
1.  Introduction
Terrestrial vegetation sequesters about one third of all anthropogenic carbon emissions, which is a key mechanism 
mitigating climatic warming (Friedlingstein et al., 2022). Both modeling and observational studies have indicated 
vegetation greening at the global scale over the last four decades (Chen et al., 2019; Huang et al., 2018; Myneni 
et al., 1997; Nemani et al., 2003; Zhu et al., 2016). Whether this increase in vegetation activity will continue in 
the future, however, remains uncertain (Penuelas et al., 2017; Zhang et al., 2022). One of the key uncertainties 
in the prediction of future vegetation dynamics is our limited understanding of the climatic control of vegeta-
tion growth (Nemani et al., 2003; Seddon et al., 2016). Continuing global warming is mitigating temperature 
limitations, particularly at high latitudes and elevations, while water constraints are becoming more widespread 
(Jiao et al., 2021; Li et al., 2022; Piao et al., 2014; Yin et al., 2022; Zhang et al., 2022). Predictions of vegetation 
dynamics in mountainous areas are particularly uncertain, primarily because of the complexity and ambiguity 
associated with microclimates formed by mountain topography (Barnard et al., 2017; Dobrowski, 2011).

Besides the well-known elevational gradients of climatic factors and their influence on vegetation activity (Gao 
et al., 2019; Vandvik et al., 2018), slope aspect plays a major role in shaping vegetation growth in mountainous 
areas (Barnard et al., 2017; Bennie et al., 2008; Fekedulegn et al., 2003; Gong et al., 2008; Kumari et al., 2020; 
Singh,  2018). Slope aspect modulates incident solar radiation, which in turn alters the fluxes of energy and 
water between the atmosphere and the surface, creating unique local microclimates with different near-surface 
temperatures and soil-moisture concentrations (Bennie et  al.,  2008). These microclimates can deviate mark-
edly from the regional climates. For instance, equatorial-facing slopes (EFSs) receive more solar radiation than 
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polar-facing slopes (PFSs), leading to drier and hotter conditions on EFSs and wetter, colder conditions on PFSs 
than the regional macroclimatic conditions (Kumari et al., 2020). These aspect-induced microclimates signifi-
cantly influence vegetation activity and may regulate the response of vegetation to regional climate change. Many 
studies have reported greater greenness and productivity on PFSs than on EFSs (Fekedulegn et al., 2003; Murphy 
et al., 2020). However, most of these studies relied on field observations, resulting in limited spatial coverage and 
short temporal spans. Consequently, the spatial distribution and interannual variation of the greenness difference 
across aspects at global scale remain unclear, hindering our understanding of the future trajectory of global moun-
tain vegetation with climate change.

Satellite-derived vegetation indices have been found widespread applications in monitoring spatiotemporal varia-
tions in vegetation activity (Kumari et al., 2020; Yin et al., 2020). Among these indices, the normalized difference 
vegetation index (NDVI) is a widely used metric specifically designed to assess vegetation activity. It calculates 
the absorption of solar radiation by chlorophyll in the red band and its scattering by mesophyll in the near-infrared 
band (Huete et al., 2002). NDVI is recognized as a robust proxy for evaluating green biomass, demonstrating 
notable resilience against confounding factors such as topography and sun-observer geometry (Chen et al., 2020; 
Huete et al., 2002; Shen et al., 2009).

The primary objective of this study was to investigate the spatiotemporal patterns of differences in greenness 
between EFSs and PFSs and to explore their climatic controls using Satellite-derived NDVI. EFSs and PFSs often 
replicate conditions typical of colder and wetter present climates and hotter and drier future climates, respectively 
(Zhang et al., 2022). They serve as a “natural laboratory” for enhancing our understanding of the climatic influ-
ence on vegetation growth through a space-for-time substitution approach.

2.  Materials and Methods
2.1.  Data Sets

We used NDVI to represent vegetation greenness. NDVI is a vegetation index defined as the ratio of the differ-
ence between near-infrared and red reflectance to their sum. Specifically, we used data from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) NDVI product (MOD13Q1) version 6.1, which are generated every 
16 days at a spatial resolution of 250 m (Huete et al., 2002).

We generated global maps of slope and aspect using the 100 m ASTER Global Digital Elevation Model (AG100) 
data set (Fujisada et al., 2005). The slopes and aspects were then resampled to 250 m by averaging to match the 
data from the MODIS NDVI product.

Vegetation types were extracted following the International Geosphere-Biosphere Program (IGBP) based on the 
500 m MODIS land-cover classification (MCD12Q1) (Friedl et al., 2002). The MCD12Q1 data was resampled to 
250 m using the nearest-neighbor method to match the spatial resolution of the MODIS NDVI product.

We confined our analysis to mountainous areas, which were delineated using the Global Mountain Biodiversity 
Assessment (GMBA) Version 1.2 data set (Korner et al., 2017). GMBA identified an area as mountainous if the 
change in elevation between focal and neighboring cells was >200 m. Mountainous areas covered 26 million km 2, 
accounting for ∼17.5% of the land area. The GMBA Version 1.2 data set is originally provided in vector format. 
For implementation purposes, we converted it into raster format with a spatial resolution of 0.5 × 0.5°.

The Climate Research Unit Time-Series version 4.06 (CRU TS4.06) data sets (Harris et al., 2020) with a spatial 
scale of 0.5° and a monthly temporal scale were used to calculate the mean annual temperature (MAT), cumula-
tive annual precipitation and cumulative potential evapotranspiration.

2.2.  Analysis

Global slopes and aspects were calculated using the AG100 data set. Values of 0 and 180° in the aspect map 
corresponded to north and south aspects, respectively. We identified pixels in the Northern Hemisphere as EFSs 
when their aspects were 135–225°and their slopes were >5°. Similarly, PFSs pixels corresponded to pixels with 
aspects of 315–360° or 0–45° and slopes >5°. The definitions of PFSs and EFSs pixels were opposite in aspect 
for the Southern and Northern Hemispheres.

The greenness difference index (GDI) was used to quantify the difference in vegetation activity between EFSs 
and PFSs. We used GDI for the peak of the growing season because it is the most representative time to identify 
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the interannual variability of productivity (Huang et al., 2018; Xia et al., 2015). The peak of the growing season 
was defined as the day with annual maximum NDVI. NDVI was averaged over the EFSs and PFSs for each 
0.5 × 0.5° grid cell, referred to as NDVIEFS and NDVIPFS, respectively (see Figure S1 in Supporting Informa-
tion S1 for examples of multiyear average cases). To ensure the reliability of the results, we selected MODIS 
observations with summary qualities in MOD13Q1 of 0 (indicating good data) and NDVIs >0.1 (to remove pixels 
without vegetation). Grid cells with <50 MODIS pixels containing neither PFSs nor EFSs were masked to obtain 
a robust result. GDI was then calculated as the normalized difference between NDVIEFS and NDVIPFS, that is, 
GDI = (NDVIEFS − NDVIPFS)/(NDVIEFS + NDVIPFS). GDI ranges between −1 and 1. A GDI <0 indicates that 
PFSs are greener than EFSs, and a GDI >0 indicates that EFSs are greener than PFSs.

Note that grid cells with GDIs, after controlling the quality as described above, are highly spatiotemporally variable, 
depending on the topography and image availability, which decreased the spatiotemporal homogeneity of GDI. For 
example, the grid for 0–45°N and <40°S were very few in 2001 and 2002, respectively, than in other years (Figure 
S2 in Supporting Information S1), so we limited our study to 2003–2021 to obtain robust results. Furthermore, 
the aspect-induced microclimates may also result in variations in vegetation types. Consequently, we conducted a 
comparative analysis of greenness and greening trends between PFSs and EFSs specifically for grassland, forest, 
and shrubland. We achieved this by extracting the respective NDVI values according to the MCD12Q1 product.

The trends reported in this paper were  based on Theil–Sen slopes. This approach is insensitive to statistical 
outliers, because the median slope from a range of possible slopes is selected as the best fit (Fernandes & 
Leblanc, 2005). The significance of these slopes was determined based on Kendall's tau statistic from Mann–
Kendall tests (Jiang et al., 2015).

3.  Results
We first explored the spatial patterns of average GDI for 2003–2021 (Figure 1). GDI identified a clear latitudi-
nal pattern. The EFSs were greener than the PFSs (GDI >0, blue) in most regions at high latitudes (>52°N and 
>40°S). The opposite pattern (GDI < 0, red) was mainly at intermediate latitudes (e.g., 16–52°N and 23.5–40°S). 
In the vicinity of the equator (23.5°S–16°N), there were no obvious differences in greenness observed between 
EFSs and PFSs (GDI ≈ 0).

To quantify the climatic control of the GDI distribution, we put GDI in a temperature-aridity space (Figure 2), in 
which temperature and aridity were respectively represented by MAT and the ratio of precipitation to potential 
evapotranspiration (P/PET), both averaged for 2003–2021. GDI was negative (greener PFSs than EFSs) in arid 
areas (P/PET ≤0.5), regardless of the regional temperature. The wetter microclimates of the PFSs in these areas 
could partially mitigate the limitation of water and promote the growth of vegetation. Humid areas (P/PET >0.5) 
had both positive and negative GDIs, depending on the regional temperature. In humid (P/PET >0.5) and cold 
(MAT < −2°C) areas where vegetation was mainly limited by low temperatures, the EFSs with warmer micro-
habitats favored vegetation growth, leading to positive GDIs. This positive effect attenuated or even reversed 
(negative GDIs) as temperature increased, because the higher evaporative demand may limit water on EFSs. In 

Figure 1.  Spatial distribution of the greenness difference index (GDI) across equatorial-facing slopes and polar-facing 
slopes. (a) Average GDI during 2003–2021. (b) Latitudinal distribution of GDI; the black line and gray area represent average 
GDI and its standard deviation, respectively.
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summary, GDI identified the regional climatic control of vegetation growth, with areas limited by temperature 
and water (separated by the dashed line in Figure 2) having positive and negative GDIs, respectively.

Finally, we examined the temporal variation of the difference in vegetation on EFSs and PFSs for 2003–2021. 
Mountains had a widespread greening trend globally, and the greening trends of EFSs and PFSs were significant 
(p < 0.1) in 77.5% and 73.9% of the mountains, respectively (Figure S3 in Supporting Information S1). The green-
ing trend was stronger for PFSs than EFSs: 0.0012 ± 0.0018 yr −1 versus 0.0011 ± 0.0018 yr −1 (mean ± standard 
deviation). The GDI trends were highly heterogeneous, with more grids with decreasing trends (Figure S4 in 
Supporting Information S1): the fractions of grids with significant (p < 0.1) decreasing and increasing trends 
were 16.5% and 10.0%, respectively. When averaged over the areas limited by temperature and water delineated 
from multiyear average positive and negative GDIs, respectively (see Figures 3a and 3b), NDVI increased signifi-
cantly, with rates higher for PFSs than EFSs in both areas (see Figures 3c and 3d). GDI tended to decrease signif-
icantly in both the areas limited by temperature and water (see Figures 3e and 3f), consistent with the increasing 
trend of MAT (Figure S5 in Supporting Information S1) and the decreasing trend of P/PET (Figure S6 in Support-
ing Information S1).The areas limited by temperature and water had positive and negative GDIs, respectively, 
so the coincident decreasing trends in these two areas had opposite ecological consequences: the differences in 
greenness across the EFSs and PFSs weakened in areas limited by temperature and intensified in areas limited 
by water. We further investigated the vegetation type dependence of the greening trends of EFSs and PFSs (see 
Figures S7–S9 in Supporting Information S1). We noticed a consistent pattern across all vegetation types, albeit 
with varying degrees of magnitude. We also observed that forests are more frequently situated on PFSs, whereas 
shrubland and grassland tend to be predominantly located on EFSs (Figure S10 in Supporting Information S1).

4.  Discussion and Conclusions
Different orientations of EFSs and PFSs generate contrasting microclimatic conditions that are decoupled from 
their regional macroclimates (Dobrowski, 2011). Specifically, PFSs are generally wetter and colder, and EFSs 
are generally drier and warmer, than their macroclimates (Kumari et al., 2020). We quantified the differences in 

Figure 2.  Greenness difference index (GDI) binned as a function of climatological mean annual temperature (MAT) and 
the ratio of precipitation to potential evapotranspiration (P/PET). Each bin is defined by 2°C intervals of MAT and 0.05 
intervals of P/PET, based on macroclimatic conditions (calculated using the Climate Research Unit Time-Series version 4.06 
data sets (Harris et al., 2020) averaged for 2003–2021). The dashed line delineates bins with positive and negative GDIs, 
representing areas limited by temperature and water, respectively. Dots represent bins with GDIs significantly different from 
zero (two-sided Student's t-test; p < 0.05).
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greenness on EFSs and PFSs with GDI in each 0.5 × 0.5° grid, and, for the first time, examined its spatiotemporal 
patterns at the global scale from 2003 to 2021. Our findings revealed a contrasting geographical pattern in GDI 
between areas limited by temperature and water. The majority of prior in-situ measurements have indicated that 
PFSs exhibit greater greenness and productivity compared to EFSs, primarily due to the underrepresentation of 
cold areas (Bale et al., 1998; Fekedulegn et al., 2003; Gong et al., 2008). We provide the first solid empirical 
evidence that the difference in greenness on EFSs and PFSs is determined by the relative importance of tempera-
ture and water limitations on regional vegetation growth. Negative GDI values (indicating PFSs are greener than 
EFSs) predominantly occur in regions constrained by water limitations, whereas positive GDI values (indicating 
EFSs are greener than PFSs) are prevalent in regions constrained by temperature. We also detected a widespread 
decreasing trend of GDI, indicating that the difference in greenness between EFSs and PFSs weakened in areas 
limited by temperature and intensified in areas limited by water.

We interpreted the geographical distribution of GDI using the relative importance of temperature and water 
limitation on regional vegetation growth, implying that the difference in greenness on EFSs and PFSs was mainly 
due to their contrasting microclimatic conditions. This hydrothermal difference could account for the global 
distribu tion of GDI (Figure 2), but local-scale GDI can be regulated by many other mechanisms. First, erosion 
and the weathering of soil are usually accelerated by high levels of insolation, so soil is less fertile and thinner on 
EFSs than PFSs (Hu et al., 2020; Poulos et al., 2012; Rech et al., 2001). Second, the dry and hot environments 
on EFSs increase the frequency of fire, intensifying plant mortality (Bradstock, 2010). Third, the active layer of 
permafrost soils at high latitudes is deeper on EFSs than PFSs (Dearborn et al., 2017). Finally, the steepness  of 
slopes and diurnal movement of clouds may also affect the amount and diurnal cycle of solar radiation. The 
microclimates on different aspects are more complex than assumed in our study (Badano et al., 2005). Our main 
conclusions should therefore be interpreted with caution when transferring to local scale studies.

Some limitations of our analysis warrant attention. First, we used NDVI, which is insensitive to topographic 
distortion at the hectometeric resolution (Chen et al., 2020, 2022). However, the relatively coarse resolution of 
MODIS NDVI (250 m) may miss subtle terrain variations and hamper the collection of enough samples from 
each 0.5 × 0.5° grid, potentially compromising the robustness of the results. Although finer spatial resolution 
satellite data, such as the 30-m Landsat observations, may alleviate this problem, it comes at the expense of 

Figure 3.  Temporal variations of NDVI and the greenness difference index (GDI) in areas limited by temperature (first 
column) and water (second column) for 2003–2021. Areas limited by temperature (blue shaded area in a) and water (red 
shaded area in b) are defined by positive and negative GDIs, respectively (Figure 1); (c) and (d) are NDVI and (e) and (f) are 
GDI for the two areas, respectively. NDVI for equatorial-facing slopes (red lines) and polar-facing slopes (blue lines) is shown 
in (c) and (d) to indicate their different trends under identical changes in regional climate.
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introducing other uncertainties such as the higher topographic effects on NDVI (Chen et al., 2020, 2022) and 
the lower revisiting frequency that would hamper identifying the peak of the growing season. Therefore, the 
250-m MODIS NDVI is still likely the best data set we can currently use for a global-scale analysis. Prior to GDI 
computation, we rigorously employ quality control procedures, as detailed in the Materials and Methods section, 
to verify the presence of an adequate number of EFSs and PFSs pixels within each 0.5 × 0.5° grid, thereby 
bolstering the reliability of our results. Second, the spatial resolutions of climatic data sets can also compromise 
the interpretation of our findings. We associated GDI with climatic factors at a spatial resolution of 0.5° due to the 
lack of fine-resolution climatic data sets that could characterize the differences of microclimates across aspects. 
Finally, dedicated field measurements on paired EFSs and PFSs at representative sites of global mountains are 
needed to fully characterize the mechanisms underlying the differences in vegetation on EFSs and PFSs.

Despite these limitations, our findings have several important implications. First, mountainous areas are foci 
of biodiversity, but the changing climate is threatening the maintenance of this biodiversity. The poleward shift 
across aspects is a complementary strategy of the upward elevational shift to reduce the loss of biodiversity, which 
can help plants disperse into favorable microclimates and buffer macroclimatic warming (Dobrowski, 2011). The 
poleward shift of species across aspects may affect species composition and reduce species diversity across 
aspects, thereby increasing the homogenization of vegetation across EFSs and PFSs (Feldmeier et al., 2020). 
We found that the vegetation was homogenized (reduced greenness difference across aspects) in areas limited by 
temperature rather than water, suggesting that poleward shifts may be more efficient in cold areas. Second, the 
evolution of the climatic control of vegetation is key for accurately predicting climate, but which is still highly 
debated (Descals et al., 2022; Yin et al., 2022; Zhang et al., 2021). The weakened difference in greenness on 
EFSs and PFSs in areas limited by temperature corroborates the alleviation of temperature limitation in cold 
areas (Keenan & Riley, 2018; Piao et al., 2014; Yin et al., 2022; Zhang et al., 2022). The intensified difference 
in greenness in areas limited by water provides new empirical evidence for the exacerbated limitation of water 
(Denissen et al., 2022; Jiao et al., 2021; Li et al., 2022; Zhang et al., 2021). It is worth noting that the temperature 
and water limitations indicated by GDI are relative. The exacerbated water limitation was in relation to tempera-
ture limitation, and it does not necessarily imply that the overall climatic limitation was intensified, as evidenced 
by the increased greenness in water-limited areas (Figure 3d). Finally, greening trends on vegetated surfaces have 
been widely reported, and we found that the greening trend was stronger on PFSs than EFSs (Figures 3c and 3d), 
suggesting that PFSs would profit more from the ongoing warming than would EFSs. Recent studies have reported 
that the availability of water regulates the response of vegetation to warming and that warming stimulates the 
growth of vegetation under wet conditions but depresses it under very dry conditions (Quan et al., 2019; Reich 
et al., 2018). EFSs and PFSs mirror dry and wet conditions, so the decreasing GDI trend supports the mechanism 
of water regulation of the response of vegetation to climatic warming (Quan et al., 2019; Reich et al., 2018). 
Our results indicate that gradients of EFS and PFS provide a “natural laboratory” for deepening our mechanistic 
understanding of the response of vegetation to continuous warming.

Data Availability Statement
All data used in this study are publicly available. The MOD13Q1 NDVI, MODIS land-cover (MCD12Q1) and 
ASTER DEM data are freely available on the Google Earth Engine platform, the GMBA data are available at 
https://www.gmba.unibe.ch/services/tools/mountain_inventory_v1, the Biome shapefile is available at https://
www.sciencebase.gov/catalog/item/508fece8e4b0a1b43c29ca22 and the CRU TS4.06 data sets are available at 
https://crudata.uea.ac.uk/cru/data/hrg/.
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