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Abstract
Understanding the sensitivity of spring leaf-out dates to temperature (ST) is integral to predicting
phenological responses to climate warming and the consequences for global biogeochemical cycles.
While variation in ST has been shown to be in�uenced by local climate adaptations, the impact of
biodiversity on phenological sensitivity remains unknown despite its central role in ecosystem
functioning. Here, we combine 393,139 forest inventory plots with satellite-derived ST across the Northern
Hemisphere during 2001-2021 to show that biodiversity greatly affects spatial variation in ST and even
surpasses the importance of climate variables. High tree diversity signi�cantly weakened ST, possibly
driven by both more diverse responses of leaf unfolding timing to warming directly, and indirect changes
associated with root depth and soil biogeophysical and biogeochemical processes. We further show that
current Earth System Models failed to reproduce the observed negative correlation between ST and
biodiversity, with important implications for phenological responses under future emission pathways. Our
results highlight the need to incorporate the buffering effects of biodiversity to better understand the
impact of climate warming on spring leaf unfolding and carbon uptake in terrestrial ecosystems.

Introduction
Plant phenology is one of the most sensitive indicators of climate change, and greatly affects interannual
variations in carbon uptake of terrestrial ecosystems1,2. Over recent decades, climate warming has led to
strong advances in spring leaf-out dates3,4. The responsiveness of spring phenology to climate change is
typically quanti�ed via measuring the temperature sensitivity of leaf-out (ST, leaf-out advance in days per
each degree air temperature warming). Understanding temporal and spatial variation in ST is critical to

better comprehend phenological feedbacks to climate change, such as effects on carbon sequestration5,
surface albedo and the energy budget5,6. Declines in ST have been observed in several tree species over
recent decades. Yet, although decreased winter chilling has been suggested as a possible factor, the
underlying causes remain poorly understood7. While previous studies have mostly focused on the
climatic drivers of ST, we still lack an understanding of the responses of ST to changes in the biodiversity

of animals, plants, and microorganisms and the communities they form8.

Biodiversity plays a crucial role in regulating the growth and development of vegetation, serving as a key
factor in stabilizing and adapting ecosystems to climate change9. Several studies have indicated that
warming-induced changes in spring leaf-out may lead to asynchronous interactions among associated
species within communities, affecting food web dynamics and the functioning and stability of
ecosystems2,3,10,11. In particular, high biodiversity can in�uence the phenological plasticity of individual
plants, enhance the adaptability of plants to climatic shifts, diminish the likelihood of phenological
discordance, and affect the species assemblage and functional heterogeneity of plant communities,
thereby mitigating the effects of climate change on ecosystem performance12,13. For example, different
genotypes or genera of plants can adapt to variations in temperature and moisture by altering gene
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expression, hormone levels, leaf area, and other parameters that affect phenology14. Different species
have different phenological strategies to cope with environmental �uctuations, and higher temporal
complementarity and asynchrony among species can augment their resistance to drought15. Regions
with high biodiversity thus typically have stabler ecosystem responses to climate change, whereas the
loss of diversity may aggravate plant phenological shifts caused by climate change9,11,12. In this study,
we therefore aimed to test whether biodiversity buffers the sensitivity of trees to climate warming and
how interactions between biodiversity and climate change affect Northern Hemisphere-wide phenological
variation.

Results
We compiled tree diversity data from more than 393,139 forests inventory plots from the Global Forest
Biodiversity Initiative (GFBI), encompassing a wide range of forest types and species (Supplementary
Fig. 1). Satellite-derived leaf-out data from 2001–2021 came from the Moderate-resolution Imaging
Spectroradiometer (MODIS). We also gathered spatially-explicit climate and soil data from 2001–2021,
as well as gross primary production (GPP) data from 15 Trendy models for 2001–2021 and 13 Cmip6
models for 2016–2100 (Supplementary Table 1–3). For each forest plot, we calculated the optimal spring
pre-season period using partial correlation analysis and calculated ST using ordinary least squares
regression. We then used partial correlation, structural equation modeling, and machine-learning methods
to determine the in�uence of biodiversity on ST and its underlying mechanisms at regional and global
levels (see Methods).

The partial correlation analysis showed a predominantly negative correlation between biodiversity and ST

at the local scale after removing the effects of spring and annual temperature, radiation, precipitation, soil
moisture, soil organic C (SOC), soil nitrogen (N) and forest age (Fig. 1A), with 61.6% of the correlations
being negative. Twelve percent of the local correlations were signi�cantly negative (P < 0.05), while
signi�cant positive correlations were only found for 4.7% of the correlations. The partial correlation
analysis showed consistent results at the levels of plant functional types (Fig. 1E, F), forest biomes
(Fig. 1G, H), and Köppen-Geiger climatic zones (Fig. 1I, J). For example, negative correlations were found
among eight of eleven plant functional types, with six being signi�cant, while the correlations in
Evergreen Broadleaf Forests (EBF) and Deciduous Broadleaf Forests (DBF) were not signi�cant. Similarly,
�ve of the eight biomes showed a negative correlation, and all �ve correlations were signi�cant, with only
deserts and xeric shrublands (DXS), Tundra (TUN), Tropical and Subtropical Grasslands (TSG) showing a
non-signi�cant positive correlation. Furthermore, Biodiversity and ST were negatively correlated in 9 of 11
climatic zones (eight were signi�cant) and positively correlated in the other two zones (DFA (Cold, no dry
season, hot summer) and DSB (Cold, dry summer, warm summer)).

In a next step, we analyzed the relative importance of biodiversity in determining the changes in ST using
machine learning (Random Forest and eXtreme Gradient Boosting (XGBoost) models). We found that
biodiversity was a more important driver of ST than were temperature, precipitation, solar radiation, and
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soil moisture, SOC, and N (Fig. 1C, D and Extended Data Fig. 1). Additionally, the SHapley Additive
exPlanations (SHAP) values of Random Forest and XGBoost models also showed a predominantly
negative effect of biodiversity on ST, con�rming the linear partial correlation analyses. The feature
importance (GINI and SHAP importance, Fig. 1C) and absolute coe�cients of the partial correlation all
supported biodiversity as the most important driver of ST (Fig. 1B).

To test the possible mechanisms through which biodiversity may affect ST, we applied Structural
equation modeling (SEM) and partial correlation analysis (Fig. 2). We calculated the direct effects of
biodiversity on ST within the SEM and the indirect effects through different pathways. The results indicate
a strong direct effect of biodiversity. In addition, root depth, soil organic carbon concentration, the soil
carbon-to-nitrogen (C/N) ratio, and soil physical properties (including bulk density and volumetric fraction
of coarse fragments (VOCF)) may be potential intermediaries between biodiversity and phenological
responsiveness. For example, biodiversity and the C/N ratio were mostly positively correlated, with 20.2%
and 7.4% of correlations being signi�cantly positive and negative, respectively. The correlation between
the C/N ratio and root depth was also positive, with 30.0% of the correlations signi�cantly positive and
only 7.0% of the correlations signi�cantly negative. In comparison, root depth and ST were generally
negatively correlated. Similarly, a higher SOC concentration was associated with increased biodiversity,
but SOC concentration and ST were negatively correlated. Soil physical properties may also contribute to
the negative relationship between biodiversity and ST. Biodiversity and bulk density, bulk density and the
rate of soil warming in spring (RSWS), and RSWS and ST were each consistently negatively correlated,
with the percentages of signi�cant positive / negative correlations being 10.9% / 31.0%, 18.5% / 53.9%,
and 16.0% / 37.7%, respectively. In contrast to bulk density, a higher VOCF was associated with increased
biodiversity, and biodiversity increased as ST decreased, because VOCF and ST were negatively correlated.
Overall, both the direct and the indirect pathways support the negative correlation between biodiversity
and ST.

We further tested whether state-of-the-art ecosystem models (15 Trendy models with results over 2001–
2021 and 13 Cmip6 models over 2016–2100) can reproduce the negative correlation between ST and
biodiversity (Fig. 3). We found that most Trendy models do not capture the observed relationships, with
10 out of 15 models simulating predominantly positive correlations (positive correlations exceeding 60%)
and only two of the models reproducing the extent of observed negative correlations (negative
correlations exceeding 60%, ISAM and ORCHIDEE models). The spatial variation in the correlations
simulated by the Trendy models is shown in Fig. 3A1-A15. The Cmip6 models also failed to represent the
negative correlation between ST and biodiversity (Fig. 3B-D). We found that only 2 (out of 13) models
(CMCC-CM2-SR5, CMCC-ESM2) had negative ST-biodiversity relationship exceeding 60% under ssp126.
The number of correct models increased to 6 for ssp245 and ssp585, respectively. Spatial distributions of
Cmip6 models were provided in Supplementary Fig. 2–4. We also tested for spatial consistency between
the observations and simulations and found that most models did not match the observed biodiversity
effects closely (Extended Data Fig. 2).
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Discussion
Our �ndings demonstrate a widespread buffering effect of biodiversity on the sensitivity of spring leaf-
out dates to climate warming, with weaker responses of spring leaf-out to warming in forests with
multiple species. Our models further showed that biodiversity was more important than climate in driving
spatial variation in ST (Fig. 1B-D and Extended Data Fig. 1), highlighting the importance of considering
biodiversity when predicting the consequences of climate change on spring phenology and ecosystem
productivity. We further showed that current ecosystem models could not reproduce the observed
buffering effect of biodiversity on spring phenological sensitivity. Accounting for spatial and temporal
variation in species richness will thus be of great importance to better understand the extent of shifts in
foliar phenology under climate change as well as the consequences for ecosystem functioning.

We found that biodiversity has a strong direct impact on ST in our study. We observed that in forests with
higher biodiversity, the sensitivity of tree leaf unfolding to climate warming is lower. This suggests that in
ecosystems with greater biodiversity, the timing of spring leaf unfolding remains more stable in the face
of warming, consistent with recent research11,12,16. This direct effect can be partly attributed to the
presence of a greater variety of species and individuals in biodiverse forests, where different tree species
may have distinct growth seasons and leaf unfolding times. This seasonal asynchrony may, to some
extent, slow down the overall response of the ecosystem to rising temperatures17,18. Consequently, the
entire ecosystem exhibits lower average temperature sensitivity. Conversely, in forests with relatively
lower biodiversity, often dominated by a few key species, the response is more uniform, and leaf
unfolding is more directly in�uenced by temperature increase.

While our analyses suggest a strong direct impact of biodiversity on ST, they also suggest that
biogeophysical and biogeochemical factors may contribute to the decrease in ST with increasing
biodiversity. We found that high biodiversity correlates with deeper roots, which may facilitate access to
soil nutrients and moisture during spring19 (Extended Data Fig. 3). The enhanced water supply may in
turn reduce trees’ sensitivity to temperature early in the growing season, buffering against warming-
induced shifts in foliar phenology9 (Extended Data Fig. 4). In agreement with this, experiments and
observations have shown reduced leaf-out sensitivity to warming under drought conditions1,7. Our results
also agree with studies reporting an increased importance of soil moisture in determining the distribution
of vegetation and SOC in cold regions where warming is more pronounced20.

Our �ndings also support that higher biodiversity enhances the SOC concentrations in diverse forests by
�xing more C9,13,21. This may be due to improved soil physicochemical properties, such as VOCF and pH
(Extended Data Fig. 5), which in turn accelerate the activities of both plants and soil
microorganisms8,21,22. Enhanced soil fertility is advantageous for plants because it promotes plant
growth and enables roots to anchor more deeply, facilitating more effective adaptation to temperature
changes9. Increasing soil fertility can in turn increase the diversity of plants and soil microbes, increasing
the stability and resilience of ecosystems. We also found that higher biodiversity increased the C/N ratio,
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which may limit the availability of N for plants and cause them to allocate more C to root growth to
enhance the uptake of water and nutrients while reducing foliar growth to save energy for photosynthesis
and transpiration23.

Higher biodiversity also improved soil biogeophysical properties, providing better soil aeration, thermal
conductivity, and water retention. These improvements may be associated with increased soil microbial
activity and plant root growth19,22. The improvement of soil physical properties, especially water retention
and buffering capacity, has been demonstrated to enhance the resistance of plants to stress, thus
alleviating the response of plants to warming and consequently improving phenological stability19,21. Our
results also showed that ST becomes less dependent on warming for wetter conditions induced by higher
biodiversity (Extended Data Fig. 4B). Better soil aeration and thermal conductivity can increase RSWS
and its variability, causing a higher frost risk. To avoid such risks, plants may therefore increasingly rely
on other signals, such as photoperiod and higher chilling requirements, leading to declines in ST

24,25.
Enhancement of soil physical properties affects the growth of plant roots and the retention of SOC and
N19,21 (Fig. 2), and increased rooting depth and supply with soil nutrients is likely to drive phenological
stability and reduce ST.

In summary, our �ndings show that the sensitivity of spring leaf-out to warming decreases in more
diverse forests, suggesting an important buffering effect of biodiversity on the phenological sensitivity of
trees to climate change. The biodiversity effects on phenological sensitivity may be of direct and indirect
nature. In diverse forests, the high diversity in temperature sensitivity among species and individuals may
lead to a lower average temperature sensitivity than in less diverse forest where single species dominate
the observed community sensitivity. In addition, the biodiversity effects could be mediated by soil
physicochemical properties, which may stabilize phenology by enhancing nutrient supply, stress
tolerance, and productivity12,13,15. Higher productivity in diverse forests may also lead to changes in
ecosystem function due to shifts in species composition and community succession, water balance, and
climatic feedbacks26. The inability of vegetation models to reproduce the observed buffering effect of
tree diversity on phenological sensitivity highlights the need to represent biodiversity if we are to
accurately predict ecosystem responses to climate change. Our �ndings thus underscore the
fundamental importance of biodiversity in our understanding of phenological changes and the
maintenance of ecosystem functioning under climate change.

Declarations
Data availability

All data used in this study are available online. The speci�c links for each dataset are presented in
Supplementary Table 1-3.

Code availability
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All data analyses and modeling were performed using Python and R. The codes for the phenological
models are available at https://doi.org/10.5281/zenodo.5829780. Other codes are available upon request
to the corresponding authors.
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1. Biodiversity, climate and ancillary data

We focused our research on the Northern Hemisphere (30 °N), where vegetation dynamics exhibit distinct
seasonal variations. We extracted biodiversity data covering most of the forests in our study area from
the GFBI ground observation dataset27, which compiles extensive monitoring data from 777,126
permanent plots across 44 countries and 13 ecoregions. The GFBI dataset encompasses diverse forest
sources and successional stages, and an excess of 30 million trees belonging to over 8,737 species were
measured twice or more, with the aim of unveiling global forest biodiversity patterns.

Due to the large number of duplicate coordinates in the GFBI dataset, we used a window size of 0.01
degrees, the minimum scale of GFBI coordinate records, to extract the maximum value within each
window as its corresponding value. In the end, we determined 393,139 distinct biodiversity records,
encompassing 1-190 tree species. Notably, deciduous broadleaf forests and woody savannas exhibit the
highest species richness per plot scale, averaging 6-7 species per plot, while open shrublands, barren, and
grasslands only contain 2-3 tree species (Supplementary Fig. 1).

The leaf-out dates data was determined from Moderate Resolution Imaging Spectroradiometer (MODIS)
Land Cover Dynamics (MCD12Q2) dataset, which provides global land surface phenology metrics
annually spanning from 2001 to 2021 with a spatial resolution of 500 meters28. These metrics are
derived from time series data of the two-band Enhanced Vegetation Index (EVI2) computed from MODIS
Nadir Bidirectional Re�ectance Distribution Function (BRDF)-Adjusted Re�ectance (NBAR). One of these
metrics, leaf-out dates, is de�ned as the date when the EVI2 �rst exceeds 15% of the segment EVI2
amplitude.

The climate data was obtained from monthly data of ERA5-Land dataset, which is the �fth-generation
atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts29. It has
been widely utilized for evaluating the in�uence of meteorological variables on the Earth's global climate.
Speci�cally, we extracted temperature, total precipitation, solar radiation, and soil moisture data from
2001 to 2021, with a spatial resolution of 0.1 degrees and a temporal resolution of one month from ERA5-
Land. Furthermore, we collected hourly soil temperature data and calculated the daily mean for later
analysis.

The soil attribute data was derived from SoilGrids, a global soil dataset product resulting from
international collaboration generated by the ISRIC - World Soil Information Center, with a resolution of 250
meters30. SoilGrids implements advanced machine learning techniques, combining global soil pro�le
data and environmental covariate data to predict and simulate the spatial distribution of soil properties at
six standard depths globally. We utilized the latest version of SoilGrids, version 2.0, to extract soil surface
organic carbon content, soil total nitrogen content, and subsequently calculated the soil surface carbon-
to-nitrogen ratio.

The GPP (Gross Primary Productivity) data was originated from Trendy and Cmip6 model, utilized for the
simulation of leaf-out dates across historical and future periods. The Trendy model ensemble
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encompassed many models re�ecting estimates of terrestrial vegetation photosynthesis and was
extensively employed to delve into diverse facets of the global carbon cycle31. We curated GPP data
spanning from 2001 to 2021, encompassing 15 models (Supplementary Table 2). CMIP6, the Coupled
Model Intercomparison Project phase 6, furnishes output data for an array of climate variables under
different experimental designs and emission scenarios, encompassing historical and forthcoming
epochs32. We gathered GPP, temperature, precipitation, radiation, and soil moisture data from 2015 to
2100 across each of 13 models. Each model encompasses three shared socioeconomic pathways:
ssp126, ssp245, and ssp585 (Supplementary Table 3).

Auxiliary data includes biomes, vegetation types, climatic regions, and forest age. Biomes data is derived
from the Resolve Ecoregions 2017, which serves as a biogeographic regionalization under an Earth's
biomes framework, consisting of 14 terrestrial biomes made up of 846 ecoregions, de�ning
biogeographic assemblages and ecological habitats33 (Supplementary Table 4). Vegetation types data is
obtained from the �rst layer of MCD12Q1 Version 6.1 dataset and represents land cover types in the
International Geosphere-Biosphere Programme classi�cation34. And thirteen different types of vegetation
are present in the study area (Supplementary Table 5). Climatic regions data is procured from the widely
utilized Köppen-Geiger climate classi�cation system, which divides the global climate zones into �ve
primary groups based on local vegetation types: tropical, arid, temperate, continental, and polar35. Further
subdivisions of each group are based on temperature or aridity level (Supplementary Table 6). The forest
age data is sourced from the Max Planck Institute for Biogeochemistry in Germany. It provides global
forest age estimations at a 1-kilometer resolution, and this data is predicted using machine learning
techniques based on forest inventories, biomass measurements, and climate data.

2. Simulating leaf-out dates utilizing GPP data of Trendy and Cmip6 models

We employ GPP data from Cmip6 and Trendy models to simulate leaf-out dates. GPP exhibits a close
correlation with factors such as vegetation coverage, Leaf Area Index (LAI), temperature, and precipitation
- all pivotal elements in�uencing vegetative leaf-out dates. Therefore, the annual �uctuation curve of GPP
effectively mirrors the phenological cycles of vegetation36. Drawing upon this theoretical foundation, we
utilized cubic spline interpolation for temporal sequence interpolation to enhance data continuity,
considering temporal resolution of most GPP datasets is monthly. Subsequently, we opted for the
“pheno�t” function package37 within the R programming language for simulation. To ensure both
e�ciency and quality in simulating leaf-out dates, we employed the "Elmore" curve �tting method36. The
�tting function is represented by equation (1) as follows:
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Where t is the corresponding date of time series GPP, mn and mx are the minimum and maximum value
of time series GPP; sos and eos, respectively, denote the start of the growing season and end of the
growing season; rsp and rau are, respectively, the rate of spring Greenup and autumn senescence, m7 is
the summer greendown parameter. Subsequently, based on the �tted curve, we have utilized three
different methods to extract leaf-out dates: the threshold method, derivative method, and in�ection
method. Notably, through meticulous comparisons, the extracted leaf-out dates exhibited harmonious
interannual variations across all three methods (Supplementary Fig. 5). To maintain congruity with
MCD12Q2, we chose to showcase the 15% threshold method as the primary approach in the main text.

3. Calculating ST, RSWS

We �rst aggregated data from multiple sources using the coordinates from biodiversity data. For climate
data with coarser resolutions, we directly extracted data from the corresponding locations. For categorical
datasets like biomes, we used the mode within the corresponding window size as the representative
value, while for continuous datasets like soil properties, we used their mean values within the grid.
Subsequently, we standardized all data using the Z-score method to convert metrics of varying units into
a uniform scale, and excluded outliers in accordance with the PauTa criterion.

ST, the sensitivity of leaf-out advance to warming, is de�ned as the days of advanced leaf-out dates per
each degree changes in air temperature. For the purpose of narrative convenience, we shall de�ne the
advancement of leaf-out dates as a positive value and the delay as a negative value, which is equivalent
to taking the opposite of the temperature coe�cient as ST. It can be calculated using the coe�cient of
temperature in the regression that relates leaf-out dates to climate variables, as shown in the equation
(2):

where L stands for leaf-out dates, T, P, and R denote the mean spring temperature, precipitation, and
radiation, respectively. βT, βP, and βR represent their corresponding regression coe�cients, out of which βT

signi�es ST. β0 is the intercept and ε is the residual term. It is worth mentioning that, for the calculation of
mean spring values of climate variables, we employed a partial correlation method to iteratively
determine the optimal length of the spring pre-season. For the �tting of the regression equation, we used
the OLS (ordinary least squares regression) function provided by the Python “statsmodels” package.

RSWS, the rate of soil warming in spring, is de�ned as the speed of soil temperature change over a period
of 60 days, with 30 days before and 30 days after leaf-out date. To calculate RSWS, we �rst derived daily
soil temperature data from hourly data between 2001 and 2021. Next, we employed the Numpy package
in Python to �t the daily mean soil temperature data for the 60-day period in each plot, allowing us to
determine the slope (i.e., RSWS) as well as the variance, which represents the degree of temperature
variability within each plot.
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4. Analysis

We �rst used partial correlation to investigate the relationship between biodiversity and ST across all
plots. The partial correlation method was implemented using the “pingouin” package in Python. When
calculating partial correlation, we controlled for mean annual temperature, precipitation, radiation, soil
moisture; mean spring temperature, precipitation, radiation, soil moisture, as well as soil organic carbon
and total nitrogen, in order to eliminate the in�uence of environmental factors.

Furthermore, we utilized the Random Forest and eXtreme Gradient Boosting (XGBoost) machine learning
algorithms, along with the SHapley Additive exPlanations (SHAP) method, to measure the impact and
importance of biodiversity on ST. Random Forest and XGBoost are decision tree-based machine learning
algorithms that excel in processing large-scale data and high-dimensional features, effectively handling
nonlinear relationships between features. Therefore, we implemented the aforementioned methods using
“scikit-learn” and “xgboost” packages in python to explore the relationship between ST, biodiversity, and
other environmental variables. The SHAP method, based on game theory, provides a feature importance
explanation that enhances our understanding of the contribution and direction of each feature in
predicting results within machine learning models. By utilizing the “shap” package in Python, we applied
the SHAP method to interpret the trained random forest and XGBoost models. This allowed to obtain the
magnitude and direction (positive or negative) of the impact of biodiversity on ST of each plot (Fig. 1C, D
and Extended Data Fig. 1).

In addition, to address possible spatial heterogeneity issues at the global scale, we employed two
approaches to conduct analyses at a smaller local scale. Firstly, we divided our study area into different
regions, including land cover types, biomes, and climatic regions. We then conducted partial correlation
analysis on the data within each region. Besides, we also conducted point-wise analyses. To do this, we
�rst created a distance matrix to group the points into clusters based on their proximity to each other.
Then, we used partial correlations to conduct the analysis. To selected the points in each group, we used
the golden section method as the search algorithm and the Akaike information criterion (AIC) to
determine the optimal bandwidth size.

To investigate the potential mechanisms underlying the impact of biodiversity on ST, we used two
methods at the point level: partial correlation and structural equation modeling (SEM). We hypothesized
that the impact of biodiversity on ST is mediated by its in�uence on soil physicochemical properties and
tree root growth. To test this hypothesis, we developed a structural equation model (SEM) incorporating 6
mediating variables: two soil physical properties (BD and VOCF), two soil nutrient variables (SOC and C/N
ratio), RSWS and root depth. Maximum likelihood estimation was used as the target function while
Sequential Least Squares Programming (SLSQP) optimization method was employed to estimate the
model parameters. Additionally, we calculated various statistics and �t indices to evaluate the
applicability and effectiveness of the model, such as GFI (Goodness of Fit Index) and RMSEA (Root Mean
Square Error of Approximation). Subsequently, we selected pathways with a GFI exceeding the threshold
of 0.9 and p-values less than 0.01 and calculated their mean values. We also used partial correlation
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analysis as a supplement to the SEM. With controlling for mean annual temperature, precipitation, and
radiation effects, we conducted partial correlation analyses on variables at both ends of each SEM path.

For the data of Trendy and CMIP6 models, we followed the same procedure as described above to
calculate ST and analyze the impact of biodiversity on it. However, due to the coarse resolution and lack
of time series in these models, temporal and regional analysis were not possible. To determine the
biodiversity effects at each point, we employed the geographically weighted regression (GWR) method.
GWR is a spatially local regression model that considers spatial heterogeneity. Throughout the analysis,
due to the absence of future biodiversity data and soil attribute data, we assumed they remained
constant and resampled them to match the resolution of the models. As for future forest age, we
conducted year-by-year accumulation to obtain future forest age. We then conducted GWR to analyze the
relationship between the models' ST and factors including biodiversity, mean annual and mean spring
climate variables (temperature, precipitation, radiation), mean annual and mean spring soil moisture, soil
organic carbon content, soil nitrogen content and forest age. Simultaneously, we resampled the observed
data to the same resolution as each model and calculated the impact of biodiversity on ST

(Supplementary Fig. 6). Finally, we compared the biodiversity effect of the observed results, the Trendy
and CMIP6 models, and assessed the accuracy of each model at the pixel scale (Fig. 3, Extended Data
Fig. 2, and Supplementary Fig. 2-4).
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Figures

Figure 1

Negative correlations between biodiversity and the sensitivity of spring leaf unfolding to warming (ST). A
and E-J represent the results of the partial correlation analysis for each plot (A), plant functional type (E,
F), biome (G, H), and climate (I, J) (the full name of the acronyms in F, H and J can be found in
Supplementary Table 4-6). B, the coe�cients of the global partial correlation. C, the importance of each
feature based on GINI coe�cients and the mean absolute value of SHapley Additive exPlanations
(SHAP). D, SHAP values based on the global random forest model. *, P<0.05; **, P<0.01; NS, not
signi�cant; P, positive effect; and N, negative effect. The dotted gray lines in F, H, and J mark the
transition from signi�cant to non-signi�cant results at P<0.05.
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Figure 2

Mechanisms underlying the negative correlation between biodiversity and the sensitivity of spring leaf
unfolding to warming (ST). The �gure shows the results of the partial correlation analysis and structural
equation modeling (SEM). The coe�cients on the path of SEM are standardized, and the circular map on
the path represents the spatial distributions of the partial correlation results. The bar chart represents the
direct and indirect effects. NS, not signi�cant; P, positive effect; N, negative effect; VOCF, volumetric
fraction of coarse fragments; BD, soil bulk density; RSWS, rate of soil warming in spring; SOC, soil organic
carbon; and C/N ratio, the ratio of soil concentrations of carbon to total nitrogen.
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Figure 3

Evaluation of model performances on the sensitivity of spring leaf unfolding to warming (ST) with
biodiversity. A, B, C and D represent results for 15 Trendy models and 13 Earth system models (Cmip6)
under different shared socioeconomic pathways (ssp126, ssp245 and ssp585) (See Supplementary Table
2, 3 for model details). A1-A15 represent spatial distributions results for the 15 Trendy models,
respectively. The numbers in these �gures are percentages of signi�cant positive correlations with respect
to all signi�cant correlations. Signi�cance was set at P<0.05.
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