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Summary  35 

Global net land carbon uptake, or net biome production (NBP), has increased during recent 36 

decades1. Whether its temporal variability and autocorrelation have changed during this period, 37 

however, remains elusive, even though an increase in both could indicate an increased 38 

potential for a destabilised carbon sink2,3. Here we investigate the trends and controls of net 39 

terrestrial carbon uptake and its temporal variability and autocorrelation from 1981 to 2018 40 

using two atmospheric inversion models, the amplitude of the seasonal cycle of atmospheric 41 

CO2 concentration derived from nine monitoring stations distributed across the Pacific Ocean 42 

and dynamic global vegetation models. We find that annual NBP and its interdecadal variability 43 

increased globally while temporal autocorrelation decreased. We observe a separation of 44 

regions characterized by increasingly variable NBP, associated with warm regions and 45 

increasingly variable temperatures, lower and weaker trends in NBP, and regions where NBP 46 

became stronger and less variable. Plant species richness presented a concave-down 47 

parabolic spatial relationship with NBP and its variability at the global scale while nitrogen 48 

deposition generally increased NBP. Increasing temperature and its increasing variability 49 

appears as the most important drivers of declining and increasingly variable NBP. Our results 50 

show increasing variability of NBP regionally that can be mostly attributed to climate change, 51 

and that may point to destabilisation of the coupled carbon-climate system.  52 

Keywords: carbon cycle, variability, biodiversity, climate, land-use change, early warnings 53 
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Main 55 

Positive carbon-climate feedbacks have the potential to accelerate climate change and might 56 

compromise the attainability of ambitious climate targets such as those set by the Paris 57 

agreement4. Terrestrial ecosystems are key to the functioning of the global carbon (C) cycle 58 

and have increased their productivity and net C uptake during recent decades primarily due to 59 

CO2 fertilisation and forest regrowth1,5–7. However, land-use change, nutrient limitations and 60 

increasing droughts and fires are constraining this potential to sequester C8–11. Identifying 61 

processes that might destabilise net land C uptake (or net biome production, NBP) is of 62 

paramount importance for understanding and managing the global C cycle.  63 

Destabilisation is the process of losing stability: that is, when a system loses its ability to return 64 

to equilibrium following a disturbance. A symptom of this may be increased variability, as the 65 

system spirals away from its current equilibrium point towards a new one. Destabilisation of a 66 

dynamical system is usually accompanied by concomitant increases in temporal variability and 67 

autocorrelation (i.e., the correlation between consecutive time steps [AR1] also related to 68 

reduced resilience2) when AR1 is already positive, because anomalous states of the system 69 

create ripples that can get amplified through time rather than compensated as when AR1 is 70 

negative. Consequently, increasing temporal variability and autocorrelation have been shown 71 

to be potential early-warning signals for abrupt shifts in ecosystems2,3,12,13. To date, changes 72 

in NBP temporal variability and autocorrelation have not yet been investigated even though 73 

increased stress and changes in the frequency and intensity of extreme weather events are 74 

likely to alter the temporal patterns of NBP14–16 due to i) a cumulative negative effect of extreme 75 

events on ecosystem functioning, ii) increasing climate variability and, iii) decreasing 76 

ecosystem resilience due to increased stress. We, thus, hypothesised that regions 77 

experiencing increasing trends in climate variability will also experience increasing variability 78 

in their NBP, and that increase in variability may indicate that a destabilisation of the net land 79 

C uptake is occurring. This finding could serve as an early warning signal for abrupt shifts in 80 

ecosystem’s functions2 that might lead to regime shifts in the Earth’s biosphere17,18. Even if 81 

these changes do not occur at the global scale, increasing temporal variability and 82 

autocorrelation in several regions of the globe (e.g. Amazon basin, boreal ecosystems with 83 

permafrost) could have a profound impact on the global C balance and a knock-on effect on 84 

other ecosystem functions.  85 

Climate is the primary control on NBP in terrestrial ecosystems worldwide in space and 86 

time19,20, together with soil nutrient availability10,21, atmospheric nitrogen (N) deposition, land 87 

use and management, and increasing atmospheric CO2
1. Generally, gross C fluxes (such as 88 

photosynthesis and respiration) are larger in the tropics where high temperature coincides with 89 



sufficient precipitation to enable long growing seasons. However, net C uptake tends to be 90 

higher in temperate regions due to higher nutrient availability19,21–23. Nutrient availability and N 91 

deposition have indeed been shown to increase net land C uptake21,22. Another factor believed 92 

to be important in determining ecosystem functioning is plant biodiversity24. A large body of 93 

evidence indicates its role in promoting ecosystem productivity and stability25,26. Plant 94 

biodiversity, however, has been included far less in studies of ecosystem C cycling, 95 

presumably due to the difficulty of acquiring good data on species diversity. The few studies 96 

that included biodiversity, however, showed relatively modest correlations with C fluxes27–29. 97 

The role of biodiversity in the global terrestrial NBP has not yet been explored even though the 98 

Earth’s biosphere is losing biodiversity at an unprecedented speed30 and those changes are 99 

expected to alter ecosystem functioning.  100 

The aim of this study was to quantify the trends in global NBP and its intradecadal temporal 101 

variability (quantified by the proportional variability index, PV31,32) and autocorrelation (AR1) to 102 

see whether changes in these variables suggest that NBP at global or regional scales is being 103 

destabilised. We further tested whether regions with increasing variability and AR1 in NBP 104 

showed differential trends in annual NBP. We additionally investigated the spatial correlation 105 

between NBP metrics and plant biodiversity (derived from a global map of plant species 106 

richness33), atmospheric total N deposition34, climate35, and land use (land-use harmonisation2 107 

maps). To realise these objectives, we used estimates of NBP derived from the two longest 108 

CO2 atmospheric inversions (CAMS, CarboScope) and the amplitude of the seasonal cycle of 109 

atmospheric CO2 derived from nine monitoring stations distributed from south to north of the 110 

Pacific Ocean for 1981 to 2018. We additionally compared these results with the output from 111 

an ensemble of 12 dynamic global vegetation models (TRENDY) to explore how well these 112 

state-of-the-art models predict the spatial and temporal patterns in NBP simulated by 113 

atmospheric inversion models.  114 

Results 115 

Temporal patterns of net land C uptake  116 

Global NBP derived from atmospheric inversions increased from 5.6 ± 2.0 gC m-2 y-1 during 117 

1981 – 1990 (mean ± standard error) to 13.8 ± 1.4 gC m-2 y-1 during 2009 – 2018 over the 118 

global land area excluding Antarctica (Figure 1). This represents an overall increase of 145% 119 

and an annual linear increase of 0.24 ± 0.08 gC m-2 y-2 (P<0.001). Both atmospheric inversions 120 

used (CAMS and CarboScope) identified annual increases in NBP (Supplementary Figure 1 121 

and Supplementary Figure 2, 0.32 ± 0.09, and 0.18 ± 0.09 gC m-2 y-2 respectively, P<0.001, 122 

N=38). The positive trend in NBP shown by inversions is similar in magnitude to the trend 123 

identified by the TRENDY ensemble (0.10 ± 0.07 gC m-2 y-2, P<0.001; 147% when comparing 124 



the periods 1981 – 1990 and 2009 – 2018). Both observations and models, however, showed 125 

a flattening trend during the last decade (Figure 1c). In parallel with the increased NBP 126 

throughout the entire study period and in agreement with previous literature36,37, the amplitude 127 

of the seasonal atmospheric CO2 concentration increased by 0.027 ± 0.004 ppm y-1 (P<0.001, 128 

16.6% during the study period) (Supplementary Figure 3a).  129 

Interannual NBP variability (NBPPV) derived from the combination of atmospheric inversions 130 

increased globally by 7.2% over the entire period (P<0.001) (Figure 1f) (CAMS 14.9%, 131 

P<0.001; CarboScope: -1.3%, P<0.001). The origin of the discrepancy between the inversions 132 

remains unclear. Though the inversions differ in whether they use a growing number of 133 

measurement stations (CAMS) or a constant station set (CarboScope), the discrepancy is 134 

unlikely to be related to this because a test inversion with a growing station set in the 135 

CarboScope inversion did not yield an increase in NBPPV. Temporal variability in the amplitude 136 

of the seasonal atmospheric CO2 concentration also increased (by 35%, P<0.001) during the 137 

study period (Supplementary Figure 3b). TRENDY NBP did not simulate this increase in 138 

variability, showing a negative trend of -1.7% in NBPPV similar to that from the CarboScope 139 

inversion.  140 

Global NBPAR1 significantly decreased over time for NBP derived from atmospheric inversions 141 

(Figure 1i) and for the average monthly CO2 concentrations across the Pacific Ocean 142 

(Supplementary Figure 3c). TRENDY NBPAR1, also showed a significant negative trend 143 

representing a reduction of 2.9% over the study period. Trends of contrasting sign, however, 144 

were significant amongst atmospheric measurement stations and atmospheric inversions 145 

(CAMS: -10.0%, P<0.001; CarboScope: 4.7%, P<0.001). Several regions showed increases 146 

in the temporal autocorrelation between consecutive months (NBPAR1) derived from 147 

atmospheric inversions that are of a similar magnitude (ca. 0.2 over three decades) to those 148 

previously suggested to precede abrupt shifts in climate datasets and simulations2,3. Additional 149 

information on how changes in NBPPV and NBPAR1 may affect annual NBP and their limitations 150 

can be found in Supplementary text, Section 1.  151 

Our analyses identified several regions of potential concern given their concomitant increase 152 

in NBPPV and NBPAR1 (Figure 2a), such as eastern Africa, the Mediterranean region, the west 153 

coasts of North and Central America, India, and southeast Asia. Regions with increasing 154 

NBPPV and NBPAR1 had statistically lower NBP and experienced a much less pronounced 155 

increase in NBP over time (0.15 ± 0.06 gC m-2 y-1, P<0.001) compared to regions where NBPPV 156 

and NBPAR1 decreased (0.73 ± 0.12 gC m-2 y-1, P<0.001) (Figure 2b-d, Supplementary 157 

Figure 4). Stronger increases in NBP over regions with decreasing NBPPV and NBPAR1, 158 



compared to those where they increased, were also evident from both atmospheric inversions 159 

when analysed separately (Supplementary Figure 5).  160 

Global temperature and precipitation increased during the study period (Supplementary 161 

Figure 6a and d) even though there was considerable spatial variability in those trends 162 

(Supplementary Figure 7a and d). Temperature and precipitation interannual variability, 163 

however, decreased significantly at the global scale, despite the reported increase in extreme 164 

weather14. Temporal autocorrelation of monthly temperature and precipitation, instead, 165 

increased slightly, albeit only significantly for temperature. A concomitant increase in temporal 166 

variability and autocorrelation of temperature was evident in several regions (e.g., Eurasia, 167 

Australia, Central America) but those were not so obvious for precipitation (Supplementary 168 

Figure 8).  169 

Controls of NBP, variability and autocorrelation 170 

NBP, derived from atmospheric inversions, had a concave-down parabolic relationship with 171 

biodiversity (Figure 3), increasing from low to intermediate values of biodiversity and 172 

decreasing at high biodiversity (Supplementary Figure 9a). Our analyses also identified a 173 

significant positive interaction between biodiversity and N deposition accounting for NBP. The 174 

concave-down relationship between biodiversity and NBP included mainly positive NBP values 175 

across regions with high atmospheric N deposition (850 mg N m-2 y-1) and mainly negative 176 

NBP values at low atmospheric N deposition (100 mg N m-2 y-1) (Supplementary Figure 9a). 177 

Similarly, the positive correlation between N deposition and NBP was stronger in regions with 178 

higher plant biodiversity (Supplementary Figure 9b). Opposite relationships emerged when 179 

analysing TRENDY NBP.  180 

NBPPV derived from inversions also showed a concave-down parabolic relationship with plant 181 

biodiversity, peaking at intermediate to high values of biodiversity (Supplementary Figure 182 

9d). We also found an interaction between plant biodiversity and N deposition in their 183 

relationship with NBPPV: the relationship between NBPPV and biodiversity differed between 184 

areas receiving low N deposition and areas receiving high N deposition (Supplementary 185 

Figure 9d). No relationship between N deposition and NBPPV was found in regions with high 186 

biodiversity, whereas a positive relationship occurred in regions with low biodiversity 187 

(Supplementary Figure 9e). Interannual variability in temperature and precipitation were 188 

positively correlated with NBPPV (Figure 3). In this case, the patterns for the TRENDY 189 

ensemble and the inversion models matched very well. Again, NBPAR1 derived from inversions 190 

had a concave-down parabolic relationship with biodiversity (Supplementary Figure 9g), but 191 

here no interaction occurred between the effects of biodiversity and N deposition, which was 192 

negatively correlated with NBPAR1. NBPAR1 was also positively correlated with temperature 193 



AR1, the only result that match those from TRENDY NBPAR1 (Supplementary Figure 9i). 194 

Results emerging from individual atmospheric inversions (CAMS and CarboScope) mostly 195 

coincided with those reported above (Supplementary Figure 10).   196 

Spatial variability in the trends of NBP, NBPPV and NBPAR1 derived from atmospheric inversions 197 

were all correlated with N deposition, climate, and land use (Figure 3 and Supplementary 198 

Figure 11). The estimated effects of land use and land use change, however, were generally 199 

lower than those from N deposition and climate, hence accounting for a smaller proportion of 200 

the change at the global scale. N deposition was positively correlated with the trends in NBP 201 

and negatively with trends in NBPPV and NBPAR1 (Supplementary Figure 11). Warmer regions 202 

were more likely than colder regions to have decreasing trends in NBP, and increasing 203 

temperatures contributed to decreasing NBP (Supplementary Figure 11b and c). Regions 204 

with the strongest increases in NBPPV were spatially associated with low increases in annual 205 

temperature (Supplementary Figure 11e). Increases in NBPPV were also found to be more 206 

likely in regions showing increases in temperature temporal variability (Supplementary Figure 207 

11f). Increasing NBPAR1 was more likely in regions with increasing temperatures 208 

(Supplementary Figure 11h) and mildly with increasing temporal autocorrelation of 209 

precipitation (Figure 3). Our analyses using TRENDY reproduced the abovementioned 210 

findings well for trends in NBP and NBPAR1, but not for NBPPV. Again, results from individual 211 

atmospheric inversions were very similar to those reported here (Supplementary Figure 10). 212 

Warm regions presenting a concomitant increase in temperature temporal variability and 213 

autocorrelation (symptoms of destabilisation) were more likely to be correlated with similar 214 

changes in NBP variability and AR1, and those results were well supported by both 215 

atmospheric inversions and their combination (Supplementary Figure 12). Additionally, 216 

regions with higher N deposition, larger proportions of forested areas and lower crops were 217 

related to concomitantly decreasing NBPPV and NBPAR1.  218 

Biodiversity, N deposition and net C uptake 219 

NBP derived from atmospheric inversions provided correlational evidence indicating that plant 220 

biodiversity may be playing an important role in regulating regional variation in the land C 221 

balance and in its temporal variability. TRENDY models, instead, do not include biodiversity in 222 

their parameterisation and, hence, any spurious relationship is necessarily driven by factors 223 

other than biodiversity. The spatial relationship between biodiversity and NBP clearly differed 224 

between atmospheric inversions and TRENDY (Supplementary Figure 9a), hence 225 

suggesting that the reported effect of biodiversity when analysing atmospheric inversions may 226 

emerge due to a mechanistic effect. The emerging relationship between biodiversity and 227 

NBPPV derived from atmospheric inversions, however, was very similar to the one emerging 228 



from TRENDY, which suggests that factors other than biodiversity may be driving this 229 

relationship. The positive relationship between biodiversity and NBPAR1 found here has never 230 

been reported before and further research is needed to understand the mechanisms behind 231 

this relationship. 232 

The concave-down parabolic relationships of biodiversity with NBP and NBPPV differ from the 233 

majority of biodiversity-productivity and stability relationships reported in the literature: positive 234 

asymptotic for productivity and negative for variability38,39. This difference in the biodiversity-235 

NBP relationship may result from two opposing ecosystem processes, photosynthesis and 236 

respiration, because both are likely to be enhanced by biodiversity27,40,41. The concave-down 237 

relationship would then suggest that the positive effect of biodiversity on respiration 238 

overshadows the positive effect of photosynthesis in regions with high biodiversity. However, 239 

our biodiversity data, like in similar studies39, was restricted to species richness and did not 240 

include information on species abundance, their individual contribution to NBP, or traits to allow 241 

the calculation of actual species diversity or functional diversity, often better indicators of 242 

ecosystem functioning than species richness42. Unfortunately, this information is not available 243 

at the global scale. Including actual diversity in future analyses could lead to different results 244 

to those reported here. Additionally, future efforts are needed to understand how biodiversity 245 

loss, not included here, will impact global carbon balance.  246 

Interestingly, our analyses indicated that the effect of biodiversity on NBP depended on 247 

atmospheric N deposition, and vice versa (Figure 3). The effect of atmospheric N deposition 248 

on NBP was mainly positive but was stronger in regions with higher biodiversity, further 249 

supporting the premise that biodiversity promotes ecosystem functions such as N uptake43. 250 

Regions with higher N deposition also had larger increases in NBP over time (Supplementary 251 

Figure 11a), supporting previous findings suggesting a stronger CO2 fertilisation effect in 252 

regions with higher N deposition1. On the other hand, N deposition was negatively related to 253 

trends in NBPPV, NBPAR1 and the aggregated trend of NBPPV-AR1 (Supplementary Figure 12), 254 

which suggests that N addition may ameliorate nutrient imbalances derived from increasing 255 

atmospheric CO2 concentrations8 and prevent ecosystem functioning from becoming more 256 

variable.  257 

Climate and changing land C uptake 258 

Our results clearly indicate that NBP decreased in regions with warm climates and where 259 

warming has been most pronounced (Supplementary Figure 11). These findings support 260 

results from previous studies1 and further suggests that increasing droughts and heat waves 261 

limit C sequestration by terrestrial ecosystems44. Our analyses revealed that higher NBPPV, 262 

NBPAR1 and their trends were associated, respectively, with climates showing higher and 263 



increasing temporal variability and autocorrelation (Supplementary Figure 9). We also found 264 

that concomitantly increasing trends in NBPPV-AR1 were positively related to increasing 265 

temperature variability and autocorrelation (Supplementary Figure 12). These results support 266 

our initial hypothesis stating that climate change may be the main contributing factor for 267 

changing the temporal behaviour of land C sinks. 268 

Implications of altered land C sinks 269 

Compelling evidence from atmospheric inversions (Figure 1) and the annual amplitude of the 270 

seasonal CO2 cycle (Supplementary Figure 3) suggests that global net land C uptake is now 271 

larger and, most likely, more variable than three decades ago, while its temporal 272 

autocorrelation (NBPAR1), instead, has significantly decreased. The increase in global NBP and 273 

the reduction in NBPAR1 were well identified by TRENDY NBP, including the evidence of a 274 

flattening trend in NBP during the last two decades. Our results for the increase in global NBP 275 

and a potential recent saturation are consistent with previous findings of increases in global 276 

productivity and NBP and a recent decline of the CO2 fertilisation effect1,5,8,20. Even though the 277 

main emerging spatial controls for CAMS and CarboScope atmospheric inversions in NBP 278 

were in agreement (Figures S8 and S10), trends at the global scale for NBPPV and NBPAR1 279 

were significantly different (Supplementary Figure 13), which calls for caution in the 280 

interpretation of these results due to their uncertainty.  281 

We observed a bifurcation of regions characterised by concomitant increases and decreases 282 

in NBPPV and NBPAR1 (Figure 2). This bifurcation relates to differences in their mean annual 283 

temperature, their increase in annual temperature, their average N deposition loads and their 284 

percentage of forests and crops (Supplementary Figure 12). The observed increase in the 285 

variability and autocorrelation of net C uptake in several regions of the planet (Figure 2a) is 286 

concerning because of the implications it can have on the stability of their ecosystems. First, 287 

increasing NBPPV and NBPAR1 is indicative of increasing variability and reducing resilience3,45 288 

potentially in many ecosystem processes: from photosynthesis and respiration27 to cascading 289 

effects on animals and decomposers46. Second, an increase in variability in NBP implies that 290 

ecosystem C balance is less predictable over time, which is troublesome for projections of 291 

future climate change. Third, regions showing a combined increase in NBPPV and NBPAR1 had 292 

a consistently lower NBP and lower increases in NBP than regions where NBPPV and NBPAR1 293 

decreased (Figure 2b-d), suggesting that these increases NBPPV and NBPAR1 reflect 294 

dynamical instability in the carbon system rather than some other cause (such as changes in 295 

the external forcing of the system). This destabilization may jeopardise future C sequestration. 296 

Our analyses, however, could not determine the mechanisms driving the observed changes in 297 

NBPPV and NBPAR1. More importantly, we could not determine whether the observed increases 298 



NBPPV and NBPAR1 truly reflect dynamical instability in the carbon system, as opposed to some 299 

other cause, such as changes in the external forcing of the system (e.g., increasing CO2 300 

emissions, N deposition). Hence, regions showing increased variability and autocorrelation 301 

should be monitored in detail to properly understand the mechanisms and consequences 302 

behind these changes given that increasing variability and autocorrelation have been shown 303 

to act as early warning signals preceding abrupt phase transitions in simulations of ecosystem 304 

functioning2,3. The increase of NBPPV and NBPAR1 in several regions should serve as an early 305 

warning signal of potential future changes that the Earth’s biosphere may be facing. Given the 306 

main role of climate change as a driver of these changes in their temporal behaviour, mitigating 307 

climate change is needed to prevent further unforeseen changes in land C sinks.  308 
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Figure 1: Global distribution of net biome production (NBP), its interannual variability 414 

(NBPPV) and temporal autocorrelation (NBPAR1), and their trends from 1981 to 2018. Panel 415 

a shows the average global distribution of NBP (positive values indicate C sinks) derived from 416 

CAMS and CarboScope atmospheric inversions. Panel b shows the temporal trends in NBP 417 

(∆NBP), and panel c shows the temporal change in NBP derived from atmospheric inversions 418 

and 12 DGVMs (TRENDY). Panels d, e, and f, and g, h, and i mimic panels a, b, and c, 419 

respectively, for interannual variability of NBP (NBPPV) and temporal autocorrelation (NBPAR1) 420 

calculated over an 11-year moving window. Thick lines in panels c, f, and i represent smooth 421 

trends estimated with a local regression (shaded areas show the standard error of the trend), 422 

and the coefficients at the top of the panels indicate robust Theil-Sen’s slopes (± standard error 423 

of the slope) with their corresponding p-values, estimated using the non-parametric Wilcoxon 424 

Mann-Whitney rank sum test. Values in panels c, f and i, represent spatially-weighted global 425 

means.  **, P<0.01; ***, P<0.001. Data to reproduce this figure can be found in Source Data 426 

1.  427 

(See Figure 1 on the following page) 428 

 429 
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Figure 2: Regions with concomitantly increasing NBPPV and NBPAR1 present lower NBP and a lower increase of NBP over time. Panel a 432 

shows regions of the world where concomitant increases (red) and decreases (blue) in NBPPV and NBPAR1 have occurred during the study period. 433 

Regions with contrasting trends in NBPPV and NBPAR1 appear in grey. Panel b shows the aggregated annual mean NBP of regions with increasing 434 

(red) and decreasing (blue) NBPPV and NBPAR1 (see Supplementary Figure 4 for information on their global contribution). Smooth trends were 435 

estimated with a local regression (shaded indicate the standard error of the trend), and the coefficients at the top of the panel indicate robust 436 

Theil-Sen’s slopes (± standard error of the slope) and their associated significance (***, P<0.001), estimated using the non-parametric Wilcoxon 437 

Mann-Whitney rank sum test. Panel c and d show the spatial relationship of NBP and trends in NBP (ΔNBP) with the aggregated trend of NBPPV 438 

and NBPAR1. Coefficients are standardised and include the 95% credible intervals (CI). See Methods for details on how the aggregated trend of 439 

NBPPV and NBPAR1 was calculated. Data to reproduce this figure can be found in Source Data 2.  440 
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Figure 3: Contribution of biodiversity, N deposition, climate, and land use to the 442 

global terrestrial C balance (NBP), its interannual variability (NBPPV), its temporal 443 

autocorrelation (NBPAR1), and their trends. The colour scale indicates the strength of the 444 

relationship (standardised β coefficients) between each predictor (bottom) and the response 445 

variable (left). Black dots indicate that 95% of the posterior distributions differed from 0. 446 

Biodiversity was fitted as a second-order polynomial to account for nonlinearities 447 

(biodiversity + biodiversity2; the second term indicates the change in the slope in biodiversity 448 

as biodiversity increases). Hashed areas indicate relationships not included in the 449 

regression models. See Methods for further information on model fitting. INV and TRD 450 

indicate the averages for all atmospheric inversions (2) and DGVMs (12), respectively. 451 

Predictors MAT𝑥̅, PV, AR1 and MAP𝑥̅, PV, AR1 indicate mean, PV, or AR1 metrics of MAT and 452 

MAP matching the metric of the response variable (e.g. NBPINV ~ MAT𝑥̅,; NBPPV-INV ~ 453 

MATPV). The same applies for ΔMATPV, ΔMATAR1, ΔMAPPV, ΔMAPAR1. MAT, mean annual 454 

temperature; MAP, mean annual precipitation; PV, proportional variability; AR1, temporal 455 

autocorrelation with previous month; Δ, trend in a given variable. 456 
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Methods 459 

Data sets 460 

NBP and atmospheric CO2 data 461 

We obtained the global NBP data for 1981–2018 from the two atmospheric-inversion 462 

models that provided the longest time series: i) the CAMS Greenhouse Gases Flux 463 

Inversions (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-464 

greenhouse-gas-inversion)47,48 version v18r3, and ii) the Jena CarboScope database 465 

version s81oc_v2020 using a constant network of measurement stations (http://www.bgc-466 

jena.mpg.de/CarboScope/)49,50. We also used NBP data from an ensemble of 12 dynamic 467 

global vegetation models (DGVMs) run with varying concentrations of atmospheric CO2 and 468 

changing land uses and climates. Models compiled by the TRENDY project (version 8, 469 

models CABLE-POP, CLASS-CTEM, CLM5.0, ISAM, JSBACH, JULES-ES, LPX-BERN, 470 

OCN, ORCHIDEE, ORCHIDEE-CNP, SDGVM and VISIT) were used to test whether the 471 

DGVMs also identified the patterns from atmospheric inversions51. Even though previous 472 

studies indicate that DGVMs explain trends in NBP adequately, we are the first to test 473 

whether their emerging trends in NBP temporal variability and autocorrelation also match 474 

those from local observations or atmospheric inversions. We used model results from the 475 

simulation experiment S3, which was run with changing atmospheric CO2, land use and 476 

climate (see https://blogs.exeter.ac.uk/trendy/protocol/ for more details). We used monthly 477 

NBP estimates as the basis for all calculations in this study. We rescaled all atmospheric 478 

inversions, the TRENDY model outputs, and the predictors to the same spatial resolution 479 

of the coarsest data set for fitting the statistical models (see section below) (i.e. CAMS: 3.75 480 

× 1.875°).  481 

We calculated average annual NBP per pixel, its temporal variability expressed as the 482 

proportional variability index (NBPPV)31,32, and its monthly temporal autocorrelation at lag 1 483 

(NBPAR1) for all of the abovementioned datasets. All three indices (NBP, NBPPV and NBPAR1) 484 

were calculated as the average for the entire period. The PV index is calculated as the 485 

mean proportional variability amongst all possible combinations of values in a time series, 486 

following: 𝑃𝑉 =  
2 ∑ 𝑚

𝑛(𝑛−1)
 , where “n” indicates the length of the variable, where “m” is 487 

calculated as: 𝑚 = 1 −  
min(𝑧𝑖 ,𝑧𝑗 )

max(𝑧𝑖 ,𝑧𝑗 )
, and where “z” represent the individual values from which 488 

to calculate all the pairwise comparisons between the observations of the time series (e.g., 489 

observation zi vs observation zj). When negative values occurred in a time series, we added 490 

a constant to the entire time series equivalent to the minimum absolute value plus one. 491 

https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/)
https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/)
http://www.bgc-jena.mpg.de/CarboScope/
http://www.bgc-jena.mpg.de/CarboScope/
https://blogs.exeter.ac.uk/trendy/protocol/


Unlike other metrics of temporal variability, the PV index provides estimates of temporal 492 

variability that are independent of the mean of the time series and that have been proven 493 

to be robust even when comparing non-normally distributed data sets, thereby overcoming 494 

the mathematical drawbacks of similar variability indices such as the standard deviation or 495 

the coefficient of variation52. NBPPV per pixel was estimated as the average of the 496 

interannual variabilities of all months (e.g. 𝑁𝐵𝑃𝑃𝑉 =  
𝑁𝐵𝑃𝑃𝑉 𝐽𝑎𝑛𝑢𝑎𝑟𝑦+ [...]+ 𝑁𝐵𝑃𝑃𝑉 𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟

12
). By 497 

using this method, NBPPV reflects not only the interannual variability of the annual NBP, but 498 

also the variation occurring amongst equal months across the years. Using this method, a 499 

year with average NBP yet with anomalously low NBP in one period offset by anomalously 500 

high NBP in another, would thus result in high interannual variability rather than low 501 

interannual variability. AR1 was estimated using the residuals of generalised additive 502 

models (GAM) used to remove the trend and seasonal cycle of the data. In these models 503 

response variable was monthly NBP and the predictors were the month of the year (i.e. a 504 

factor of 12 levels) and the year, the latter included as a spline smoothed term to account 505 

for nonlinear trends over time (Supplementary Figure 14). We used the mgcv R package 506 

to fit the GAM models53. An 11-year moving average from NBPPV and NBPAR1 per pixel was 507 

then calculated for all data sets to investigate trends in interannual variability and temporal 508 

autocorrelation. Our sensitivity analysis that showed that our results were consistent despite 509 

the selection of different window lengths (7, 11 and 15 years, Supplementary Figure 13, 510 

Supplementary Table 1). Robust Theil-Sen’s trends54 were then calculated for NBP, 511 

NBPPV and NBPAR1 (ΔNBP, ΔNBPPV, and ΔNBPAR1) per pixel using the mblm function in R55. 512 

Wilcoxon rank sum tests were performed to test the significance of the Theil-Sen’s trends. 513 

Even though we present results for both atmospheric inversions (CAMS, CarboScope), we 514 

combined their results into one fusion dataset in order to further highlight those results for 515 

which both inversion models agreed (Supplementary Figure 10 and Supplementary 516 

Figure 12). The combination was performed by calculating the average value of each of the 517 

abovementioned variables per pixel. We followed the same approach to provide a TRENDY 518 

dataset combining all simulations following similar studies1.  519 

Trends in average global NBP, NBPPV, and NBPAR1 (from 1981 to 2018 for NBP, from 1991 520 

to 2018 for NBPPV, and NBPAR1) were also estimated using the Theil-Sen’s approach. We 521 

also combined both atmospheric inversions and the TRENDY simulations to provide the 522 

average results derived from atmospheric inversions and process-based models. In this 523 

case, the combination of products was performed by calculating the average between 524 

products per year and then estimating the temporal trends. We additionally calculated an 525 

aggregated metric of trends in NBPPV and NBPAR1. To do so, we first calculated the ratio 526 

between each value and the maximum absolute value of each of the variables (ΔNBPPV and 527 



ΔNBPAR1) and then we combined them by summing their relative values per pixel. Next, we 528 

selected those pixels in which both, ΔNBPPV and ΔNBPAR1, showed a positive trend and 529 

those that showed a negative trend, and investigated their respective trends in NBP in the 530 

same way that we proceeded for global NBP.  531 

Results obtained from the atmospheric inversions were compared with those from nine 532 

stations monitoring atmospheric CO2 concentrations distributed from north to south of the 533 

Pacific Ocean that comprised the full period of this study. We selected this subset of 534 

monitoring stations to minimise the influence of anthropogenic emissions in the signal of 535 

atmospheric CO2 concentration. These data were downloaded from the Scripps CO2 536 

programme: https://scrippsco2.ucsd.edu/data/atmospheric_co2/56. We calculated the 537 

annual amplitude in CO2 concentration (maximum minus minimum) using monthly data 538 

following20,36 as a proxy of the net global C uptake capacity. An 11-year moving average 539 

was then used to determine whether the annual amplitude of CO2 concentrations, its 540 

interannual variability (PV), and the monthly temporal autocorrelation (AR1) of CO2 541 

concentrations changed between 1981 and 2018. Theil-Sen slopes were also used to 542 

calculate trends in CO2 amplitude, its interannual variability, and their monthly temporal 543 

autocorrelation.  544 

Drivers of NBP 545 

We used temperature and precipitation data from the Climatic Research Unit TS4.03 data 546 

set35 to calculate mean annual temperature (MAT), mean annual precipitation (MAP), their 547 

temporal variabilities (MATPV and MAPPV, average of interannual monthly temporal 548 

variability), their monthly temporal autocorrelations (MATAR1 and MAPAR1), as well as the 549 

temporal trends of all these metrics (ΔMAT, ΔMAP, ΔMATPV, ΔMAPPV, ΔMATAR1, and 550 

ΔMAPAR1) for each pixel following the same procedure established for NBP (see above). In 551 

order to investigate the controls of the spatial variability in aggregated trends in NBPPV-AR1, 552 

we also calculated the aggregated indices for ΔMATPV-AR1 and ΔMAPPV-AR1 following the 553 

same methodology used for NBP (see above). Land-use changes were extracted from land-554 

use harmonisation2 maps (LUH2, http://luh.umd.edu/data.shtml). We calculated the percent 555 

coverages of forests, croplands, and urban areas per pixel, and the change in these 556 

percentages between 1981 and 2015. We calculated mean total atmospheric N deposition 557 

per pixel derived from34, covering the study period. Biodiversity data were extracted from 558 

an interpolated gridded global map of vascular plant biodiversity33, providing one datum per 559 

pixel including information on the current number of vascular plant species. We could not 560 

include the effects of biodiversity loss in our analyses because global gridded time series 561 

of plant biodiversity are not available. 562 

https://scrippsco2.ucsd.edu/data/atmospheric_co2/
http://luh.umd.edu/data.shtml


Statistical analyses 563 

We determined how NBP, NBPPV, NBPAR1, and their trends (ΔNBP, ΔNBPPV, ΔNBPAR1 and 564 

the combined ΔNBPPV-AR1) were spatially correlated with their drivers using spatial 565 

generalised linear mixed models with a Leroux conditional autoregressive prior57 and the 566 

S.CARleroux function in the CARBayes R package58. All response variables had one datum 567 

per pixel, representing aggregated information over the entire study period (e.g., NBP 568 

indicates mean annual NBP from 1981 to 2018). Models predicting spatial variability in NBP, 569 

NBPPV, and NBPAR1 included biodiversity as a second-order polynomial function to account 570 

for the nonlinearities usually found between biodiversity and productivity59 (biodiversity + 571 

biodiversity2), mean atmospheric N deposition, the interaction between biodiversity and N 572 

deposition, and the percentages of the area covered by forests and agricultural and urban 573 

areas as predictors. MAT and MAP were also included for NBP models, MATPV, MAPPV for 574 

NBPPV models, and MATAR1, MAPAR1 for NBPAR1 models. We built an additional model 575 

including the interaction between biodiversity and mean and variability in climate 576 

(biodiversity:MAT + biodiversity:MAP + biodiversity:MATPV + biodiversity:MAPPV) and the 577 

interactions MAT:MAP and MATPV:MAPPV to further test that the relationship between NBP 578 

and biodiversity was not spuriously emerging due to its relationship with climate 579 

(Supplementary information – Model summaries, section 8). As indicated by our results, our 580 

analyses were able to successfully discern the effect of biodiversity from that of climate 581 

(Figure 3). The fact that the relationship between mean NBP and biodiversity emerging 582 

from inversions and the TRENDY ensemble (with no parameterisation for biodiversity) were 583 

substantially different increases the likelihood of this relationship not being spurious. Models 584 

predicting ΔNBP also included the trends in MAT, MAP and the trends in land-use change 585 

as predictors. Similarly, models predicting ΔNBPPV and ΔNBPAR1 included trends in 586 

temperature and precipitation (ΔMAT and ΔMAP) and their temporal variability (ΔMATPV, 587 

ΔMAPPV) or autocorrelation (ΔMATAR1, ΔMAPAR1) and trends in land-use changes, but not 588 

average MAT or MAP or their temporal variability or autocorrelation. Models predicting the 589 

combined trends of  ΔNBPPV-AR1 included a second-order biodiversity as a second-order 590 

polynomial, N deposition, average and trends in climate, the aggregated trends of MATPV-591 

AR1 and MAPPV-AR1, average land-use and its temporal trends. We additionally tested 592 

whether NBP and ΔNBP were spatially related to increasing ΔNBPPV-AR1 by fitting two 593 

models in which NBP and ΔNBP were the response variables and the aggregated metric of 594 

trends in ΔNBPPV-AR1 (see description above) was their predictor. Models were fitted using 595 

normalised variables (mean=0, sd=1), but effect plots were rescaled to their original units 596 

to facilitate the interpretation of the results. All analyses were performed using R statistical 597 

software v.3.6.360.  598 
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Data availability 638 

Data supporting the findings of this study are available in the following open repositories. 639 

CAMS: https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-640 

gas-inversion 641 
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Atmospheric CO2 concentration: https://scrippsco2.ucsd.edu/data/atmospheric_co2/ 643 

Data from the TRENDY ensembles can be provided upon request from 644 

http://globalcarbonbudget.data.org/index.html. Data to reproduce Figures 1 and 2 are 645 

provided as Source Data. Code and data to perform the statistical analyses, calculations 646 

and figures is publicly available at Figshare: 647 

https://doi.org/10.6084/m9.figshare.17081717.v5. 648 
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