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Abstract 20 

Recent advances in the satellite retrieval of solar-induced chlorophyll fluorescence (SIF) provide 21 

new opportunities for understanding the phenological responses of ecosystems to global climate 22 

change. Due to the strong link between SIF and plant gross photosynthesis, phenological events 23 

derived from SIF represent the seasonal variation of ecosystem functioning (photosynthetic 24 

phenology) and differs from phenologies derived from traditional vegetation indices (VIs). We 25 

provide an overview of recent advances in remotely sensed photosynthetic phenologies, with a 26 

focus on their driving factors, their impact on the global carbon cycle, and their relationships with 27 

VI-derived land surface phenology metrics. We also discuss future research directions on how to 28 

better use various phenological metrics to understand the responses of plants to global change.  29 

 30 

MAIN TEXT 31 

 32 

1. Background  33 

 34 

Plant phenology, i.e. recurrent events in plant life cycles, has changed substantially during the past 35 

decades (Körner and Basler, 2010). The timing of spring phenological events, e.g., budburst and 36 

leafing, have continuously advanced based on a large number of in situ phenological observations, 37 

but the date of foliar senescence has mostly been delayed (Peñuelas and Filella, 2001). A consensus 38 

has been reached that these changes are mostly caused by global warming, which has increased the 39 

accumulation of heat in spring and alleviated cold stress in autumn, but the underlying mechanisms 40 

remain unclear (Estiarte et al., 2022; Estiarte and Peñuelas, 2015; Fu et al., 2015; Piao et al., 2019; 41 
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Walther et al., 2002; Zhang, 2022). These changes have nevertheless extended the growing season 1 

and altered the rate of vegetation green-up for many ecosystems (Cleland et al., 2007). Such canopy 2 

structural changes not only affect the seasonal growth of vegetation and the sequestration of carbon 3 

in terrestrial ecosystems (Barichivich et al., 2013), but also alter Earth’s surface processes and 4 

energy balances (Peñuelas et al., 2009), both contributing to the complexity of future climate change 5 

projections (Bonan and Doney, 2018).  6 

 7 

Remote sensing has long been used to characterize phenology at the ecosystem scale (Schwartz, 8 

1998). Satellite-derived vegetation indicators, unlike traditional observations of phenological 9 

events for individual plants, depict seasonal changes of canopy greenness, often known as land 10 

surface phenology (Ma et al., 2022). The normalized difference vegetation index (NDVI), which 11 

has the longest global continuous records since 1981 (Pinzon and Tucker, 2014), is the most 12 

commonly used vegetation indicator. Multiple metrics can be derived from smoothed curves 13 

generated from repeated satellite observations for each pixel, e.g., green-up, maturity, peak, 14 

senescence, dormancy, growing season length, and amplitudes of seasonal variation (Ganguly et 15 

al., 2010). Trend analyses for these metrics provide multi-dimensional descriptions of vegetation 16 

phenological changes (Buitenwerf et al., 2015). Although observations from various satellites may 17 

differ in the magnitude of the changes (Zhang et al., 2013), advanced green-up and delayed 18 

senescence have been widely observed based on multiple VI data sets, consistent with the results 19 

from long-term in situ phenological networks (Jeong et al., 2011; White et al., 2009).  20 

 21 

Solar-induced chlorophyll fluorescence (SIF) has become increasingly used for phenological 22 

analyses since its successful retrieval from satellite platforms (Frankenberg et al., 2011, p. 20; Jeong 23 

et al., 2017; Joiner et al., 2014). SIF is a small amount of the energy (usually less than 2%) emitted 24 

by foliar chlorophyll during the photosynthetic light reaction. After a photon is absorbed by a 25 

chlorophyll molecule, it can either be used for photochemistry, dissipated as heat, reemitted as 26 

fluorescence, or decay during these processes (Porcar-Castell et al., 2014). The relationship 27 

between SIF and optical vegetation indicators can be described as: 28 

SIF = PAR × fPARchl × ϕF × fesc                                                (1) 29 

where PAR, fPARchl , ϕF , and fesc  represent photosynthetically active radiation, the fraction of 30 

PAR absorbed by the canopy chlorophyll, which is strongly correlated with the VIs, the efficiency 31 

of fluorescence emission, and the fraction of SIF emitted by leaves that can be ultimately detected 32 

by a satellite. 33 

 34 

SIF has been demonstrated to strongly correlate with vegetation photosynthesis at large spatial and 35 

temporal scales due to the shared component of the absorption of solar radiation by canopy 36 

chlorophyll, and the strong coupling between the subsequent partitioning of energy into 37 

photochemistry and fluorescence (Li et al., 2018; Liu et al., 2022; Magney et al., 2020; Porcar-38 

Castell et al., 2021; Sun et al., 2017; Zhang et al., 2016; Z. Zhang et al., 2023). Consequently, land 39 

surface phenology derived from SIF differs from phenology based on VIs (Fig. 1). From the 40 

perspective of ecology, NDVI and other greenness-based indices represent the seasonal variation 41 

of canopy development, but SIF represents the variations of ecosystem photosynthesis (Yang et al., 42 

2022). From the perspective of plant physiology, variations in canopy greenness depend on both 43 

changes in foliar area and the concentrations of foliar pigments; SIF additionally responds to 44 

various environmental stresses that downregulate fluorescence efficiency from its normal values. 45 

From the perspective of remote sensing, VIs are calculated based on surface reflectance, which is 46 

affected by the characteristics of the canopies and the atmospheric conditions, whereas SIF 47 

retrievals depend not only on the total amount of fluorescence emission from all leaves, but also on 48 

the radiative transfer within canopy that determines the fraction of total SIF that can escape from 49 

the canopy to be observed by a satellite. These factors are interrelated, and their dependencies are 50 
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seasonally variable due to canopy development and climatic regulation (Fig. 1). In this perspective, 1 

to clarify the difference between these two types of land surface phenology metrics, we term SIF 2 

and VI based phenologies as photosynthetic phenology and greenness phenology, respectively.  3 

 4 

 5 
Fig. 1. Schematics of the seasonal variations of environmental factors, SIF, vegetation indices 6 

(VIs), and their interactions for (A) spring, (B) summer, and (C) autumn. Line thickness indicates 7 

the strength of the effect, which varies for each season. Rad, solar radiation; Ta, air temperature; 8 

SM, soil moisture; GPP, gross primary production; LAI, leaf area index; SIF, solar-induced 9 

chlorophyll fluorescence; VI, vegetation index; ϕF , fluorescence efficiency; Chl., chlorophyll 10 

concentration.  11 

 12 

Using SIF to retrieve vegetation photosynthetic phenology, however, faces multiple issues. First, 13 

satellite SIF data have large uncertainties for individual retrieval, which needs to be further reduced 14 

by averaging multiple observations over either space or time. Second, the sampling is mostly sparse 15 

over space or time (Sun et al., 2018). For example, among the widely used instruments capable of 16 

SIF retrievals, Global Ozone Monitoring Experiment-2 (GOME-2) has 1-4 repeated observations 17 

for each month within a grid; Orbiting Carbon Observatory-2 (OCO-2) observations are based on 18 

swaths and do not provide spatially contiguous coverage; and TROPOspheric Monitoring 19 

Instrument (TROPOMI) has a higher observation frequency and contiguous global coverage 20 

compared to the other two, but the spatial resolution is still too coarse for fine-scale analysis. Third, 21 

most SIF data sets do not have long-term records, which is critical for the analysis of phenological 22 

trend. To solve these issues, methods have been proposed that use machine learning to reconstruct 23 

SIF data based on surface reflectance, solar radiation, and other environmental factors (Gentine and 24 

Alemohammad, 2018; Li and Xiao, 2019; Y. Zhang et al., 2018a). These methods differ in the 25 

target SIF data set, explanatory variables, machine-learning algorithms, and selection of training 26 

samples. The performance of these models are similar, and the relationships between 27 

photosynthesis and these reconstructed SIF data are strong (Shekhar et al., 2022). Alternatively, 28 

some attempts have been made using cumulative distribution frequencies (CDF) matching to 29 

concatenate SIF data from various satellites. Combined with the downscaling of light-use-30 

efficiency-guided models, long-term, high-resolution SIF data sets can be generated (Wang et al., 31 

2022). Most of these data sets overcome the issue of large uncertainties and the limited spatial and 32 
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temporal coverage of the original SIF data sets, so are suitable for deriving vegetation 1 

photosynthetic phenology (Zhang et al., 2020a). Comparisons of phenologies derived from SIF and 2 

phenologies derived from VIs have shed new light on global change ecology, plant physiology and 3 

terrestrial carbon cycle (Jeong et al., 2017; Yang, 2022; Zhang et al., 2020a; Zhao et al., 2022). In 4 

this perspective, we will (1) demonstrate the differences between photosynthetic and greenness 5 

phenology using remote sensing data, (2) elaborate how environmental factors contribute to the 6 

differences between these two phenological metrics, and (3) propose future research directions 7 

utilizing these two metrics to understand climate change impact on terrestrial ecosystems. Although 8 

we mostly focus on the northern mid to high latitude in this perspective, the mechanisms should 9 

also apply to the south hemisphere. 10 

 11 

2. General patterns of the phenological metrics derived from SIF and NDVI data 12 

 13 

Phenologies derived from SIF clearly differ from those derived from NDVI (Fig. 2). Photosynthesis 14 

has a strongly seasonality for most ecosystems in the Northern Hemisphere, with SIF close to zero 15 

during the boreal winters. NDVI, though, is highly spatially variable in the non-growing season. 16 

For example, winter NDVI at mid- to low latitudes is high for more-mesic regions in Europe, 17 

eastern USA, and southern China and Japan (Fig. 2D) and is lower in arid regions and croplands 18 

(Fig. 2H-J). Snow cover can be a major issue that decreases winter NDVI for ecosystems at high 19 

northern latitudes (Fig. 2E, G, and K). Most mid-latitude forest and cropland ecosystems are greener 20 

and more productive (Fig. 2B, C, D, G, and I) than cold arctic regions, arid central Asia, and western 21 

USA (Fig. 2E, F, H, J, and K). The higher the NDVI, the higher the SIF during peak months.  22 

 23 

The timing of phenological events derived from SIF and NDVI also differs greatly. 24 

Photosynthetically active seasons derived from SIF are shorter than the growing seasons derived 25 

from NDVI for most ecosystems, especially at northern high latitudes (Fig. 2B, C, E, G, and K). 26 

Most ecosystems also have a later peak of canopy greenness than the peak of photosynthesis, with 27 

exceptions in some arid regions at low latitudes (Fig. 2F and J). These phenological differences 28 

have been confirmed by previous studies (Dannenberg et al., 2020; Yang et al., 2022; Zhao et al., 29 

2022).  30 

 31 

Green-up has advanced in many ecosystems, often accompanied by higher maximum greenness. In 32 

comparison, the delay of dormancy is less evident, except for dry temperate ecosystems (Fig. 2H). 33 

Similarly, the start of the photosynthetically active season has also advanced, but the end of 34 

photosynthesis has been delayed only a little. Differences exist, for example, in the mesic temperate 35 

ecosystems, where the delay is much longer for greenness than photosynthesis. Peak greenness and 36 

photosynthesis have generally advanced, but the differences between the two peak timings are 37 

increasing (Park et al., 2019; Zhao et al., 2022). Changes of both phenological metrics reflect an 38 

altered plant growth under global warming and associated changes in terrestrial carbon cycle 39 

(Richardson et al., 2010).  40 



Journal of Remote Sensing                                        Manuscript Template                                                                        Page 5 of 17 

 

 1 
Fig. 2. Patterns of vegetation seasonality and its changes represented by both MODIS NDVI and 2 

contiguous SIF (CSIF) (Zhang et al., 2018a). (A) Ten regions that have similar seasonality and 3 

changes for northern mid- to high latitudes (>30°N), clustered using the K-means method based on 4 

the mean seasonal patterns for the first two decades of the 21st century. (B-K) Seasonal patterns of 5 

NDVI (green, left axis) and CSIF (red, right axis) for the 10 regions, with lighter line colors 6 

indicating mean seasonal patterns for the first decade, and darker colors indicating mean seasonal 7 

patterns for the last decade. 8 

 9 

 10 

3. Factors contributing to the differences in VI- and SIF-based phenological metrics 11 

 12 

The relationship between VI- and SIF-based phenological metrics is affected by many factors, and 13 

understanding their differences in both absolute values and trends can provide insights into the 14 

responses of plants to global climate change. On one hand, from the light use perspective, the 15 

coverage of a green canopy determines the fraction of light that can be absorbed, and early foliar 16 

green-up may lead to early photosynthesis. Plant photosynthesis, however, is additionally affected 17 

by other environmental factors, e.g., temperature, radiation, water, and nutrients. Seasonal 18 

variations of these factors can strongly influence the seasonality of photosynthesis (Fig. 1). On the 19 

other hand, from the carbon allocation perspective, deciduous plants rely on both photosynthetic 20 

carbon gain and carbon storage in the previous season to grow leaves and develop canopies, and 21 

more photosynthesis also increases the rate of canopy green-up and VI changes (Cabon et al., 2022; 22 

Meng et al., 2023). These interactions are also mediated by the local environment. Below, we 23 

discuss the main factors that contribute to the discrepancies between these metrics. 24 

 25 

Solar radiation 26 

Seasonal changes of radiation or daylength are important environmental cues for plant phenological 27 

events (e.g., green-up, senescence, and dormancy) (Meng et al., 2021; Way and Montgomery, 2015; 28 

Zhang et al., 2020a). They are also first-order factors that drive seasonal photosynthetic variation 29 

(Monteith, 1972). Lower solar elevation angles in spring and autumn induce an additional limitation 30 

of radiation on photosynthesis, which can explain the generally shorter photosynthetically active 31 
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season than the growing season based on greenness. Green-up is usually closer to the summer 1 

solstice than to senescence, so light limitation is stronger in the autumn than the spring.  2 

 3 

Solar radiation affects SIF independently from changes in vegetation canopy, whose effect in spring 4 

and autumn can be characterized as the relative importance of radiation compared to other 5 

components in driving the changes of the photosynthetically active season. For example, in boreal 6 

evergreen ecosystems with small seasonal variation of canopy greenness and large seasonal 7 

variation of radiation, solar radiation mostly drives the seasonal variations of SIF and 8 

photosynthesis, and the radiation limitation is strong. While for temperature ecosystems where 9 

canopy greenness exhibited greater seasonal variation than the solar radiation, the radiation 10 

limitation is weak. SIF-based photosynthetically active seasons have smaller variations compared 11 

to the variations of the growing season derived from VI. This difference is more evident in the 12 

autumn than the spring, which has been attributed to a stronger limitation of radiation in the autumn 13 

(Zhang et al., 2020a).  14 

 15 

The stronger limitation of radiation in the autumn can have a large impact on the responses of 16 

ecosystems to warming (Descals et al., 2022; Zhang et al., 2020a). Canopy greenness may increase 17 

during warmer autumns, but such an increase may have limited effects on the enhancement of 18 

ecosystem photosynthesis due to the limitation of radiation. A warmer autumn also increases both 19 

autotrophic and heterotrophic respiration. Whether a warmer autumn can lead to a larger uptake of 20 

ecosystem carbon thus depends on the balance between the warming-induced increase in 21 

photosynthesis and the increase in respiration, in which radiation plays a critical role. Zhang et al. 22 

(2020a) used eddy-covariance data sets combined with SIF- and VI-derived limitations of radiation 23 

to demonstrate that the greater the limitation of radiation, the stronger the release of carbon during 24 

warmer autumns.  25 

 26 

Future global warming is not expected to shift the seasonal variation of radiation, but the limitations 27 

of radiation on plant photosynthesis may increase, because warming-induced extensions of the 28 

growing season would advance and delay vegetation activities in spring and autumn, respectively. 29 

Earth system models have also identified this increase, with stronger magnitudes for higher latitudes 30 

(Zhang et al., 2020a). This increase may also account for the observed decrease in the sensitivity of 31 

spring leaf unfolding to temperature in recent decades (Fu et al., 2015). Descals et al., (2022) have 32 

more recently confirmed that radiation was a major factor limiting photosynthetic activity that 33 

constrained the phenological response to temperature during the end of the growing season. In 34 

contrast, the start of carbon uptake is generally highly sensitive to temperature but is not constrained 35 

by radiation at the hemispheric scale.  36 

 37 

Temperature 38 

Temperature can strongly limit photosynthesis and SIF, especially during the winter for evergreen 39 

ecosystems. Canopy greenness has limited variation in these ecosystems, and low temperatures 40 

inhibit vegetation photosynthesis even when radiation and other resources are available. 41 

Photochemistry (photosynthesis), fluorescence, and nonphotochemical quenching (NPQ) compete 42 

for the energy absorbed by chlorophyll, but decreased partitioning of energy to photochemistry 43 

does not necessarily increase fluorescence, which has been widely observed in boreal evergreen 44 

ecosystems and is due to a strong increase in sustained NPQ (Kim et al., 2021; Míguez et al., 2015; 45 

Porcar-Castell, 2011). Unlike reservable NPQ, which is associated with diurnal light saturation, 46 

sustained NPQ varies at weekly or monthly timeframes and provides an important energy outlet 47 

during winter dormancy (Raczka et al., 2019). Such mechanisms lead to a strong seasonal 48 

covariation between SIF and photosynthesis for conifers.  49 

 50 
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Although changes to canopy greenness are limited in evergreen ecosystems, snow cover in the 1 

winter can strongly decrease NDVI, causing a “fake” green-up and dormancy signal that 2 

corresponds to the dynamics of snow cover (Wang et al., 2013). These “fake” green-up and 3 

dormancy signals may, in some cases, correspond to the start and end of photosynthesis, due to the 4 

abrupt changes in air temperature associated with the melting and accumulation of snow cover. 5 

Such signals, however, are unreliable in other ecosystems and do not represent the actual changes 6 

in canopy greenness. Snow cover also affects canopy light absorption and the radiative transfer of 7 

fluorescence within canopies, but the effect of thermal stress on fluorescence efficiency is 8 

considered the most influential factor (Kim et al., 2021; Magney et al., 2019). Some recent studies 9 

have proposed new VIs that either track the seasonal changes of foliar chlorophyll concentration or 10 

are robust to the effects of snow cover, but the differences in phenological metrics derived from 11 

these indices and SIF have not been systematically evaluated and are not likely to be able to track 12 

physiological thermal stress (Huang et al., 2021; Wang et al., 2017). Considering plant phenological 13 

responses often lag behind the rate of warming, leaves would develop at higher temperatures with 14 

relieved cold stress on photosynthetic physiology. This lag has led to increased photosynthesis in 15 

spring and faster canopy development in recent decades (Park et al., 2020). 16 

 17 

In addition to cold stress, plants also have optimal temperatures for various enzymes and 18 

photochemical reactions. Temperatures above these optima can adversely affect photosynthesis, 19 

which may deviate the peak of photosynthesis from the peak of greenness in some ecosystems when 20 

peak canopy greenness corresponds to a temperature higher than optimal for photosynthesis (Huang 21 

et al., 2019). A recent study demonstrated that this effect could be important for forest ecosystems 22 

(Zhao et al., 2022). Extremely high temperatures may also temporally deviate SIF from canopy 23 

greenness, but this is often associated with water deficits, which we discuss in the next section. 24 

 25 

Water 26 

Water deficits can also impair photosynthesis from its potential maximum. The limitation of water 27 

mostly affects the timing of the peak and end of photosynthesis, especially for arid and semi-arid 28 

ecosystems (Hufkens et al., 2016). Water deficits in both the soil and atmosphere reduce stomatal 29 

conductance, the foliar water potential, and the transport of xylem water, all of which increase NPQ 30 

and decrease photochemical and fluorescence efficiencies (Gupta et al., 2020). These physiological 31 

limitations can be ephemeral and can be alleviated after a rain or heatwave, but they can also be 32 

long-lasting and cause substantial damage to canopy greenness (Schwalm et al., 2017). Water stress 33 

is nevertheless likely to more strongly limit the SIF-based photosynthetically active season than the 34 

greenness-based growing season, because plant physiological processes respond faster than the 35 

changes to canopy structure (Zhang et al., 2020b). Water stress can be strong during the latter half 36 

of the growing season, so its limitation on plant photosynthesis likely advances peak 37 

photosynthesis. Such a mechanism is important in grassland and induces a large asynchrony 38 

between peak photosynthesis and peak greenness (Zhao et al., 2022).  39 

 40 

Global warming and CO2 fertilization have contrasting effects on soil moisture through either 41 

increased evapotranspiration induced by greening, or reduced foliar transpiration due to stomatal 42 

closure (Berg, 2021; Zhang et al., 2022). However, a stronger limitation of moisture has been 43 

reported, particularly for foliar senescence in autumn (Wu et al., 2022) and the end of 44 

photosynthesis (Zhang et al., 2020b). An extended growing season, enhanced vegetation activity, 45 

and warming-induced atmospheric dryness all contribute to an increase in water consumption by 46 

plants and stronger water limitation, but the differences in sensitivity between SIF and the VIs still 47 

need further investigation. 48 

 49 

Nutrients 50 
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Foliar nutrient concentrations also play a role in accounting for the differences in canopy greenness 1 

and photosynthesis, but their effect depends on the nutrient. For example, a lack of phosphorus may 2 

inhibit the development of foliage and delay the peak timing of canopy greenness. Nitrogen, as an 3 

important element for the synthesis of photochemical enzymes, can have a more direct influence 4 

on fluorescence and photosynthesis. A recent study reported a limited contribution of nitrogen to 5 

the seasonal mismatch between photosynthesis and canopy structure (Zhao et al., 2022), perhaps 6 

because nitrogen concentration varies little seasonally and the seasonalized variation of canopy 7 

development and nitrogen concentration is synchronized. Nutrient concentrations play a 8 

predominant role in regulating canopy development and the timing of peaks between 9 

photosynthesis and canopy greenness, especially for forest ecosystems. Such a late canopy 10 

development could potentially decrease the maximum rate of photosynthesis if these timings were 11 

synchronized, suggesting suboptimal canopy development (Zhao et al., 2022). The availability of 12 

nutrients varies little temporally, so its effect mostly accounts for the phenological variations in 13 

space rather than time. 14 

 15 

4. Future directions 16 

 17 

Much work has been done in the field of land surface phenology, but the comparison between 18 

phenologies based on photosynthesis and canopy greenness warrant further study. We propose 19 

multiple directions of further exploration.  20 

 21 

Understanding the relationship between SIF and VIs 22 

SIF has been suggested to be a robust proxy of photosynthesis in plants. This relationship, however, 23 

may decay under specific conditions, which can further affect the photosynthetic phenology 24 

retrieved using SIF. For example, the reduction in fluorescence and photochemical efficiencies 25 

during short periods of water stress do not have the same magnitude (van der Tol et al., 2014). Some 26 

studies have also reported limited changes in fluorescence efficiency, albeit with an evident 27 

decrease in photosynthesis (Helm et al., 2020; Marrs et al., 2020). No consensus, however, has been 28 

reached on how much uncertainty these limited changes would cause to the SIF-GPP relationship 29 

at the seasonal timescale (Y. Zhang et al., 2023). Recent studies have also suggested the importance 30 

of canopy structure and sun-sensor geometry in affecting the relationship between SIF and 31 

photosynthesis (Hao et al., 2021; Z. Zhang et al., 2018; Zhang and Zhang, 2023). SIF data are 32 

obtained at a nearly fixed time of the day by most sun-synchronous satellites, so the relationship 33 

between instantaneous SIF and daily photosynthetic carbon gain is also affected by light saturation, 34 

daily corrections of the level of solar radiation, and other factors. (Cheng et al., 2022; Y. Zhang et 35 

al., 2018b). Similarly, VIs have long been considered as proxies of canopy structure, and some 36 

studies have also used VIs to represent foliar area. Such approximations may have the problem of 37 

saturation, which could affect the calculation of peak timing. The seasonal variation of 38 

photosynthetic pigments and the accumulation of starch in leaves will change leaf reflectance, 39 

suggesting that the relationship between greenness and foliar area may change over time. A more 40 

accurate retrieval of photosynthetic and greenness phenologies warrant further analyses.  41 

 42 

The differences between remotely sensed SIF and VIs can be quantitively analyzed based on 43 

radiative transfer equations (Yang and van der Tol, 2018; Zeng et al., 2019). It is critical to identify 44 

the drivers of the differences between SIF and VIs at various timescales. How can we interpret the 45 

differences of phenology retrieved from these metrics, and under what circumstances do they 46 

represent or misrepresent the differences between photosynthetic and greenness phenologies? 47 

Answering these questions remain challenging due to limitations in both data and methods. Most 48 

SIF data sets are currently at coarse spatial resolutions and only cover a limited period, and the 49 

decomposition of SIF signals using radiative transfer equations relies on multiple assumptions that 50 
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may be invalid under specific circumstances. Harmonizing SIF data sets by combining multiple 1 

satellite observations may provide new opportunities for addressing these issues.  2 

 3 

Effect of climate change on photosynthetic and greenness phenologies 4 

Climate change, especially global warming, has led to the widespread advance of spring phenology 5 

and a less-pronounced delay in autumnal phenology in the Northern Hemisphere. The effect on 6 

photosynthetic phenology, however, has been less clear. As discussed in the previous sections, 7 

multiple environmental factors could independently affect photosynthesis. It should be noted that 8 

the most influential factors may not be those that have the strongest trend. Some variables that do 9 

not have a clear trend with global warming may also play an important role in regulating 10 

photosynthetic phenology. A good example is solar radiation, whose effect on photosynthetic 11 

phenology may change with changes to the seasonality of vegetation canopy and other 12 

environmental factors (Zhang et al., 2020a). 13 

 14 

Another important, but less explored, factor is the concentration of atmospheric CO2. Increased 15 

concentrations of atmospheric CO2 may advance the onset of the growing season in spring and 16 

delay canopy senescence in autumn (Reyes-Fox et al., 2014), but it has a more direct effect on 17 

photosynthesis by increasing carboxylation (Walker et al., 2020). This effect of CO2 fertilization is 18 

also temperature dependent and can affect the rate and peak timing of foliar development. The 19 

indirect effect of water saving effect may also alleviate water stress during the late growing season. 20 

The combined effect of CO2 on photosynthetic phenology is less clear. A recent study using cities 21 

as natural laboratories suggested that urban heat islands and higher CO2 concentrations may 22 

together extend photosynthetic phenology, but their respective contributions remain uncertain 23 

(Wang et al., 2019). It is still a challenge to solve this issue using remote sensing-based observations 24 

alone. 25 

 26 

Combining photosynthetic and greenness phenologies to better understand the terrestrial carbon 27 

cycle 28 

Photosynthetic and greenness phenologies provide important information on the physiological, 29 

structural, and functional dynamics of terrestrial ecosystems, which can help us to better understand 30 

the terrestrial carbon cycle. For example, how does altered foliar development affect ecosystem 31 

primary production? What drives the allocation of carbon to the foliage? Although previous studies 32 

have indicated that temperature and water stress may affect the fraction of carbon allocated to leaves 33 

and roots (Poorter et al., 2012; Reich et al., 2014), the temporal dynamics of such allocation, which 34 

directly affects greenness phenology, remain unclear. 35 

 36 

Together with other climate, eddy covariance, and atmospheric CO2 observations, as well as 37 

aboveground biomass observations from microwave remote sensing, more research questions may 38 

be answered (Dannenberg et al., 2020). For example, how do changes in photosynthetic and 39 

greenness phenologies affect the terrestrial carbon sink? Does water play an increasingly important 40 

role in regulating the uptake of terrestrial carbon late in the growing season? Satellite-derived 41 

photosynthetic and greenness phenologies can complement site-level observations and will provide 42 

important evidence for such large-scale analyses and model improvements. 43 

 44 

5. Concluding remarks 45 

 46 

In this perspective, we provide an overview of recent progress in vegetation phenological research 47 

using both satellite-retrieved SIF and vegetation indices. The emerging satellite-retrieved and other 48 

reconstructed SIF data sets provide new opportunities for understanding the phenological responses 49 

of plants to climate change. We propose that the phenological metrics derived from these satellite 50 
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indictors should be understood from the perspectives of ecology, physiology, and remote sensing. 1 

New research opportunities should focus on the relationships between SIF and VIs, the impact of 2 

climate change on both photosynthetic and greenness-based land surface phenologies, and their 3 

impact on terrestrial carbon cycle. 4 

 5 

 6 
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(https://e4ftl01.cr.usgs.gov/MOLT/MOD13C2.006/) and the Qinghai-Tibet Data Center 9 

(https://cstr.cn/18406.11.Ecolo.tpdc.271751) 10 

 11 

Conflict of Interest 12 

The authors declare no conflict of interests. 13 

 14 

Author Contributions 15 

Y. Zhang and J. Peñuelas designed and wrote the paper. 16 

 17 

Acknowledgements 18 

This study is supported by the National Science Foundation of China (42141005). J.P. 19 

acknowledges support from the Spanish Government Grant TED2021-132627B-I00 funded by 20 

MCIN, AEI/10.13039/501100011033 European Union Next Generation EU/PRTR, the Catalan 21 

Government Grant SGR2021-1333, and the Fundación Ramón Areces Grant CIVP20A6621. The 22 

authors thank Qian Zhao for providing useful comments on the manuscript. 23 

 24 

 25 

References 26 

Barichivich, J., Briffa, K.R., Myneni, R.B., Osborn, T.J., Melvin, T.M., Ciais, P., Piao, S., Tucker, C., 27 

2013. Large-scale variations in the vegetation growing season and annual cycle of 28 

atmospheric CO2 at high northern latitudes from 1950 to 2011. Global Change Biology 29 

19, 3167–3183. https://doi.org/10.1111/gcb.12283 30 

Berg, A., 2021. No projected global drylands expansion under greenhouse warming. Nature 31 

Climate Change 9. 32 

Bonan, G.B., Doney, S.C., 2018. Climate, ecosystems, and planetary futures: The challenge to 33 

predict life in Earth system models. Science 359, eaam8328. 34 

https://doi.org/10.1126/science.aam8328 35 

Buitenwerf, R., Rose, L., Higgins, S.I., 2015. Three decades of multi-dimensional change in global 36 

leaf phenology. Nature Climate Change 5, 364–368. 37 

https://doi.org/10.1038/nclimate2533 38 

Cabon, A., Kannenberg, S.A., Arain, A., Babst, F., Baldocchi, D., Belmecheri, S., Delpierre, N., 39 

Guerrieri, R., Maxwell, J.T., McKenzie, S., Meinzer, F.C., Moore, D.J.P., Pappas, C., Rocha, 40 

A.V., Szejner, P., Ueyama, M., Ulrich, D., Vincke, C., Voelker, S.L., Wei, J., Woodruff, D., 41 

Anderegg, W.R.L., 2022. Cross-biome synthesis of source versus sink limits to tree 42 

growth. Science 376, 758–761. https://doi.org/10.1126/science.abm4875 43 

Cheng, R., Köhler, P., Frankenberg, C., 2022. Impact of radiation variations on temporal upscaling 44 

of instantaneous Solar-Induced Chlorophyll Fluorescence. Agricultural and Forest 45 

Meteorology 327, 109197. https://doi.org/10.1016/j.agrformet.2022.109197 46 

Cleland, E., Chuine, I., Menzel, A., Mooney, H., Schwartz, M., 2007. Shifting plant phenology in 47 

response to global change. Trends in Ecology & Evolution 22, 357–365. 48 

https://doi.org/10.1016/j.tree.2007.04.003 49 



Journal of Remote Sensing                                        Manuscript Template                                                                        Page 11 of 

17 

 

Dannenberg, M., Wang, X., Yan, D., Smith, W., 2020. Phenological Characteristics of Global 1 

Ecosystems Based on Optical, Fluorescence, and Microwave Remote Sensing. Remote 2 

Sensing 12, 671. https://doi.org/10.3390/rs12040671 3 

Descals, A., Verger, A., Yin, G., Filella, I., Fu, Y.H., Piao, S., Janssens, I.A., Peñuelas, J., 2022. 4 

Radiation-constrained boundaries cause nonuniform responses of the carbon uptake 5 

phenology to climatic warming in the Northern Hemisphere. Global Change Biology n/a. 6 

https://doi.org/10.1111/gcb.16502 7 

Estiarte, M., Campioli, M., Mayol, M., Penuelas, J., 2022. Variability and limits of nitrogen and 8 

phosphorus resorption during foliar senescence. Plant Communications 100503. 9 

https://doi.org/10.1016/j.xplc.2022.100503 10 

Estiarte, M., Peñuelas, J., 2015. Alteration of the phenology of leaf senescence and fall in winter 11 

deciduous species by climate change: effects on nutrient proficiency. Global Change 12 

Biology 21, 1005–1017. https://doi.org/10.1111/gcb.12804 13 

Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., Toon, G.C., Butz, A., 14 

Jung, M., Kuze, A., Yokota, T., 2011. New global observations of the terrestrial carbon 15 

cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. 16 

Geophysical Research Letters 38, 1–6. https://doi.org/10.1029/2011GL048738 17 

Fu, Y.H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., Menzel, A., 18 

Peñuelas, J., Song, Y., Vitasse, Y., Zeng, Z., Janssens, I.A., 2015. Declining global warming 19 

effects on the phenology of spring leaf unfolding. Nature 526, 104–107. 20 

https://doi.org/10.1038/nature15402 21 

Ganguly, S., Friedl, M.A., Tan, B., Zhang, X., Verma, M., 2010. Land surface phenology from 22 

MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote 23 

Sensing of Environment 114, 1805–1816. https://doi.org/10.1016/j.rse.2010.04.005 24 

Gentine, P., Alemohammad, S.H., 2018. RSIF (Reconstructed Solar Induced Fluorescence): a 25 

machine‐learning vegetation product based on MODIS surface reflectance to reproduce 26 

GOME‐2 solar induced fluorescence. Geophysical Research Letters 45, 3136–3146. 27 

https://doi.org/10.1002/2017GL076294 28 

Gupta, A., Rico-Medina, A., Caño-Delgado, A.I., 2020. The physiology of plant responses to 29 

drought. Science 368, 266–269. https://doi.org/10.1126/science.aaz7614 30 

Hao, D., Asrar, G.R., Zeng, Y., Yang, X., Li, X., Xiao, J., Guan, K., Wen, J., Xiao, Q., Berry, J.A., Chen, 31 

M., 2021. Potential of hotspot solar-induced chlorophyll fluorescence for better tracking 32 

terrestrial photosynthesis. Global Change Biology 27, 2144–2158. 33 

https://doi.org/10.1111/gcb.15554 34 

Helm, L.T., Shi, H., Lerdau, M., Yang, X., 2020. Solar-induced chlorophyll fluorescence and short-35 

term photosynthetic response to drought. Ecological Applications n/a. 36 

https://doi.org/10.1002/eap.2101 37 

Huang, K., Zhang, Y., Tagesson, T., Brandt, M., Wang, L., Chen, N., Zu, J., Jin, H., Cai, Z., Tong, X., 38 

Cong, N., Fensholt, R., 2021. The confounding effect of snow cover on assessing spring 39 

phenology from space: A new look at trends on the Tibetan Plateau. Science of The Total 40 

Environment 756, 144011. https://doi.org/10.1016/j.scitotenv.2020.144011 41 

Huang, M., Piao, S., Ciais, P., Peñuelas, J., Wang, X., Keenan, T.F., Peng, S., Berry, J.A., Wang, K., 42 

Mao, J., Alkama, R., Cescatti, A., Cuntz, M., Deurwaerder, H.D., Gao, M., He, Y., Liu, Y., 43 

Luo, Y., Myneni, R.B., Niu, S., Shi, X., Yuan, W., Verbeeck, H., Wang, T., Wu, J., Janssens, 44 

I.A., 2019. Air temperature optima of vegetation productivity across global biomes. 45 

Nature Ecology & Evolution 1. https://doi.org/10.1038/s41559-019-0838-x 46 



Journal of Remote Sensing                                        Manuscript Template                                                                        Page 12 of 

17 

 

Hufkens, K., Keenan, T.F., Flanagan, L.B., Scott, R.L., Bernacchi, C.J., Joo, E., Brunsell, N.A., 1 

Verfaillie, J., Richardson, A.D., 2016. Productivity of North American grasslands is 2 

increased under future climate scenarios despite rising aridity. Nature Climate Change 6, 3 

710–714. https://doi.org/10.1038/nclimate2942 4 

Jeong, S.-J., Ho, C.-H., Gim, H.-J., Brown, M.E., 2011. Phenology shifts at start vs. end of growing 5 

season in temperate vegetation over the Northern Hemisphere for the period 1982–6 

2008. Global Change Biology 17, 2385–2399. https://doi.org/10.1111/j.1365-7 

2486.2011.02397.x 8 

Jeong, S.J., Schimel, D., Frankenberg, C., Drewry, D.T., Fisher, J.B., Verma, M., Berry, J.A., Lee, 9 

J.E., Joiner, J., 2017. Application of satellite solar-induced chlorophyll fluorescence to 10 

understanding large-scale variations in vegetation phenology and function over northern 11 

high latitude forests. Remote Sensing of Environment 190, 178–187. 12 

https://doi.org/10.1016/j.rse.2016.11.021 13 

Joiner, J., Yoshida, Y., Vasilkov, A.P., Schaefer, K., Jung, M., Guanter, L., Zhang, Y., Garrity, S., 14 

Middleton, E.M., Huemmrich, K.F., Gu, L., Belelli Marchesini, L., 2014. The seasonal cycle 15 

of satellite chlorophyll fluorescence observations and its relationship to vegetation 16 

phenology and ecosystem atmosphere carbon exchange. Remote Sensing of 17 

Environment 152, 375–391. https://doi.org/10.1016/j.rse.2014.06.022 18 

Kim, J., Ryu, Y., Dechant, B., Lee, H., Kim, H.S., Kornfeld, A., Berry, J.A., 2021. Solar-induced 19 

chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate 20 

evergreen needleleaf forest during the fall transition. Remote Sensing of Environment 21 

258, 112362. https://doi.org/10.1016/j.rse.2021.112362 22 

Körner, C., Basler, D., 2010. Phenology Under Global Warming. Science 327, 1461–1462. 23 

https://doi.org/10.1126/science.1186473 24 

Li, X., Xiao, J., 2019. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence 25 

Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sensing 11, 517. 26 

https://doi.org/10.3390/rs11050517 27 

Li, X., Xiao, J., He, B., Arain, M.A., Beringer, J., Desai, A.R., Emmel, C., Hollinger, D.Y., Krasnova, 28 

A., Mammarella, I., Noe, S.M., Ortiz, P.S., Rey‐Sanchez, C., Rocha, A.V., Varlagin, A., 2018. 29 

Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial 30 

photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and 31 

flux tower observations. Global Change Biology 0. https://doi.org/10.1111/gcb.14297 32 

Liu, Y., Chen, J.M., He, L., Zhang, Z., Wang, R., Rogers, C., Fan, W., de Oliveira, G., Xie, X., 2022. 33 

Non-linearity between gross primary productivity and far-red solar-induced chlorophyll 34 

fluorescence emitted from canopies of major biomes. Remote Sensing of Environment 35 

271, 112896. https://doi.org/10.1016/j.rse.2022.112896 36 

Ma, X., Zhu, X., Xie, Q., Jin, J., Zhou, Y., Luo, Y., Liu, Y., Tian, J., Zhao, Y., 2022. Monitoring 37 

nature’s calendar from space: emerging topics in land surface phenology and associated 38 

opportunities for science applications. Global Change Biology n/a. 39 

https://doi.org/10.1111/gcb.16436 40 

Magney, T.S., Barnes, M.L., Yang, X., 2020. On the Covariation of Chlorophyll Fluorescence and 41 

Photosynthesis Across Scales. Geophys. Res. Lett. 47. 42 

https://doi.org/10.1029/2020GL091098 43 

Magney, T.S., Bowling, D.R., Logan, B.A., Grossmann, K., Stutz, J., Blanken, P.D., Burns, S.P., 44 

Cheng, R., Garcia, M.A., Kӧhler, P., Lopez, S., Parazoo, N.C., Raczka, B., Schimel, D., 45 

Frankenberg, C., 2019. Mechanistic evidence for tracking the seasonality of 46 



Journal of Remote Sensing                                        Manuscript Template                                                                        Page 13 of 

17 

 

photosynthesis with solar-induced fluorescence. PNAS 201900278. 1 

https://doi.org/10.1073/pnas.1900278116 2 

Marrs, J.K., Reblin, J.S., Logan, B.A., Allen, D.W., Reinmann, A.B., Bombard, D.M., Tabachnik, D., 3 

Hutyra, L.R., 2020. Solar‐Induced Fluorescence Does Not Track Photosynthetic Carbon 4 

Assimilation Following Induced Stomatal Closure. Geophys. Res. Lett. 47. 5 

https://doi.org/10.1029/2020GL087956 6 

Meng, F., Hong, S., Wang, J., Chen, A., Zhang, Yao, Zhang, Yichen, Janssens, I.A., Mao, J., Myneni, 7 

R.B., Peñuelas, J., Piao, S., 2023. Climate change increases carbon allocation to leaves in 8 

early leaf green‐up. Ecology Letters 26, 816–826. https://doi.org/10.1111/ele.14205 9 

Meng, L., Zhou, Y., Gu, L., Richardson, A.D., Peñuelas, J., Fu, Y., Wang, Y., Asrar, G.R., De Boeck, 10 

H.J., Mao, J., Zhang, Y., Wang, Z., 2021. Photoperiod decelerates the advance of spring 11 

phenology of six deciduous tree species under climate warming. Global Change Biology 12 

27, 2914–2927. https://doi.org/10.1111/gcb.15575 13 

Míguez, F., Fernández-Marín, B., Becerril, J.M., García-Plazaola, J.I., 2015. Activation of 14 

photoprotective winter photoinhibition in plants from different environments: a 15 

literature compilation and meta-analysis. Physiol Plantarum 155, 414–423. 16 

https://doi.org/10.1111/ppl.12329 17 

Monteith, J.L., 1972. Solar Radiation and Productivity in Tropical Ecosystems. Journal of Applied 18 

Ecology 9, 747–766. https://doi.org/10.2307/2401901 19 

Park, H., Jeong, S., Peñuelas, J., 2020. Accelerated rate of vegetation green‐up related to 20 

warming at northern high latitudes. Global Change Biology. 21 

https://doi.org/10.1111/gcb.15322 22 

Park, T., Chen, C., Macias‐Fauria, M., Tømmervik, H., Choi, S., Winkler, A., Bhatt, U.S., Walker, 23 

D.A., Piao, S., Brovkin, V., Nemani, R.R., Myneni, R.B., 2019. Changes in timing of seasonal 24 

peak photosynthetic activity in northern ecosystems. Global Change Biology 0. 25 

https://doi.org/10.1111/gcb.14638 26 

Peñuelas, J., Filella, I., 2001. Responses to a Warming World. Science 294, 793–795. 27 

https://doi.org/10.1126/science.1066860 28 

Peñuelas, J., Rutishauser, T., Filella, I., 2009. Phenology Feedbacks on Climate Change. Science 29 

324, 887–888. https://doi.org/10.1126/science.1173004 30 

Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., Zhu, X., 2019. 31 

Plant phenology and global climate change: current progresses and challenges. Global 32 

Change Biology 0. https://doi.org/10.1111/gcb.14619 33 

Pinzon, J.E., Tucker, C.J., 2014. A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote 34 

Sensing 6, 6929–6960. https://doi.org/10.3390/rs6086929 35 

Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., Mommer, L., 2012. Biomass allocation 36 

to leaves, stems and roots: meta‐analyses of interspecific variation and environmental 37 

control. New Phytologist 193, 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x 38 

Porcar-Castell, A., 2011. A high-resolution portrait of the annual dynamics of photochemical and 39 

non-photochemical quenching in needles of Pinus sylvestris. Physiologia Plantarum 143, 40 

139–153. https://doi.org/10.1111/j.1399-3054.2011.01488.x 41 

Porcar-Castell, A., Malenovský, Z., Magney, T., Van Wittenberghe, S., Fernández-Marín, B., 42 

Maignan, F., Zhang, Y., Maseyk, K., Atherton, J., Albert, L.P., Robson, T.M., Zhao, F., 43 

Garcia-Plazaola, J.-I., Ensminger, I., Rajewicz, P.A., Grebe, S., Tikkanen, M., Kellner, J.R., 44 

Ihalainen, J.A., Rascher, U., Logan, B., 2021. Chlorophyll a fluorescence illuminates a path 45 

connecting plant molecular biology to Earth-system science. Nat. Plants. 46 

https://doi.org/10.1038/s41477-021-00980-4 47 



Journal of Remote Sensing                                        Manuscript Template                                                                        Page 14 of 

17 

 

Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van Der Tol, C., Flexas, J., Pfündel, E.E., Moreno, J., 1 

Frankenberg, C., Berry, J.A., 2014. Linking chlorophyll a fluorescence to photosynthesis 2 

for remote sensing applications: Mechanisms and challenges. Journal of Experimental 3 

Botany 65, 4065–4095. https://doi.org/10.1093/jxb/eru191 4 

Raczka, B., Porcar-Castell, A., Magney, T., Lee, J.E., Köhler, P., Frankenberg, C., Grossmann, K., 5 

Logan, B.A., Stutz, J., Blanken, P.D., Burns, S.P., Duarte, H., Yang, X., Lin, J.C., Bowling, 6 

D.R., 2019. Sustained Nonphotochemical Quenching Shapes the Seasonal Pattern of 7 

Solar-Induced Fluorescence at a High-Elevation Evergreen Forest. Journal of Geophysical 8 

Research: Biogeosciences 124, 2005–2020. https://doi.org/10.1029/2018JG004883 9 

Reich, P.B., Luo, Y., Bradford, J.B., Poorter, H., Perry, C.H., Oleksyn, J., 2014. Temperature drives 10 

global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl. 11 

Acad. Sci. U.S.A. 111, 13721–13726. https://doi.org/10.1073/pnas.1216053111 12 

Reyes-Fox, M., Steltzer, H., Trlica, M.J., McMaster, G.S., Andales, A.A., LeCain, D.R., Morgan, J.A., 13 

2014. Elevated CO2 further lengthens growing season under warming conditions. Nature 14 

510, 259–262. https://doi.org/10.1038/nature13207 15 

Richardson, A.D., Andy Black, T., Ciais, P., Delbart, N., Friedl, M.A., Gobron, N., Hollinger, D.Y., 16 

Kutsch, W.L., Longdoz, B., Luyssaert, S., Migliavacca, M., Montagnani, L., William Munger, 17 

J., Moors, E., Piao, S., Rebmann, C., Reichstein, M., Saigusa, N., Tomelleri, E., Vargas, R., 18 

Varlagin, A., 2010. Influence of spring and autumn phenological transitions on forest 19 

ecosystem productivity. Philosophical Transactions of the Royal Society B: Biological 20 

Sciences 365, 3227–3246. https://doi.org/10.1098/rstb.2010.0102 21 

Schwalm, C.R., Anderegg, W.R.L., Michalak, A.M., Fisher, J.B., Biondi, F., Koch, G., Litvak, M., 22 

Ogle, K., Shaw, J.D., Wolf, A., Huntzinger, D.N., Schaefer, K., Cook, R., Wei, Y., Fang, Y., 23 

Hayes, D., Huang, M., Jain, A., Tian, H., 2017. Global patterns of drought recovery. Nature 24 

548, 202–205. https://doi.org/10.1038/nature23021 25 

Schwartz, M.D., 1998. Green-wave phenology. Nature 394, 839–840. 26 

https://doi.org/10.1038/29670 27 

Shekhar, A., Buchmann, N., Gharun, M., 2022. How well do recently reconstructed solar-induced 28 

fluorescence datasets model gross primary productivity? Remote Sensing of Environment 29 

283, 113282. https://doi.org/10.1016/j.rse.2022.113282 30 

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., Magney, T., 2018. Overview 31 

of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: 32 

Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of 33 

Environment. https://doi.org/10.1016/j.rse.2018.02.016 34 

Sun, Y., Frankenberg, C., Wood, J.D., Schimel, D.S., Jung, M., Guanter, L., Drewry, D.T., Verma, 35 

M., Porcar-Castell, A., Griffis, T.J., Gu, L., Magney, T.S., Köhler, P., Evans, B., Yuen, K., 36 

2017. OCO-2 advances photosynthesis observation from space via solar-induced 37 

chlorophyll fluorescence. Science 358, eaam5747. 38 

https://doi.org/10.1126/science.aam5747 39 

van der Tol, C., Berry, J.A., Campbell, P.K.E., Rascher, U., 2014. Models of fluorescence and 40 

photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. 41 

Journal of Geophysical Research: Biogeosciences 119, 2312–2327. 42 

https://doi.org/10.1002/2014JG002713 43 

Walker, A.P., De Kauwe, M.G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R., McMahon, 44 

S.M., Medlyn, B.E., Moore, D.J.P., Norby, R.J., Zaehle, S., Anderson‐Teixeira, K.J., 45 

Battipaglia, G., Brienen, R.J.W., Cabugao, K.G., Cailleret, M., Campbell, E., Canadell, J., 46 

Ciais, P., Craig, M.E., Ellsworth, D., Farquhar, G., Fatichi, S., Fisher, J.B., Frank, D., Graven, 47 



Journal of Remote Sensing                                        Manuscript Template                                                                        Page 15 of 

17 

 

H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B.A., Iversen, C.M., Joos, F., 1 

Jiang, M., Keenan, T.F., Knauer, J., Körner, C., Leshyk, V.O., Leuzinger, S., Liu, Y., 2 

MacBean, N., Malhi, Y., McVicar, T., Penuelas, J., Pongratz, J., Powell, A.S., Riutta, T., 3 

Sabot, M.E.B., Schleucher, J., Sitch, S., Smith, W.K., Sulman, B., Taylor, B., Terrer, C., Torn, 4 

M.S., Treseder, K., Trugman, A.T., Trumbore, S.E., van Mantgem, P.J., Voelker, S.L., 5 

Whelan, M.E., Zuidema, P.A., 2020. Integrating the evidence for a terrestrial carbon sink 6 

caused by increasing atmospheric CO 2. New Phytologist. 7 

https://doi.org/10.1111/nph.16866 8 

Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.-M., 9 

Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate change. 10 

Nature 416, 389–395. https://doi.org/10.1038/416389a 11 

Wang, C., Chen, J., Wu, J., Tang, Y., Shi, P., Black, T.A., Zhu, K., 2017. A snow-free vegetation 12 

index for improved monitoring of vegetation spring green-up date in deciduous 13 

ecosystems. Remote Sensing of Environment 196, 1–12. 14 

https://doi.org/10.1016/j.rse.2017.04.031 15 

Wang, S., Ju, W., Peñuelas, J., Cescatti, A., Zhou, Y., Fu, Y., Huete, A., Liu, M., Zhang, Y., 2019. 16 

Urban−rural gradients reveal joint control of elevated CO 2 and temperature on 17 

extended photosynthetic seasons. Nature Ecology & Evolution 1. 18 

https://doi.org/10.1038/s41559-019-0931-1 19 

Wang, S., Zhang, Y., Ju, W., Wu, M., Liu, L., He, W., Peñuelas, J., 2022. Temporally corrected long-20 

term satellite solar-induced fluorescence leads to improved estimation of global trends in 21 

vegetation photosynthesis during 1995–2018. ISPRS Journal of Photogrammetry and 22 

Remote Sensing 194, 222–234. https://doi.org/10.1016/j.isprsjprs.2022.10.018 23 

Wang, T., Peng, S., Lin, X., Chang, J., 2013. Declining snow cover may affect spring phenological 24 

trend on the Tibetan Plateau. Proceedings of the National Academy of Sciences 110, 25 

E2854–E2855. https://doi.org/10.1073/pnas.1306157110 26 

Way, D.A., Montgomery, R.A., 2015. Photoperiod constraints on tree phenology, performance 27 

and migration in a warming world. Plant, Cell & Environment 38, 1725–1736. 28 

https://doi.org/10.1111/pce.12431 29 

White, M.A., Beurs, K.M.D., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., O’keefe, J., 30 

Zhang, G., Nemani, R.R., Leeuwen, W.J.D.V., Brown, J.F., Wit, A.D., Schaepman, M., Lin, 31 

X., Dettinger, M., Bailey, A.S., Kimball, J., Schwartz, M.D., Baldocchi, D.D., Lee, J.T., 32 

Lauenroth, W.K., 2009. Intercomparison, interpretation, and assessment of spring 33 

phenology in North America estimated from remote sensing for 1982–2006. Global 34 

Change Biology 15, 2335–2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x 35 

Wu, C., Peng, J., Ciais, P., Peñuelas, J., Wang, H., Beguería, S., Andrew Black, T., Jassal, R.S., 36 

Zhang, X., Yuan, W., Liang, E., Wang, X., Hua, H., Liu, R., Ju, W., Fu, Y.H., Ge, Q., 2022. 37 

Increased drought effects on the phenology of autumn leaf senescence. Nat. Clim. Chang. 38 

1–7. https://doi.org/10.1038/s41558-022-01464-9 39 

Yang, J., 2022. TROPOMI SIF reveals large uncertainty in estimating the end of plant growing 40 

season from vegetation indices data in the Tibetan Plateau. Remote Sensing of 41 

Environment 17. 42 

Yang, P., van der Tol, C., 2018. Linking canopy scattering of far-red sun-induced chlorophyll 43 

fluorescence with reflectance. Remote Sensing of Environment 209, 456–467. 44 

https://doi.org/10.1016/j.rse.2018.02.029 45 

Yang, Y., Chen, R., Yin, G., Wang, C., Liu, G., Verger, A., Descals, A., Filella, I., Peñuelas, J., 2022. 46 

Divergent Performances of Vegetation Indices in Extracting Photosynthetic Phenology for 47 



Journal of Remote Sensing                                        Manuscript Template                                                                        Page 16 of 

17 

 

Northern Deciduous Broadleaf Forests. IEEE Geoscience and Remote Sensing Letters 19, 1 

1–5. https://doi.org/10.1109/LGRS.2022.3182405 2 

Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., Berry, J.A., 2019. A practical approach for 3 

estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. 4 

Remote Sensing of Environment 232, 111209. https://doi.org/10.1016/j.rse.2019.05.028 5 

Zhang, G., Zhang, Y., Dong, J., Xiao, X., 2013. Green-up dates in the Tibetan Plateau have 6 

continuously advanced from 1982 to 2011. Proceedings of the National Academy of 7 

Sciences 110, 4309–4314. 8 

Zhang, H., 2022. Deciphering the multiple effects of climate warming on the temporal shift of 9 

leaf unfolding. Nature Climate Change 21. 10 

Zhang, Y., Commane, R., Zhou, S., Williams, A.P., Gentine, P., 2020a. Light limitation regulates 11 

the response of autumn terrestrial carbon uptake to warming. Nature Climate Change 12 

10, 739–743. https://doi.org/10.1038/s41558-020-0806-0 13 

Zhang, Y., Fang, J., Smith, W.K., Wang, X., Gentine, P., Scott, R.L., Jeong, S., Litvak, M., Zhou, S., 14 

2023. Satellite solar-induced chlorophyll fluorescence tracks physiological drought stress 15 

development during 2020 southwest US drought. Global Change Biology. 16 

Zhang, Y., Gentine, P., Luo, X., Lian, X., Liu, Y., Zhou, S., Michalak, A.M., Sun, W., Fisher, J.B., Piao, 17 

S., Keenan, T.F., 2022. Increasing sensitivity of dryland vegetation greenness to 18 

precipitation due to rising atmospheric CO2. Nat Commun 13, 4875. 19 

https://doi.org/10.1038/s41467-022-32631-3 20 

Zhang, Y., Joiner, J., Alemohammad, S.H., Zhou, S., Gentine, P., 2018a. A global spatially 21 

contiguous solar-induced fluorescence (CSIF) dataset using neural networks. 22 

Biogeosciences 15, 5779–5800. https://doi.org/10.5194/bg-15-5779-2018 23 

Zhang, Y., Parazoo, N.C., Williams, A.P., Zhou, S., Gentine, P., 2020b. Large and projected 24 

strengthening moisture limitation on end-of-season photosynthesis. Proceedings of the 25 

National Academy of Sciences 117, 9216–9222. 26 

https://doi.org/10.1073/pnas.1914436117 27 

Zhang, Yao, Xiao, X., Jin, C., Dong, J., Zhou, S., Wagle, P., Joiner, J., Guanter, L., Zhang, 28 

Yongguang, Zhang, G., Qin, Y., Wang, J., Moore, B., 2016. Consistency between sun-29 

induced chlorophyll fluorescence and gross primary production of vegetation in North 30 

America. Remote Sensing of Environment 183, 154–169. 31 

https://doi.org/10.1016/j.rse.2016.05.015 32 

Zhang, Y., Xiao, X., Zhang, Yongguang, Wolf, S., Zhou, S., Joiner, J., Guanter, L., Verma, M., Sun, 33 

Y., Yang, X., Paul-Limoges, E., Gough, C.M., Wohlfahrt, G., Gioli, B., van der Tol, C., Yann, 34 

N., Lund, M., de Grandcourt, A., 2018b. On the relationship between sub-daily 35 

instantaneous and daily total gross primary production: Implications for interpreting 36 

satellite-based SIF retrievals. Remote Sensing of Environment 205, 276–289. 37 

https://doi.org/10.1016/j.rse.2017.12.009 38 

Zhang, Z., Guanter, L., Porcar-Castell, A., Rossini, M., Pacheco-Labrador, J., Zhang, Y., 2023. 39 

Global modeling diurnal gross primary production from OCO-3 solar-induced chlorophyll 40 

fluorescence. Remote Sensing of Environment 285, 113383. 41 

https://doi.org/10.1016/j.rse.2022.113383 42 

Zhang, Z., Zhang, Y., 2023. Solar angle matters: Diurnal pattern of solar-induced chlorophyll 43 

fluorescence from OCO-3 and TROPOMI. Remote Sensing of Environment 285, 113380. 44 

https://doi.org/10.1016/j.rse.2022.113380 45 

Zhang, Z., Zhang, Y., Joiner, J., Migliavacca, M., 2018. Angle matters: Bidirectional effects impact 46 

the slope of relationship between gross primary productivity and sun-induced chlorophyll 47 



Journal of Remote Sensing                                        Manuscript Template                                                                        Page 17 of 

17 

 

fluorescence from Orbiting Carbon Observatory-2 across biomes. Global Change Biology 1 

24, 5017–5020. https://doi.org/10.1111/gcb.14427 2 

Zhao, Q., Zhu, Z., Zeng, H., Myneni, R.B., Zhang, Y., Peñuelas, J., Piao, S., 2022. Seasonal peak 3 

photosynthesis is hindered by late canopy development in northern ecosystems. Nat. 4 

Plants. https://doi.org/10.1038/s41477-022-01278-9 5 

 6 

 7 

 8 

 9 


