorical factors by the scores of each sampling point on PC1 and PC2 (obtained 273 

from the PCA without fauna effect variables included), as surrogates of regional (between-274 

sites) and locally (across topographies) associated variations in the microenvironment. This 275 

analytical approach synthesized complex multivariate environmental scenarios into more 276 

tractable and interpretable outputs [18,40], but most importantly, it allowed to assess the effect 277 

of soil fauna on decomposition across the natural gradient of nutrient availability encompassed 278 

within our study sites that ranged from low availability to extreme nutrient scarcity. The effect 279 

of soil fauna on decomposition was strongly and negatively correlated with the PC1, but not 280 

with the PC2 scores, indicating that the main drivers of the variation in the fauna effect on 281 

decomposition were the microenvironmental variables associated with differences in nutrient 282 

availability in the litter layer such as total N concentration, C:nutrient ratios and enzymatic 283 

activities (Fig. 3 and Table 2).  284 

The effect of the soil fauna was also larger in the mixed litter treatment (+3.8%) and 285 

was marginally larger (+2.9%) in the relatively P-poor litter species (Platonia, Fig. 4a and 286 

Table 2, species). The relationship between this fauna impact on decomposition and the 287 

variation of the microenvironment (PC1 scores), however, had a smoother, less negative slope 288 

for the mixed litter treatment, indicating that the combination of different litter substrates may 289 

have weakened the context-dependency of fauna effects on decomposition (Table 2, PC1 × 290 

species, and Fig. S6). Finally, as anticipated in the analysis of litter mass loss, the net effect on 291 

decomposition was larger (+4.1%) for the complete community of soil fauna (i.e. meso- plus 292 

macrofauna) than for the mesofaunal component only, irrespective of the microenvironment 293 

and in all litter combinations (Fig. 4b and Table 2).   294 

Discussion 295 



We here demonstrate that the strength of soil fauna control on litter decomposition is linked 296 

with its biotic and abiotic environment. The net contribution of soil fauna to litter mass loss 297 

increased as the conditions for microbial decomposition were more adverse, specifically when 298 

nutrient concentrations, and N in particular, were lower, not only in the litter substrate within 299 

each litterbag but also in the surrounding litter pool. This was consistent with the reduction of 300 

the activity of N- and P-acquiring extracellular enzymes in the litter layer, which were 301 

associated to stronger fauna effects on decomposition, thus providing additional support to the 302 

view that when the microbial communities inhabiting the organic horizon are relatively nutrient 303 

limited the facilitating role of soil fauna acquires a greater importance. Therefore, we found 304 

that soil fauna was able to minimize differences in litter decomposition buffering ecosystem-305 

level nutrient shortages at regional scales. This supports recent findings challenging the long-306 

standing view that biotic controls on decomposition would be subordinate to regional and 307 

global-scale features such as climate [6,7], and support propositions of local-scale variables 308 

regulating microbial activity as predominant drivers of decomposition [5].  309 

Microbes are the ultimate agents responsible for the transformation of dead organic 310 

matter, mineralization to CO2 and inorganic nutrients, and humus formation [12,13,16]. 311 

Nutrient availability rather than abundance of detritus per se is a main limitation to microbial 312 

growth and so of litter decomposition [35,36]. Microbial communities inhabiting environments 313 

differing in nutrient availability may face contrasting stoichiometric imbalances that can 314 

restrict their ability to decompose organic matter [35,43]. In low-nutrient environments (e.g. 315 

with high C:N ratios) microbes can adjust their metabolism to reduce their C-use efficiency 316 

while increasing their nutrient-use efficiency (i.e. the ratios of growth over organic C or 317 

nutrient uptake) to cope with the physiological challenges of resource imbalance [44,45]. Many 318 

direct and indirect animal-mediated processes may enhance nutrient supply, potentially 319 

stimulating microbial activity [12,13]. For example, the fragmentation and comminution of 320 

litter increases its surface area to mass ratio, making it more readily attacked by microbes 321 

(Chapin, Matson, & Mooney, 2002; Joly, Coq, Coulis, Nahmani, & Hättenschwiler, 2018). The 322 

translocation and redistribution of freshly fallen litter across soil surfaces and depths together 323 

with modifications of aggregation properties and pore structure may likewise accelerate 324 

nutrient release [12,13]. Microbial inoculation and the preconditioning of litter during transit 325 

through animal guts may also facilitate decomposition [12,13], and importantly, this effect can 326 

be directly associated with initial litter quality (Joly, Coulis, Gérard, Fromin, & Hattenschwiler, 327 

2015; Joly et al., 2018). In fact, Joly and collaborators found that the lower the initial litter 328 



quality the greater the magnitude of microbial stimulation after invertebrate gut passage (Joly 329 

et al., 2015), and that the positive effect of soil fauna was mainly related with greater N release 330 

from faeces than from litter where this nutrient is more rapidly immobilized (Joly et al., 2018). 331 

Direct grazing by soil fauna on living fungal hyphae, bacterial mat and microbial necromass 332 

may also alter density-dependent community functions such as substrate, enzyme and nutrient 333 

diffusion and exploitative and interfering competitive interactions affecting species 334 

coexistence and thus the composition and performance of microbial communities 335 

(Buchkowski, Bradford, Grandy, Schmitz, & Wieder, 2017; Crowther, Boddy, & Jones, 2011). 336 

The nutrients acquired by soil animals generally exceed their demands, and the surplus 337 

is excreted in easily available forms such as urea, ammonia, phosphate and other derivative 338 

forms (Chapin et al., 2002). At a macroscopic scale, it is well-known that, through their dung 339 

and flesh, megafauna increases nutrient diffusion across the landscape with strong impacts on 340 

ecosystem functioning [51]. Likewise, soil fauna could improve the movement of nutrients 341 

across the litter-soil interface. Indeed, nutrient transfer between litter types, from the N pool in 342 

the soil or from microbial fixation, has been suggested as a widespread mechanism behind the 343 

diversity-function effects on decomposition [9,29,52]. We argue that soil fauna may play a role 344 

in these phenomena because they could locally enrich low-quality litter substrates by increasing 345 

nutrient diffusivity, thereby relaxing the stoichiometric constraints that may hinder their 346 

breakdown. If so, a low nutrient concentration in a particular litter substrate and in the 347 

associated microenvironment should increase the importance of the facilitation of nutrient 348 

mobility by soil fauna.  349 

Previous studies have reported that soil fauna can strengthen the diversity-function 350 

effects on litter decomposition, increasing the rates of loss of litter mixtures with higher 351 

diversity [24,26]. Our results also indicated that soil fauna had a larger effect in the litter 352 

mixture treatment. The stoichiometric heterogeneity of complex litter mixtures could better 353 

match the nutritional demands of litter-feeding animals, thereby stimulating its activity [25]. 354 

The variation of their contribution to the decomposition of the richest mixture, however, was 355 

less dependent on the microenvironment than for the single-species litterbags. From our point 356 

of view, this finding implies that more complementary litter mixtures would be less reliant on 357 

a potential animal-mediated mechanism of nutrient transfer, which delivers nutrients from the 358 

pool in the microenvironment. Additional support to this hypothesis may come from an 359 

experimental fertilization experiment, where synergistic diversity effects on decomposition 360 



correlated with the stoichiometric dissimilarity of the litter mixture only in the presence of soil 361 

fauna, while this relationship disappeared when the nutrient pool available in the 362 

microenvironment was experimentally increased [26]. The same authors concluded that 363 

microbial activity was subsidized by nutrient uptake coming from other sources than the litter 364 

present in the litterbags. In light of our findings, we also suggest that soil fauna may be a key 365 

facilitator of this external flow of resources, which could be increasingly important as nutrient 366 

content in the microenvironment decreases or the litter mixtures become poorer or more 367 

unbalanced.  368 
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 532 

TABLE 1  Characteristics of the study sites 

 Nouragues Paracou 

Coordinates 
04°04′53″N 

52°41′13″W 

05°16′38″N 

52°55′38″W 

Soil type 

(FAO) 

Sandy Podzols 

and Acrisols 

Sandy Podzols 

and Acrisols 

MAT (°C) 25.2 25.8 

MAP (mm) 3280  2849 

Aboveground 

biomass (t/ha) 
423 ± 44 371 ± 20 

Litter  

pool (g m-2) 
1259 ± 40 1265 ± 54 

Foliar N (%) 2.05 ± 0.01 1.93 ± 0.01*** 

Litter N (%) 1.49 ± 0.03 1.32 ± 0.18** 

Foliar C:N 25.21 ± 0.09 26.28 ± 0.12*** 

Litter C:N 33.53 ± 0.80 37.14 ± 0.70** 

Litter AlkP 

activity 
73.73 ± 4.75 33.58 ± 2.29*** 

Arthropod 

density (id m-2) 
477 ± 28 536 ± 32 

Tree species 

richness 
38 ± 2 32 ± 1** 

Tree functional  

richness 
-0.09 ± 0.12 -0.11 ± 0.08 

Values are means ± standard errors (n=120, except n=24 for 
tree-community data). Elemental ratios are mass-based. AlkP 
refers to maximum potential activity of alkaline phosphatase in 
litter (µmol pNP g-1 h-1). Tree species richness refers to mean 
number of species per plot while functional richness is a 
unitless standardized effect size of the convex hull volume 
defined by six foliar traits. Between-site differences are based 
on linear mixed-effect models, with site and topography as 
fixed factors and sampling point within each plot as a random 
effect. *, ** and *** denote P<0.05, 0.01 and 0.001, 
respectively. See text and supplementary materials for further 
details. 
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 534 

TABLE 2  Coefficients, significance and r2 for the linear mixed models used to evaluate the 
controls on losses of litter mass and nutrients and faunal effects on decomposition 

Variables 
Model 

Litter-mass 
loss  

C loss  N loss Fauna effect 

Intercept  65.0 ± 2.3 71.8 ± 3.3 57.8 ± 3.9 22.6 ± 1.7 
Site  Paracou 2.9 ± 2.4 -1.9 ± 3.5 3.4 ± 4.2  
Topography Slope 0.6 ± 2.4 -0.5 ± 2.5 3.1 ± 2.9  

Top 4.1 ± 2.4 4.3 ± 2.4  5.9 ± 2.9  

Size Mesofauna -5.3 ± 1.6 -6.1 ± 3.5 -4.4 ± 4.1 -4.1 ± 1.2 

Microbes -19.8 ± 1.6 -19.9 ± 3.5 -20.6 ± 4.2  
Species Platonia 0.8 ± 1.1 -2.9 ± 2.4 0.9 ± 3.3 2.9 ± 1.5 

Platonia + Goupia 3.4 ± 1.1 5.2 ± 2.4 9.1 ± 2.9  3.8 ± 1.5 
PC1 (nutrient availability)    -3.1 ± 0.5 
PC2 (topography)    -0.7 ± 0.5 
Site × Size  Paracou-Mesofauna 2.4 ± 2.2 6.1 ± 4.9 3.7 ± 5.8  

Paracou-Microbes -10.3 ± 2.2 -10.1 ± 4.9 -17.9 ± 5.9  
PC1 × Species Platonia    0. 8 ± 0.5 

Platonia + Goupia    1.3 ± 0.5 
Model r2

m/ r2
c 29.5/50.2 44.1 45.0 12.6/43.3 

Losses of litter mass, carbon (C) and nitrogen (N) are percentages from initial dry mass and C and N contents, respectively. The fauna 
effect on decomposition is the difference between the loss of litter mass from the litterbags with meso- and macrofauna relative to the 
losses from the corresponding microbial-only litterbag (mesh sizes of 2 and 7 mm vs 70 µm, respectively; see Methods). Intercept group-
level is Nouragues-Bottom-Macrofauna-Goupia for the models of litter-mass loss (n=1080) and C and N losses (n=206), and the intercept 
for the fauna effect model (n=720) is Macrofauna-Goupia. The factor species denotes three litter combinations based on two species 
with contrasting C to phosphorus ratios. PC1 and PC2 are the scores of each sampling point for the first and second PCA axes, which 
encompass gradients of nutrient availability and topographic microenvironmental variation (see Figs. 3, S1 and S2). Models are linear 
mixed models, with sampling point as a random intercept nested within plot, topography and site, except for models of C and N loss, for 
which the lower number of samples precluded the inclusion of a random term. When applicable, marginal r2 (r2

m) values are associated 
to fixed factors while the conditional r2 (r2

c) additionally retain the random effects structure. Significant (P<0.05) and marginally significant 
(P<0.1) parameter coefficients are highlighted in bold and italics, respectively. 
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 536 

FIGURE 1. Variation in the loss of litter (as a percentage of initial dry mass) by site and 537 

litterbag mesh size. Different uppercase letters denote significant differences between sites for 538 

the same mesh size, and lowercase letters denote significant differences among mesh sizes 539 

within the same site and points indicate outliers. Among-group comparisons are Tukey post-540 

hoc tests based on marginal means estimated from a linear mixed model. See Table 2 for model 541 

output.  542 
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 544 

FIGURE 2. Principal component analysis (PCA) showing the distribution of all sampling 545 

points at Nouragues (blue) and Paracou (green) and the loadings of the 44 biotic and abiotic 546 

environmental variables (gray vectors). The contribution of soil fauna (mesofauna and meso- 547 

plus macrofauna) on the decomposition of three litter combinations are included in this analysis 548 

and highlighted in red for visualization. PC1 axis was mainly defined by nutrient-related 549 

variables in the litter layer. Labels for the environmental vectors with the lowest loadings have 550 

been removed for clarity. See Methods and Table S1 for variable descriptions and 551 

abbreviations.  552 
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 554 

FIGURE 3. Relationship between the effect of soil fauna on decomposition (as the difference 555 

between the litter mass loss in the litterbags with meso- and macrofauna relative to the 556 

corresponding loss in the litterbags with only microbial access) with the PC1 scores of each 557 

sampling point as a proxy of the relative nutrient availability in the litter microenvironment. 558 

See Table 2 for model outputs. 559 
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 561 

FIGURE 4 (a) Differential effect of soil fauna on the decomposition of three litter combinations 562 

differing in their C:P ratio. (b) Differential effect of soil mesofauna alone (<2 mm body width) 563 

versus the combined effect of the meso- plus macrofauna. In both panels, the distribution of 564 

fauna effects is modeled as a density function with highest or widest points having greater 565 

probabilities within each categorical group. See Table 2 for model outputs. 566 
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