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An increasein the availability of soil phosphorus (P)has recently been recognized an
underling mechanismof the positiverelationship between plant diversity and ecosystem
functioning. The effect of plant diversity on the bioavailable forms of P involved in
biologically mediated rhizospheric processes and how thénk betweenplant and soil
microbial diversity facilitates soil P bioavailability, however,remain poorly understood.
We quantified four forms of soil bioavailable Pin subtropical mature forests using a
novel biologicallybased approach and soil microbial diversitypased orhigh-throughput
lllumina sequencing.Tree species richnessvas positively correlated withthe four forms,
which was more pronounced in organichan mineral soil. A model of the link between
plants andsoil microbesfor eachform indicated that soil bacterial and fungal diversities
played dominant roles in mediating the effects of tree species richness othe
bioavailability of soil P. The increasing biodiversity of treesand soil bacteria and fungi
could maintain the bioavailability of soil P in forest ecosystems and alleviatehe

limitation of soil P

Many studies have reported that plant biodiversity enhances ecosystem functions,

particulaty above- and belowgroundbiomass or productivity?. Increasesn biomass and
productivity € g.overyielding) inecosystemsiith manyspecies oplant canbe attributed to
sampling(or selectioh effectsof thedominant specieand tocomplementarity effects among
specied®. The sampling effects are speeggecific impacts on biomashie to the higher

probability of having highly productive speciesludedand dominant imorehighly diverse

ecosystems* 8, The complementarity effects refer to the various forms of niche partitioning

among specie®r acquiringresources in ways that agpatialy or temporaly complementary,
or plantplant facilitationfor increasingesource availability or other growing conditions, and

thereforeincreasng productivity®> 8. Phosphorus (P) is an important nutrient arious
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physiologicalprocesseand componentge g. energy metabolisnsignal transductiorenergy
carriers,nucleic acids and membranegeded foplant growthbut is often deficient to meet
the demands oplans® °. An increase in soil P availability habereforerecently been
recognized aanunderlyingmechanisnfor the positive effects of plant diversity on ecosystem
biomass and productivity P, however,occurs inmanyinorganic and organic forms in the
soil, and theuse of multiple forms of P by plants isomplex and poorly understood.
Understanding how plant diversity affects the availability of multiple forms of bioavailable P,
asopposed to single forms of available P or totsl ', may facilitate the developent of
sustainable strategies to alleviéteitations ofsoil P

Plantsdevelop a range of mechanisms accompabyeahicrobial processes response
to P deficiencyto increasethe mobility andbioavailability of soil B % Four potential
mechanisms can be generatiz (1) modification of root morphology and formation of
mycorrhiz&!*%, (2) exudation of organic acig® 1"1°, (3) exudation ofenzyms (e.g.
phosphatase and phytasg}! and (4)exudation oH*/OH'/HCQ;5' 18 22 23 in the rhizosphere
by plant roots and soil microheBheforms of bioavailabé P involved inmechanismd to 4
are defined a€aCkb-P, citric-P, enzymeP and HCIP, respectively

Increases in soil P bioavailability ircosystems withdiverse plant speciesare
hypothesized to involve plajlant facilitatiorf*, where Pmobilizing species improve P
nutrition for themselves and neighboring Aexmobilizing species by secreting organic acids,
protons and enzymes into the rhizbsge to desorb and solubilize phosphidtes 24,
Facilitation has recently been identifieih two-species intercropping ecosystehg* 2,
Forests ar® sel-nourishing ecosystems that depend awetRinedin their own biomass and
suppled from litter decompositioff. The facilitation of sil P bioavailability howeverhas
not yet beemeported forforest ecosystems, which often consist of more tharptar@species

or even dozens a@lpecies
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Soil microbes play important roles in returnimgtriens to the soil by the decomposition
of litter (leaves and rootgnd root exudations, whicirekey procesesthat bridgethe link
between plant and soil P nutritidn'® 24, namely planimicrobesoil interactiod* (Extended
Data Fig. 1). Diverse plant communities prodliter composed of more diverggaits of
leavesand roos (in amount and quality) and release more diverse root exddakas litter
and exudates caaisoinfluence soil organic carbon (SG€and directly affect soinicrobial
composition and activity 2+ 28 29 Bioavailablesoil P clearly hassimultaneousmultiple
forms, and these forms can be mediated in natural ecosystems biotheersity of soil
microbes. For example, ectomycorrhizal (ECM) fuaggwidely considered the main factor
for improving P uptake by plarffs3® 31 and saprotrophicfungi are responsible for litter
decomposition angplay a crucial role inthe mobilization of organic P2 Bacteia can
solubilize mineral P or immobilize it in their bioma$$lantand soil microbial communities
and their interactions can shape multiptems of bioavailable P,but identifying and
guantifying their relative effectsis difficult, perhaps because soil microbes obtain C
compounds from plants in exchanige mineral nutrients, including®®33. Plantmicrobesoil
interactions mayhus be key mechanisra for understandinghe biogeochemical processes
involved in P bioavailability in diverse plant ecosystems.

BioavailableP gant-plant facilitation and planatnicrobesoil interactiors may strengthen
as forest stands deveffpwe selected a total of 94 subplots (witrea of 10 x 10 m) along
diversity gradiens from 1 to 12 tree species in three mature subtropical fé*¢&stended
Data Fig. 2) taquantifythefour forms ofsoil bioavailable RCaCb-P, citricP, enzymeP and
HCI-P), tree species richnessil bacterial and fungal diversity (Shannon indexdmany of
the drivers hypothesized to be important for regulating tremilation We plotted bivariate
relationship to determine the influencef biodiversity on bioavailable PWe identifed the

underlying mechanisrof the effectof tree species richness on bioavailableyPormulaing
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a theoretical framework for the interconnections amongdallers andusng structural
equationmodeb (SEMs) to empirically evaluatghe theoretical framework (Extended Data
Fig. 1). More detailsof themethodolog are provided in the Method®ction

Tree species richneswas positively associated witkoil P bioavailability (Fig. 1),
consistent withother studies 3. Treespecies richnessmiay havebeen positively correlated
with bioavailable Fbecauseliverse tree speciesayproduce more and divergder (leaves
and roots) to form SO@-ig. 2), havevariousroot morphological characteristit@ secreing
moreexudates (i.e. organic acids, phosphatasesiat@H/HCOs) andincreasereegrowth
(i.e. basal area (BA), see FR), therebyincreasinghe requirements diienutriens, including
P, that driveroot exudaion andintensfy soil microbial activites The positive effects of tree
species richness on bioavailable P were more pronounced in difgamaineral soil (Fig. },
reinfordng the premisethat forests with manyree speciegenerate diversguantities and
qualitiesof litter®* andincrease thalensity of fine roots distributed in the organic horizon,
which greaty increase$ exudation

The dfectsof tree species richness on bioavailable P variedtivgtiorm ofbioavailable
P8 (Figs. 1 and 2)CaCb-P is a labile P that is easily available to plantsiatiten depleted in
the rhizospheic soil** 16 A CaCb-P concentration gradient formed betwelearhizosphere
and bulk soilwhich could drivehemobilizationof CaCb-P from bulk soil taherhizosphere.
Citric-P is an activéorm ofinorganic Padsorbing to clay particles and weakly bindinga,
Fe or Al precipitates, which can be easily releasedrggnic acid$!®1°, Organic acids are
commorty secreted byiving plant or deal roots and their secretiaare plant species
specific. HCIP is a recalcitrant inorganic P thedn be solubilized byH*/OH/HCOs™ root
exudatesH"/OH/HCOs are secreted when rootske up ions in unbalanced proportions,
which is alsoplant speciespecifi®. More and diverseoot morphological characteristics,

organic acids and*/OH/HCOs may increase theioavailabilityof CaCb-P, citric-P and HCl



101 Pin diverse species communiti@sg. 2a, b and dEnzymeP, howeverjs an organi¢orm of
102 P that will only be taken up by plants if mineralizd by phosphatasés®. Phosphatase
103  exudaion by plantsconsumegnergyanddepend on the demand for?®*’, If CaClb-P, citric-
104 P and HCIP increased by high diverse trasssufficientfor supporting P requirements of
105 plants,they contribute toreduce energand substrateonsumptio?®, and there isa weak
106 relationshipbetween enzym® and tree species richness.

107 Our resultsindicateda strong positiveand linearcorrelation between the amouoit
108 bioavailable Randbacterial and fungal diversity (Fig. 3), but #féectof microbial diversity
109 on bioavailable Rliffered among microbial taxalhe solubilization andmmobilization of
110 inorganic Pare themain mechanissiresponsible fobacterialP bioavailability. Bacterial
111  diversityalsodirectlyincreasedheamounts othethreeformsof inorganic RCaCb-P, citric
112 P and HCIP; Fig. 2).The ability to solubilize inorganic Bepend=n the development of
113  extraradicaimycelia byECM fungiand therelease of organic acids and/@H/HCOz3% %,
114  Fungal diversitycontributedmore tharbacterial diversityto the bioavailability ofenzymeP
115 (Fig. 3), suggesting that fungal communities hatbminant role in enzymP bioavailability
116 by the exudation ophosphatasedhe effects of fungal diversity on citrle and HCIP were
117  similar tothose ofbacterial diversity and tree species richn@ssicatingthat organic acids
118 and H*/OH/HCOs are commonly released by plants and microbes. A specific functional
119 group of ECM funghas been documented as an importapré&atorandhelped plantstake
120 up P#30.31 |n addition, CaGHP is a readilyabsobedandusel form ofinorganic P, sothe
121 lack of significant impact®f fungal diversityon CaC}-P was not surprisingyecausdighly
122  efficient CaC}-P uptake by ECMungi can offset the positive effects of other functional
123  groups of fungi.

124 Soil microbial diversity mediated the effects of tree species richnessildnoavailable

125 P by three biological mechanisn{Bigs. 2 and4). Firstly, the roots ofdiverse tree species
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release diverse exudatesrimzospheic s o i | as a fAboostero for
diversity’. Our analysifoundthat tree species riokss directly increased bacterial diversity.
Secondlythe plants irtreerich communitieshave longfine roots which provide more and
multiple hosts for soil microbeand thusmulti-hostmulti-microbe interactior. Our results
indicatedthattree species richnegscreased the length &ihe rootsandbacterial and fungal
diversity. Thirdly, tree species richnessxcreasd tree basal area (aboveground biomass) and
fine-root biomasswhich wouldproducelarga amountsandvarieties oflitter andthus more
SOC,which wouldthendecrease bacterial and fungal diversliye higher amounts ditter
produced byhighly diverse species communities cowiffect resource availability or litter
leachates and altenicroclimatc conditions including soitwater content and temperature,
which might suppressthe growth ofsome common microbial species decrease their
competitive ability, thudowering microbial diversity®. In contrast to diversity, microbial
activity and biomass could increaas theamounts oflitter®® and SOC® increasd, which
couldalsoincreasemycorrhizalformation andexudaton of organic acids, phosphatases and
H*/OH/HCO:s to increase the amount bfoavailable P.

SOC had positive and direct effects ocitric-P, enzymeP and HCIP* (Fig. 2 and
Extended Dat#igs. 3-6). Both biological and physical processes aaocount forthis result.
Among thebiologicalproceses communities withdiverse tree specigsoducingmoreSOC®
lead to higher microbial activityand therebythe production of more organic acids,
phosphatases and”/OH/HCOs;. The physical processes vary dependingttan form of
bioavailable PCitric-P and HCIP bind weakly or create stabl&e and Al precipitatésat
elevatedconcentratioa of SOC in acidc forest soils,which can easilyform soluble C
compoundgFe(Al)-P complexesn which P is readily liberatéfl The positive correlation
between SOC and enzyrAramay be due to thability of SOC to adsorb phosphatases in an

active formt! andthenmaintaina highrate of emymeP mineralization
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Thebivariate plots of tree species richnesslldonly explain less than, 22, 7 and 1%
of the variation in CaGiP, citric-P,enzymeP andHCI-P (Fig. 1) butthe SEMs could explain
18, 41, 25 and 4% of the variation in CaGiP, citric-P, enzymeP andHCI-P, respectively
The SEM resultsindicatedthat the effects of tree species richness on bioavailable P were
mediated by other biotic and abiotic fastosuch as soil microbes and SOC concentrations.
Not all of thevariability of bioavailable P couldeexplained bythevariablesn these SEMs.
Othervariables (e.g. soil pH; Extended D&tigs. 7 and 8) noincludedin these SEMsnay
thushavealsocontributel to the effects ofree species richness bioavailable P.

To the best of our knowledge, thetudyis the firstto explore the mechanism of soil P
bioavailability insubtropical forests wittiverse tree speciéy identifyingthelinks between
trees, microbes andsoil. Our findings have three important implications for understarttmg
interactions betweemiodiversity and bioavailable PFirstly, the increase in tree species
richness increased soil bioavailable P, including &&CtitricP, enzymeP and HCGIP, which
were more pronounced in orgartitan mineralsoil. Secondly, soil bacterial and fungal
diversity can mediate the effects of tree species richness on bioavailable P. Tree species
richness can directlaffect bacterial diversity anthdirectly affect bacterial and fungal
diversity by increasingree basal areandfine-root biomass and length, therebffecing
bioavailable P. Thirdlythe SEMsindicatedthat SOCservel as alink between tree species
richness and soil microbial diversity to affect bioavailabkuBgesting that soil abiotic factors
may be key driversontrollingthe relationships between biodiversity and bioavailaliédre
observations and exparents that link plant and soil biodiversity to bioavailablevi®
certainlybeneededn the near futuréo evaluate and predict P bioavailability and mobilization
in forest ecosystem$ecause the lossf biodiversity is continuing and soil properties are

changing irforest ecosystems



176  Online contentMethods additional Extended Daitems andsourcedataare available in the

177  online versionreferences unique to these sections appear only in the eelision
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METHODS

Site description. This studyvas carri ed out in the Dashanch

282 4 o 5 8 GINL 3 A137 @ 4 © @& (CBangsha County, Hunan Province, China. The
altitude ranges from 5® 17 m a.s.| The park has a mean annual precipitation of 1416 mm
anda mearannual temperature of 17°G. The soil isa welldrainedredclayeyloamclassified
asanAlliti -Udic Ferrosol Details d thesite are provided by Jiang et*aland Zhu et at?,

No activities ofhuman dsturbancesuch as firewood collection, have been allowed in the
park since the late 1950Secondary forests have develodterdecades of forest protection
dominated by Pinus massoniana,Choerospondias axillaris Cyclobalanopsis glauca
Lithocarpus glabeandLoropetalum chinensé 1-ha permanent plot was establishe@013
for each of three secondary forests:massoniana L. glaber coniferous and evergreen
broadleaved mixed forest (PLRK), axillarisdeciduous broadleaved forest (CAF) &andlaber
T C. glaucaevergreen broadleaved forest (LGF) at early, middle and late successional stages.
Forest ecosystems are highly complexth many microsites varying in environmental
factors* 3°. We established network of forest plots alorgyadients otree species richness
within the forestso account for environmental facté$* 4. Each pot wassuldividedinto a
grid of 100 subplots of 10 x 10 m. The locationgreeswere mappedavithin each subplot
andthe species, diameter at breast height (DBH) and height (H) of all trees were recorded. A
similar experimental design was used to examine the effects of plant functional diversity on
forest ecosystem functiéh Detailed information of stand characteristics is available in

Ouyang et af> and Zhu et af?.

Sample collection.We selected 31 subplotsasedon their tree species richnesdong a
diversity gradient from 2 to Species in PLF, 31 subplots along a diversity gradient from 1 to

12 species in CAF and 32 subplots along a diversity gradient from 1djpeties in LGFKig.

16
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S2), for atotal of 94 subplotscontainng 40 species (Extended Data Table 1). We avoided
adjacentsubplotsas much as possible to eliminate edge effbataused a fivepoint mixed
sampling methodo eliminate edge effectwhen not possibleThe five sampling points
included the centef the subplot and four poinégjuidistart from the centetowardthe corners
of the plots (Extended Data Fig. ®amples of manicsoil were collected withirareasH0 x
50 cmat each point after the litter was remov&hmples ofmineral soilwere thercollected
from the 610 cm soil layer. All mixed soil samples were sieved to gassigh a2-mm mesh
and divided into thresubsamplesOnesubsamplavas airdried for the determination of soil
organiccarbon (SOQ corcentration soil avalableP concentrationand soil pH; one
subsamplavas stored at 4C for measuring the amount bfoavailable Randonesubsample
was stored a0 °C for measuringmicrobial diversity Fine rootg<2 mmin diameter)were
collected fromthe0-10 cm soil layer ahefive points in each subplosinganauger and were

transported tohelaboratory for further analysis.

Chemical analysis.Fourfractions ofbioavailable RCaCb-P, citricP, enzymeP and HCIP)
were measuredsingthe extractionmethod reported by Deluca etalEach P fraction was
measured in parallel by shaking 0.5 g of fresh soil with eatfact (10 ml) in separate 15l
centrifuge tubes for B on a reciprocal shaker at 188m. The tractswere then centrifuged
(40004¢, 25 °C, 30 min) toobtain supernatast containingthe four forms of bioavailable .P
CaCb-P was assessed using a 10 mM Ga0lution citric-P was assessed using a 10 mM
citric acid solutionenzymeP was assessed using a final concentraifdh02 enzyme units
ml! solution mixed with phosphatase and phytaseé HCI-P was assessed using a 1 M HCI
solution. CitricP extracts were diluted #0ld, and HCIP extracts were diluted Z0Id. The
CaCb-P and enzym® extracts were not diluted. All extractvere analyzed colorimetrically

(630 nm)by the malachitggreenmethod® using a multiscan spectrum (Tecan Infifii00
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348  Pro).

349 Soil pHwasmeasured at a soNater (deionized) ratio of 1:2.5 using an FE20 pH meter
350 (Mettler Toledo, Shanghai, China). Alried soilwasground andsieved through a 0.2&m

351 mesh. The SOConcentratiorwas measured usingCr.07-H>SQs oxidation Soil available P
352 concentrations were determined usth@5 mol L HCIl and0.025 mol L} (1/2 H:SQy)*°. Soil

353 propertiesare presented in Extended Data Tabl€i@e roos wereseparagd asdescribedy

354  Liu et al¥’, andtheirbiomass and lengtiere then quantified

355

356 Assesmentof microbial diversity. DNA was extracted from 0.5 g fresh weightlo@wedsoil

357 samples using the E.Z.NA.soil DNA Isolation Kit (Omega Bidek, Norcross,USA)

358 following thema n u f a cptotocoleTheddsrersity ofthe soil microbial communities was
359 analyzedoy DNA sequencingising the lllumina MiSeq platfornBacterial 16S rDNA genes
360 were amplified usinghepr i mer p aGTGECCAGCMBECAGE®E3 Nj) an(ds N9 07 R
361 CCGTCAATTCMTTTRAGTTT3 f§)Fungal ITS genes weramplified using thgrimer pair
362 | TS1F -CTTGETGATTTAGAGGAAGTAA-3 Nj) and I TS2 - (2043
363 GCTGCGTTCTTCATCGATGE3 f§j)Raw fastq files were demultiplexeshd thenquality-

364 filtered usng QIIME (version 1.17) with the following criterigl) Reads of300 bpwere
365 truncated atsites receiving an average quality score <20 over abpGsliding window,
366 discarding the truncated reads that wes8 bp. (i) Exact barcode matchingyo mismatched
367 primer nucleotids and reads containing ambiguous characters were remaugdOnly

368 sequences thatverlagpedby >10 bp were assembldxsedon their overlap sequence. Reads
369 that could not be assembled were discarded. Operatiarahomic wits (OTUs) were
370 clustered with a cutoff of 97% similarity using UPARSE (version 7.1
371 http://drive5.com/uparse/), and chimeric sequences weeatified and removed using

372 UCHIME. The taxonomy of each 16S rRNA gene sequence was analyzed by RDP Classifier
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397

(http://rdp.cme.msu.edu/) against tB&LVA (SSU115) 16S rRNAgene database using a
confidence threshold of 70% The fungal ITS OTUs werassignedo taxausing the BLAST
interface against the UNE database V6.9.7. (E<®PPL. The Shannon diversity index,
calculatedfor these rarefied®TU taxononres using QIIME (version 1.17), was selected for
this study because it provides a robust and informastienae of taxonomic diversity for soil

bacterial and fungal communitfés

Statistical analysis. We first determinedthe rdationships betweerthe four forms of
bioavailable Rindsoil available P using Pearson correlations (Extended Data Tale B¢xt
assessed the relationships between biodiversibavailable Ptree basal aredjne-root
biomass, fingoot length and SOC (Extended D&igs. 3-6 and Extended Data Table 4) using
linear regressiondVe then identifiedhe effects of tree species richness, tree basal area, fine
root biomass red length, soil bacterial and fungal diversity and SOC on bioavailable P
individual variables were subjected to multiple regression model selection based on the
corrected Akaike information criterion (AIC) (Extended Data Table 5).

Structural equationrmodels (SEMs) were used to analyze the direct and indirect
relationshipdetween the four forms of bioavailable P & species richness, tree basal area,
fine-root biomass and length, soil bacterial and fungal diversity and Bkfirst step iran
SEM requires establishing anpriori model based oknown effects and the relationships
among the driving variables (Extended Data Fig. 1 and Extended Data Table 5). In our model,
we only considered the botteup effect of tree species richness on soil bioavailahlsiiry
tree basal area, fin®ot biomass and length, soil bacterial and fungal diversity and SOC. Data
manipulation was required before modeling. The distributions of endogenous variables were
edimated and their normality was tested. Tree basal areartinebiomass and length, citric

P, HCIP and SOC were legansformed tosatisfy the requirement of normality. The R
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398 software platforr® and the lavaafi andlavaan.survey? packagesvere used to analyze our
399 SEMSs. Each pathway in the final model was evaluated for significant contributions to the model.
400 Indices of nodelfit werethe é*-test @1 o w éindicates abettermode), P (traditionally >

401 0.05, the rootmean square errdRMSE) of approximation (RMSEA; the model has a good
402 fit when RMSEA €9.05) andthe 90% confidence intens{CI90). Details ofthe SEMs are

403  shown in the Extended Datélotes.
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Figure legends

Figure 1 | The correlations of tree species richness with Ca&lP (a), citric-P (b), enzyme

P (c) and HCHP (d). The red and blue fitted lines are from linear regression (n=94). Only

significant fitted lines are shown on the graphs. Significance indibatasterisks: P < 0.05,

** P<0.01, ** P<0.001.

Figure 2 | Structural equation models of tree species richness, tree basal area (tree BA),

fine root length, fine root biomass, soil organic carbon (SOC), bacterial diversity and

fungal diversity on sal CaCl2-P (a), citric-P (b), enzymeP (c) and HCFP (d) in organic

soil (n=94). The fi

t

ndi ces

of

t he %f1.412,P=06v8:de |l s

RMSEA=0.000, CI90 (0.000; 0.172Numbers in the endogenous variable indicate the

explained varianceRf). Numbers next to the arrows indicate standardized path coefficients.

Arrow width is proportional to the strength of path coefficients. Significance indicated by

asterisks: P < 0.05, *P < 0.01, ** P < 0.001.

Figure 3 | The correlations of soibacterial diversity and fungal diversity with CaClz-P

(a, b), citric-P (c, d), enzymeP (e, f) and HCIP (g, h).The red and blue fitted lines are from

linear regression (n=94). Only significant fitted lines are shown on the graphs. Significance

indicatedby asterisks: P < 0.05, *P < 0.01, *** P < 0.001.

Figure 4 | The correlations of tree species richness with soil bacterial diversity (a) and

fungal diversity (b). The red and blue fitted lines are from linear regression (n=94). Only

significant fitted lines are shown on the graphs. Significance indicated by asteRsk€.85,

** P<0.01, ** P<0.001.

22

V



@ Organic soil @® Mineral soil

o
12 &
(@) Yog=0.02TSR+0.13, R?=0.07" (b) Y, =3.67TSR+4563, R?=022| o
10 Y in = 0.01TSR +0.11, R?=0.08" Y, =2.63TSR+42.90, R”=0.28"
'7; @ - 3 <
- o
i 0.8 PY ] ~
o LI o
o
E o064 8 ... -8 E
o ® _o 5
N 04 4 .. @ @ Q2
Q .0 =
O @ -3 O
0.2 @ .
[ ]
(=]
2.0 a - <
(€) You=0.03TSR+045 R*=0.07* |(d) Y, =15.83TSR+252.25, R“=0.10" ~
2 *
Yo = 3.88TSR+174.89, R =0.05* | §
> -
. -
o 2
o o
E s o
a © £
1
(o) o
£ 8 =
> f O
N T
L o
o
™~
o

0 2 4 6 8§ 10 12 14 2 4 6 8 10 12 14

463 Tree species richness Tree species richness

464  Figure 1 |Correlations of tree species richness with Ca@iP (a), citric-P (b), enzymeP (c)
465 and HCI-P (d). The red and bluknes arethefitted regressionines (n=94). Only significant

466 fitted lines are showrt P < 0.05, **P < 0.01, *** P < 0.001.
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467

468 Figure 2 | Structural equation models ofthe effects oftree species richness, tree basal

469 area (Tree BA), fine-root length, fine-root biomass, soil organic carbor{SOC), bacterial

470  diversity and fungal diversity on soil CaCb-P (a), citric-P (b), enzymeP (c) and HCHP (d)

471 inorganicsoil (n=94)The fit indices of t Helli2iPs0b73model s
472 RMSEA=0.000, CI90 (0.000; 0.17Z2)he rumbersfor the endogenougariables indicate the

473  explained varianceRf). The rumberson the arrows indicate standardized path coefficients.

474  Arrow width is proportional to the strength thie path coefficients* P < 0.05, ** P < 0.01,

475 ** P<0.001.
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Figure 3 |Correlations of soil bacterial diversity and fungal diversity with CaCbk-P (a, b),
citric-P (c, d), enzymeP (e, f) and HCIP (g, h). The red and bludines arethe fitted
regressiorines (n=94). Only significant fitted lines are shownP < 0.05, ** P < 0.01, ***

P <0.001.
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Figure 4 |Correlations of tree species richness with soil bacterial diversity (a) and fungal
diversity (b). The red and bluénes arethe fittedregressiorlines (n=94). Only significant

fitted lines are showrtf P < 0.05, **P < 0.01, *** P < 0.001.
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