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Abstract

The spatial distribution of plant, soil, and microbial carbon pools, along with their intricate 

interactions, presents a great challenge for the current carbon cycle research. However, it 

is not clear what are the characteristics of the spatial variability of these carbon pools, 

particularly their cross-scale relationships. We investigated the cross-scale spatial 

variability of microbial necromass carbon (MNC), soil organic carbon (SOC) and plant 

biomass (PB), as well as their correlation in a tropical montane rainforest using multifractal 

analysis. The results showed multifractal spatial variations of MNC, SOC, and PB, 

demonstrating their adherence to power-law scaling. MNC, especially low MNC, exhibited 

stronger spatial heterogeneity and weaker evenness compared with SOC and PB. The cross-

scale correlation between MNC and SOC was stronger than their correlations at the 

measurement scale. Furthermore, the cross-scale spatial variability of MNC and SOC 

exhibited stronger and more stable correlations than those with PB. Additionally, our 

results suggest that when SOC and PB are both low, it is advisable for reforestations to 

potentiate MNC formation, whereas when both SOC and PB are high some thinning can 

be advisable to favour MNC formation. Thus, these results support the utilization of 

management measures such as reforestation or thinning as nature-based solutions to 

regulate carbon sequestration capacity of tropical forests by affecting the correlations 

among various carbon pools.

Keywords: Microbial necromass carbon, Spatial variability, Cross-scale, Tropical forests, 

Multifractal analysis, Joint multifractal analysis
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1. Introduction

Forest ecosystems serve as the largest terrestrial organic carbon reservoirs (Eswaran et al., 

1993; Alemu, 2014) and play a pivotal role in the global carbon cycle (Mitchard, 2018). 

Tropical forests store over 60% of global forest carbon in living biomass, necromass, and 

soil carbon, approximately accounting for 25% of terrestrial biosphere carbon stocks 

(Bonan, 2008; Pan et al., 2011), and with the highest organic carbon turnover efficiency 

(Sayer et al., 2019). Microorganisms are critical participants in carbon cycling, establishing 

a vital connection between plant and soil carbon pools. While soil microorganisms 

decompose and transform large plant-derived carbon molecules through the secretion of 

extracellular enzymes (Sinsabaugh et al., 2009), they also assimilate small organic 

molecules, including easily decomposable organic carbon from plant and microbial sources, 

and synthesize their biomass through assimilation (Lehmann & Kleber, 2015; Zhu et al., 

2018). Subsequently, through cellular processes including growth, reproduction, and death, 

a portion of the carbon is released into the atmosphere as CO2 by respiration, while another 

portion becomes an important component of soil organic carbon (SOC) in the form of 

necromass carbon (accounting for up to 50%) (Liang et al., 2019; Wang et al., 2021). The 

accumulation of microbial necromass carbon (MNC) represents a balance between 

microbial decomposition and assimilation processes and serves as a key factor affecting the 

dynamic changes of soil carbon stocks. Investigating the spatial variability of different 

carbon pools in tropical forests, especially the association between MNC and SOC and 

plant biomass (PB), using soil microorganisms as a link, is an effective approach for 

understanding and managing forest carbon stocks and cycling.

Compared with the studies on SOC and PB at a global scale, current research on the 

spatial variation of MNC has mainly concentrated on temperate and subtropical regions 

(Mou et al., 2021; Wang et al., 2021; Yang et al., 2020). These studies are usually based 
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on fixed measurement scales to reveal the spatial distribution and control of SOC, PB or 

MNC, while the association between the three across spatial scales remains uncertain (Li 

W. et al., 2023; Li Y. et al., 2023). Moreover, previous studies on spatial patterns of 

variables have mostly been based on the concept of moving windows, such as wavelet 

analysis (Keitt, 2008), trend-surface analysis (Zhang et al., 2022), and semi-variogram 

analysis (Haruna, 2021) based on fractal dimension. These methods are primarily used to 

determine the multi-scale characteristics and corresponding intensities of variable spatial 

distributions, but they cannot identify the cross-scale patterns in the spatial distributions of 

variables, i.e., scaling properties. This hinders the numerical simulations of various carbon 

pool spatial distribution models, particularly in capturing changes in the associations 

between pairs of variables during the downscaling or upscaling processes in multi-variable 

models.

Fractal analysis and multifractal analysis are more effective for describing the spatial 

variability and scaling features of variables (Caniego et al., 2005). By revealing the multi-

scale self-similarity of variables, they can provide insights into the intrinsic correlation 

between wholes and parts in patterns or features (Cheng, 1999; Zhang et al., 2006). 

Furthermore, based on variable spectrum visualization, joint multifractal analysis can be 

further employed to describe the multi-scale joint distribution characteristics of multiple 

variables in the same spatial domain. Joint multifractal analysis has been used to 

characterize the correlation between grassland productivity and topographic index 

(Banerjee et al., 2011), the influence of temperature and nitrogen dioxide on tropospheric 

ozone (Pavón-Domínguez et al., 2015), and the effects of topography and soil texture on 

soil water storage (Biswas, 2019). However, whether changes in spatial scales would alter 

the spatial variability of MNC by influencing the relative strength or dominance of various 

ecological processes (such as the scaling features of plant and microbial biomass and SOC) 
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remain unclear, particularly in tropical forests, which are key regions for global carbon 

cycling.

We hypothesize that MNC, being a significant contributor to SOC, will consistently 

exhibit a strong positive correlation with SOC. PB, as a primary food resource for 

microorganisms, may potentially demonstrate parallel spatial variation with MNC at 

specific scales by influencing the microbial community. To test this, we investigated the 

spatial distribution of microbial necromass carbon (MNC), soil organic carbon (SOC), and 

aboveground plant biomass (PB) in a 60-ha plot in tropical montane rainforest. Multifractal 

analysis and joint multifractal analysis provided a more detailed and comprehensive 

depiction of the correlations between MNC, SOC, and PB by amplifying and differentiating 

the high and low values of variables, and integration analysis across multiple spatial scales. 

This work contributes to our understanding of forest carbon cycling mechanisms and the 

construction of prediction models.

2. Material and methods

2.1 Study site

This study was conducted at a 60-ha forest dynamic monitoring site located in the tropical 

montane rainforest of Jianfengling Nature Reserve (JFL), Hainan Province, China (Figure 

1). The geographical coordinates of the study area are 108.9050°E, 18.7309°N, with an 

elevation varies approximately from 866 m to 1017 m. This region falls within the tropical 

island monsoon climate zone, characterized by two distinct seasons: the rainy season from 

May to October, and the dry season from November to April. The mean annual 

precipitation is 2449 mm, and the mean annual temperature is 19.8°C. The lowest and 

highest monthly average temperatures are 10.8°C and 27.5°C, respectively. The study area 

is subject to minimal anthropogenic disturbance and remains in its original forested state. 

For further detailed information on this site, please refer to the ForestGEO 
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(https://forestgeo.si.edu/sites/asia/hainan).

2.2 Sample collection and indicator determination

We divided the JFL 60-ha (1000 m × 600 m) study site into 500 quadrats (40 m × 30 m) 

and collected soil samples from each quadrat (Figure 1). Twelve soil cores of the topsoil 

(0-10 cm) were sampled using a soil auger from a 10 m × 10 m grid within each quadrat, 

and mixed to form one composite sample per quadrat, resulting in a total of 500 

representative soil samples. All soil samples were obtained in 2013. After removing roots, 

gravel, and other debris using a sieve of 2 mm mesh, soil samples were air-dried at room 

temperature for further analysis of amino sugars and physicochemical indicators. Soil 

moisture content was determined by weighing soil after drying in an oven at 105°C for 48 

hours. Soil organic carbon (SOC) was determined using potassium dichromate oxidation 

(Walkley & Black, 1934).

Microbial necromass carbon (MNC) was determined based on the three amino sugar 

biomarkers (glucosamine, GluN; galactosamine, GalN; and muramic acid, MurN), 

following the theoretical background and formula proposed by Liang et al. (2019), and 

extracted and quantified according to the method of Indorf et al. (2011). GluN, GalN, and 

MurN were identified and quantified using a Dionex RS 3400 fluorescence detector (high-

performance liquid chromatography, Dionex Ultimate 3000, Thermo Fisher Scientific, 

Waltham, USA). In this study, fungi-derived and bacteria-derived microbial necromass 

carbon were calculated separately and then summed to obtain the total MNC.

Plant biomass was measured based on 20 m × 20 m quadrat survey data, and then 

transformed to 40 m × 30 m quadrat based on their coordinates. Here, we use the sum of 

the basal area of all trees within the quadrat to characterize plant biomass.

To facilitate subsequent multifractal analysis and joint multifractal analysis 

calculations, we discarded one column of quadrats on the right side of the plot and selected 
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480 contiguous quadrats (24 in the east-west direction and 20 in the north-south direction) 

for analysis.

2.3 Correlation analysis

We examined the direct correlation between MNC, SOC, and PB. For the calculation, we 

used the “Kolmogorov-Smirnov” test to determine whether each variable followed a 

normal distribution. The Pearson correlation coefficient was used when the data followed 

a normal distribution, while the Spearman correlation coefficient was selected otherwise.

2.4 Multifractal and Joint multifractal analysis

Multifractal analysis has been used to characterize the spatial or temporal variability of data 

sets either on one-dimensional or two-dimensional supports (Stanley & Meakin, 1988), 

while joint multifractal analysis is commonly used to explore the association features of 

the scaling characteristics among multiple variables in the same geometric frame 

(Meneveau et al., 1990). In this study, based on the geometric support of 480 quadrats and 

referring to the box-counting idea, the entire plot was progressively divided into non-

overlapping regions of size δ, consisting of N (such as 1, 2, ..., 480) regions. Here, the 

minimum segmented area δmin is 1200 m2 (40 m × 30 m), and the maximum segmented 

area δmax is 576,000 m2 (480 × 40 m × 30 m). Using the moment method (Halsey et al., 

1986), we obtained the partition function χ(q, δ), which is determined by the statistical 

moments order q.

Then, the generalized fractal dimension or Rényi dimension, Dq, can be directly 

calculated through the order q and the mass exponent function τ(q) (Hentschel & Procaccia, 

1983). τ(q) was calculated from the slopes of a log–log plot of the partition function and 

the spatial scale δ at different q values. Several parameters have been extensively employed 

to describe multifractality features, including D0 (capacity dimension), D1 (entropy 

dimension), and D2 (correlation dimension), which are derived from Dq. Considering that 
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the data of the three carbon pools are distributed across all quadrats, the result for D0 will 

be the constant 1. D1 represents the degree of disorder of variable distribution, e.g., a larger 

value reflects a more evenness distributed SOC. D2, reflects the uniformity of measured 

variable values among local areas. Larger values indicate smaller differences in variable 

measurements between various local areas, i.e., more homogeneous of SOC. The 

multifractal spectrum, f(α), is defined as the Hausdorff fractal dimension of the variable 

that possesses a certain Lipschitz-Hölder or coarse singularity exponent, α, within a sub-

plot at scale δ. The correlation between the multifractal function f(α) and α can be computed 

through Legendre transformation (Evertsz & Mandelbrot, 1992).

In this study, we used the three-variate joint multifractal analysis, which combines the 

strange attractor formalism and the method of moments (Halsey et al., 1986; Meneveau et 

al., 1990; Pavón-Domínguez et al., 2015). Similar to multifractal analysis, the entire plot is 

progressively divided into non-overlapping regions of size δ, consisting of N (such as 1, 2, 

..., 480) regions. Similar to multifractal analysis, we also selected the Legendre 

transformation to calculate the singularity exponent α of SOC, PB, and MNC for different 

combinations of order q[SOC], q[PB], and q[MNC]. The 𝑓(𝛼[𝑆𝑂𝐶], 𝛼[𝑃𝐵], 𝛼[𝑀𝑁𝐶]) can be viewed 

as the fractal dimension of the set of intervals based on the combinations of α[SOC], α[PB], 

and α[MNC] with different q[SOC], q[PB], and q[MNC].

For detailed definitions and calculations of indicators in multifractal analysis and joint 

multifractal analysis, please refer to the Appendix. The joint multifractal analysis was 

conducted in R (R, 2021) (version 4.1.2) after modifying the pseudo-code programming 

language provided by Pavón-Domínguez et al. (2015).

3. Results

3.1 Statistical analysis of MNC, SOC, and PB

In this study, the K-S test showed that MNC and PB followed a normal distribution, but 
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SOC did not. Therefore, Spearman correlation coefficients were used in the bivariate 

correlation analysis of MNC, SOC, and PB. The linear correlations between MNC, SOC, 

and PB are shown in Figure 2. As one of the vital components of SOC, MNC exhibited a 

strong positive correlation with SOC (r = 0.7, p < 0.001). In contrast, although the 

correlation between MNC and PB was statistically significant (p < 0.01), it was very weak 

(r = 0.13), which might be attributed to the larger sample size utilized in this study. The 

spatial distributions of MNC, SOC and PB are shown in Figure S1.

3.2 Multifractal analysis of MNC, SOC, and PB

We examined the multifractal characteristics under different conditions of order q by 

investigating the correlation between the partition function χ(q, δ) and spatial resolution δ. 

We evaluated the spatial heterogeneity of MNC, SOC, and PB using generalized dimension 

spectra (Dq - q) and singular spectra (f(α) - α) (Figure 3). The log–log scatter plots of the 

partition functions for MNC, SOC, and PB with spatial resolution showed that the linear 

fitting coefficients of determination R2 from δ[min] = 1 × 1,200 m2 to δ[max] = 480 × 1,200 

m2 were all greater than 0.999 (Figure S2), indicating multifractal characteristics in the 

spatial variation of these three variables. The Dq curves exhibited a sigma shape for all three 

variables. Some parameters (e.g., D0, D1, D2, αmin, and αmax) of interest are listed in Table 

1. The Dq curves for MNC, SOC, and PB all crossed 1.00 at q = 0, and reached their 

maximum and minimum values at q = −30 and q = 30, respectively. The entropy dimension 

D1 ranged from 0.993 to 0.996, and the correlation dimension D2 ranged from 0.987 to 

0.995 (Table 1). The Rényi dimensions of MNC, SOC, and PB exhibited good scaling 

trends. The range of variation in the generalized dimension spectra, ΔD (D−30−D30), showed 

that MNC had a larger curvature magnitude, with the smallest magnitude observed for PB. 

This indicates that the spatial heterogeneity of MNC was greater than that of SOC and PB. 

Although MNC, SOC, and PB exhibited strong power-law scaling, their multifractality still 
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differed. Compared with high PB, the multifractal features of high MNC and high SOC 

were more similar. The similarities and differences between the capacity dimension D0, 

entropy dimension D1, and correlation dimension D2 are commonly used to assess the 

scaling features of variables. In this study, across all three Dq curves, D0 > D1 > D2 (Table 

1). Compared with SOC and PB, the spatial distribution of MNC tended to be more 

multifractal.

The singular spectra of MNC, SOC, and PB exhibited a "bell-shaped" distribution, 

and the width and height of the curves reflected the similarity or difference in local-scale 

patterns of these three variables. After scaling the positive and negative values of order q, 

the left and right branches (L and R) of the singular spectrum were linked with larger and 

smaller values of the observed variables, respectively. Differences existed in the upward 

amplitude of the left branch and the downward amplitude of the right branch between SOC 

and MNC, and they were not completely symmetrical. The slight left skewness of SOC 

implies that larger values dominated, or extreme maximum values existed in its spatial 

variability, while the slight right skewness in MNC indicates that smaller values dominated 

or had extreme minimum values. The long lower left branch of SOC indicates that the 

regions covering high SOC content were small and rare, suggesting strong spatial 

heterogeneity. In other words, the high values in SOC tended to cluster, while the spatial 

distribution of low values was more dispersed and even. Similar to the variation amplitude 

of Dq, the wider the singularity spectrum, represented by the width Δα (αmax−αmin), the more 

apparent the multifractality of the spatial distribution and the larger the spatial variability 

of the variable. Therefore, spatial distributions of MNC and PB exhibited the highest and 

lowest scaling heterogeneity, respectively. The maximum value of the singular spectra, 

f(α0), corresponds to the capacity dimension D0 of the generalized dimension spectrum.

3.3 Joint multifractal analysis of MNC, SOC, and PB
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We investigated the correlation between spatial resolution and the joint partition function 

of MNC, SOC, and PB based on scenarios involving different combinations of the order q. 

The linear correlation indicated that the spatial distribution of MNC, SOC, and PB was 

multifractal. Considering that the generalized dimension spectrum of MNC, SOC, and PB 

all reached a steady state at q = ±30, and their relative variations stabilized when q = 15 

(Figure 3). Therefore, to expedite the entire computation process while ensuring an accurate 

description of the correlation between the variables, we selected the interval of q values as 

[−15, 15]. The joint multifractal spectrum (Figure 4a) showed the fractal dimension f(α[MNC], 

α[SOC], α[PB]), corresponding to the intervals of each singularity exponential combination of 

α[MNC], α[SOC], and α[PB]. The joint multifractal spectrum was a set of surfaces formed based 

on different q values (e.g., Figure 4b and c). Once a specific q value for a variable was 

chosen, the corresponding slice could be obtained from the joint multifractal spectrum. The 

variation characteristics of slices could be analysed based on the correlations established 

between the other two variables (Figure 5). Furthermore, when all three exponents were 

zero (q[MNC] = 0, q[SOC] = 0, q[PB] = 0), f(α[MNC], α[SOC], α[PB]) in the joint multifractal 

spectrum, which corresponded to the capacity dimension supported by the spatial extent 

would reach the maximum value of 1. Similar to the singularity spectra in multifractal 

analysis, the wider the range between αmax and αmin, the stronger multifractal properties 

exhibited by the spatial distribution of variables, indicating higher spatial variability.

Here, we selected scenarios with q[PB] of −15, 0, and 15, respectively. The first row of 

Figure 5 shows the projection of slices of the joint multifractal spectrum onto the α[MNC]-

α[SOC] plane for the corresponding q[PB] value. When high values of q[PB] or q[SOC] were 

chosen, the focus of the analysis was on the response of partial data of the variable under 

these conditions, rather than the all values of the variables. For instance, q[PB] = 15 indicates 

a scenario with high above-ground plant biomass, while q[PB] = −15 represents a low plant 
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biomass scenario, and q[PB] = 0 corresponds to the bivariate joint multifractal analysis 

investigation of MNC and SOC. The results show that when q[PB] = 15 and −15, the 

maximum values of f(α[MNC], α[SOC], α[PB]) in the joint multifractal spectrum of MNC and 

SOC were 0.61 and 0.66, respectively, lower than the theoretical maximum of 1. On the 

whole, α[MNC] and α[SOC] exhibited a strong positive correlation (r = 0.90, p < 0.001), which 

was greater than the coefficient of correlation between MNC and SOC at the measurement 

scale. When q[SOC] ≥ 0, the spectra showed a clear direction from the lower left to the top 

right; when q[SOC] < 0, this trend was only observed in the scenario with q[PB] = 15. These 

findings demonstrate a strong association between high SOC and MNC, regardless of the 

level of PB. However, a strong correlation between low SOC and MNC was only observed 

when PB was very high. In the bottom left of the spectrum, low α[MNC] and α[SOC] values 

suggest that high MNC was associated with high SOC. In the top right of the spectrum, a 

correlation between low MNC and low SOC was established as indicated by high α[MNC] 

and α[SOC] values. Thus, the well-known strong correlation between MNC and SOC 

remained consistent across all spatial scales, albeit slightly weaker when SOC was very 

low. Additionally, f(α[MNC], α[SOC], α[PB]) values varied from large to small in the bottom 

left and top right regions of the multifractal spectrum, signifying a large heterogeneity in 

the spatial interval of combinations with high SOC and high MNC, as well as low SOC and 

low MNC.

We also investigated the scaling relationship between PB and MNC by selecting 

scenarios with q[SOC] of −15, 0, and 15. The slice of the joint multifractal spectrum 

corresponding to the value of q[PB] (Figure 4c) intersected with the slice of q[SOC] (Figure 

4b), forming the edge and centre dots in Figure 5 (represented by green, yellow, and blue 

dots). Overall, unlike SOC, the correlation between MNC and PB was very weak (r = 0.09, 

p < 0.01). When SOC was low (e.g., q[SOC] = −15), MNC was positively correlated with 
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high PB (e.g., q[PB] = 15), but negatively correlated with low PB (q[PB] = −15). Conversely, 

when SOC was high (q[SOC] = 15), the correlation between MNC and PB changed; MNC 

became negatively correlated with high PB, but positively correlated with low PB. 

Therefore, as demonstrated when q[SOC] = 0, the correlation between MNC and PB was not 

constant but depended on the levels of PB and MNC. In general, when PB and MNC were 

both high or both low, they were negatively correlated, which may be related to the high or 

low SOC content in those areas. On the other hand, when one of the variables, either PB or 

MNC, was at a lower level, they were positively correlated, which may also be influenced 

by the local SOC. Furthermore, the difference between high and low SOC in the joint 

multifractal spectra was reflected in the spectra extending towards the left and right regions 

(α[MNC] is 0.89 and 1.15, respectively). This suggests that regardless of the level of PB, high 

SOC leads to high MNC, whereas the presence of low SOC would be accompanied by 

lower MNC, further highlighting the strong correlation between SOC and MNC.

When neither SOC nor PB was considered, i.e., when both q[SOC] and q[PB] were zero, 

the projection of joint multifractal spectra of MNC, was represented by circular dots in 

Figure 6, as well as the yellow dots in the middle column of Figure 5. Theoretically, the 

numerical variations should be identical to the results of the singularity spectra for MNC 

mentioned in the previous section (with slight differences in this paper due to different 

ranges of q[MNC]). Figure 6 shows that for different combinations of q values (−15, 0, 15) 

for SOC and PB, the f(α[MNC], α[SOC], α[PB]) values of MNC's single multifractal spectra were 

all lower than 1. Compared with the combination of q[SOC] = −15 and q[PB] = 15, the f(α[MNC], 

α[SOC], α[PB]) values for other combinations of q[SOC] and q[PB] were relatively lower. This 

suggests that, compared with scenarios with low SOC and high PB, the range of MNC 

covered in other combination scenarios was relatively small, indicating a greater spatial 

heterogeneity and a stronger influence on MNC. When q[SOC] = −15, the right branch of 
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MNC's single multifractal spectra was significantly longer than the left branch and higher 

α[MNC] indicated very low MNC under this condition, despite the lower f(α[MNC], α[SOC], α[PB]) 

values indicating a lower occurrence frequency. However, when q[SOC] = 15, the left branch 

of MNC's single multifractal spectra was noticeably longer than the right branch, and 

smaller α[MNC] indicated a very high MNC under this condition, although its probability of 

occurrence was also low. Furthermore, when the SOC was low (q[SOC] = −15), the 

variability of MNC was also reduced. In the case of low SOC and low PB, the content of 

MNC was more even, which could also be observed from the narrower spectrum.

When only one variable such as SOC (or PB) was considered, that is, q[PB] = 0 (or 

q[SOC] = 0), the three-variate joint multifractal analysis turned into a bivariate joint 

multifractal analysis. The projection of MNC's joint multifractal spectrum is shown in 

Figure 6b, and the yellow dots in the left and right columns of Figure 5. In comparison with 

q[SOC] = −15 and q[PB] = 0, the f(α[MNC], α[SOC], α[PB]) values for other combinations of q[SOC] 

and q[PB] were relatively low. This suggests that compared with low SOC, the interval 

covering MNC in other scenarios was quite small, indicating a greater spatial heterogeneity 

and a stronger influence on MNC. When q[SOC] = −15 and q[PB] = 0, or q[SOC] = 0 and q[PB] 

= ±15, the right branch of MNC's single multifractal spectra was significantly longer than 

the left branch, and higher α[MNC] indicated extremely low MNC under these conditions, 

with a lower probability of occurrence. However, when q[SOC] = 15 and q[PB] = 0, the left 

branch of MNC's single multifractal spectra was significantly longer than the right branch, 

and smaller α[MNC] indicated extremely high MNC under this condition, despite its minimal 

probability of occurrence. Compared with PB, the SOC content significantly amplified the 

difference between the left and right branches of MNC's single multifractal spectra, 

exerting a stronger effect on MNC extremes.

4. Discussion
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In forest ecosystems, carbon cycling was affected by multiple factors, and the spatial 

distribution and variability characteristics (such as multifractal structures) of different 

forms of carbon storages (e.g., MNC, SOC, and PB) were the result of the nested effects of 

various biotic and abiotic factors and ecological processes (Puglielli et at., 2021). The 

variability of MNC, SOC, and PB was lower than that of various soil physicochemical 

factors measured at the fine scale by Siqueira et al. (2018). This might be attributed to the 

higher complexity of environmental and ecological processes at smaller scales, resulting in 

increased heterogeneity of carbon distribution. Exploring their spatial variability at 

different scales using the multifractal analysis could improve the spatial interpolation 

models for predicting different forms of carbon, which is crucial for understanding forest 

carbon cycling pathways or carbon stock assessments. In general, if the spatial distribution 

of a variable is primarily responsive to a linear process, a single coefficient can be 

performed to interpolate at multiple scales, meaning that standard methods can be 

employed (Siqueira et al., 2018). However, if the spatial pattern is influenced by multi-

scales and nonlinear regulation of multiple factors and processes, it is necessary to use the 

multifractal analysis to estimate multiple scaling indices to quantify its variability and use 

higher-order singularity exponents for model prediction and estimation (e.g., |q| > 2). 

Overall, the distribution structure and multifractal characteristics of different carbon 

storage forms (MNC, SOC, and PB) were not entirely identical within the same spatial 

extent in the studied tropical forest ecosystems. The multifractal analysis effectively 

described the spatial variation of different carbon storage forms in tropical rainforests, 

revealing and distinguishing their similarities and differences, thus being a more exact 

descriptor of the real relationships.

Numerous studies have indicated that MNC is an important component of SOC. 

Although its proportion in forests is lower than that in crop and grassland ecosystems, it 
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can still reach up to 50% (Liang et al., 2019; Wang et al., 2021). The multifractal features 

of high MNC and high SOC in tropical rainforests were highly similar, and the strong 

positive correlation between them in the joint multifractal analysis also confirmed this 

cross-scale dependency. Fertile soil can promote the growth and reproduction of microbial 

communities, which is more conducive to the accumulation of MNC (Zhou et al., 2023). 

However, the correlation between SOC and MNC weakened with decreasing SOC, 

particularly when PB was very low. This may be due to the higher variable proportion of 

MNC in SOC, and the higher activity of MNC compared with that of mineral-associated 

organic carbon (MAOC) (Kou et al., 2023), which makes it more readily available for 

microbial reutilization. Nutrient-poor habitats formed by low PB and SOC may drive 

microorganisms toward the decomposition of existing necromass carbon to meet their own 

growth and reproduction needs (Buckeridge et al., 2022; Zhang et al., 2021). Moreover, 

under low PB, the contribution of plant exudates can also be very variable depending on 

the few species present of depending on whether the low biomass is due to the lower density 

of large/adult trees or a lot of small/young trees. Thus, disrupted balance in MNC 

accumulation leads to a decrease in the parallel variations of MNC and SOC.

In general, vegetation increases the carbon input in the soil through litter or root 

exudates, which changes microbial growth, reproduction, and diversity, thereby affecting 

the accumulation of MNC (Prommer et al., 2019). However, due to probably the priming 

effect and differences in the utilization efficiency of different carbon sources, MNC often 

fails to change in synergy with aboveground vegetation biomass, forming a significant 

positive correlation (Ma et al., 2018; Mou et al., 2021). The multifractal structure of MNC 

and PB exhibit lower similarity than that of SOC. Moreover, the cross-scale correlation 

between MNC and PB is slightly weaker than that at the measurement scale, which is 

exactly the opposite of the stronger correlation between MNC and SOC at the cross-scale. 
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When PB is high, although the total SOC is also high, it may be dominated by plant-derived 

organic carbon such as lignin, which is slow to decompose. Coupled with the presence of 

strong positive priming effects, MNC decreases due to its susceptibility to rapid 

decomposition (Cui et al., 2020). When both PB and SOC were at low levels, larger areas 

of forest gaps in the quadrats may be conducive to the utilization of fast-growing and 

dominant shrub or herbaceous plants by microorganisms, thus promoting the accumulation 

of MNC (Wang et al., 2021). Both scenarios lead to a clear negative correlation between 

PB and MNC. Overall, this non-stationary relationship between MNC and PB is closely 

correlated with the differential availability of various types of carbon in the soil.

Microbial necromass is an important source of soil organic matter (SOM), and 

conventional analysis at measurement scales indicates that MNC is related to aboveground 

vegetation diversity and biomass, as well as soil physicochemical properties (Mou et al., 

2021; Prommer et al., 2019). Joint multifractal analysis provides a more detailed and 

comprehensive depiction of the correlations between MNC, SOC, and PB in tropical 

montane rainforests by amplifying and differentiating the high and low values of variables 

based on the adjustment of order q, and integration analysis across multiple spatial scales. 

Based on their correlation, we surmise that reforestation in areas with low soil fertility and 

low tree density in tropical forest ecosystems will likely increase MNC content. However, 

appropriate thinning may promote MNC accumulation in situations where basal area 

density and SOC are particularly high. Furthermore, we suggest that SOC can serve as a 

good indicator of MNC variability when considering carbon cycling processes involving 

microbial carbon, but we should be cautious where SOC is at extremely low levels. Overall, 

investigating and understanding the cross-scale associations of MNC, SOC, and PB using 

joint multifractal analysis contributes to a better comprehension of forest carbon cycling 

patterns, with positive implications for agricultural cultivation, forestry management, and 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4669882

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



 18 / 32

mitigation of global warming and climate change.

In summary, we made a significant advancement by substantiating the presence of the 

multifractal distribution in the spatial distribution of three forms of the carbon pool (MNC, 

SOC, and PB) in tropical rainforests, and by exploring their cross-scale associations. 

Notably, MNC displayed stronger heterogeneity, yet weaker evenness compared with SOC 

and PB. The spatial variability of MNC was strongly reflected in that of SOC, while the 

cross-scale correlation between PB and MNC was weak. Our results based on multifractal 

analysis and joint multifractal analysis offered a more comprehensive reflection of the 

variability patterns of carbon in tropical forests, highlighting the necessity to employ higher 

orders when dealing with spatial interpolation of different carbon pools. Furthermore, SOC 

could be incorporated as a predictor of MNC into carbon-related models involving 

microbial involvement. In light of these outcomes, we propose plausible forestry 

management strategies that are condition-dependent, which may enhance the soil carbon 

sink capacity in tropical forests. Specifically, our results suggest that when SOC and PB 

are both low, reforestations is advised to enhance MNC formation, whereas when both SOC 

and PB are high some thinning is advisable to favour MNC formation. Further validation 

work needs to be conducted at various spatial scales and ecosystems to deepen insights into 

the global distribution patterns and cycling mechanisms of carbon.
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Figure captions

Figure 1. The location of the 60-ha study site at Jianfengling, the division of 500 quadrats, 

and the layout of twelve soil cores within each quadrat.

Figure 2. Scatter plot and liner fit of microbial necromass carbon (MNC), soil organic 

carbon (SOC, a), and plant biomass (PB, b) with correlation coefficient (r) and the 

probability of statistical significance (p) given within each figure. Solid lines indicate the 

regression line from a linear model, grey area represents the 95% confidence interval.

Figure 3. Generalized dimension spectra (a) and singularity spectra (b) of microbial 

necromass carbon (MNC), soil organic carbon (SOC), and plant biomass (PB).

Figure 4. The joint multifractal spectrum of the spatial variation of microbial necromass 

carbon (MNC), soil organic carbon (SOC), and plant biomass (PB) (a). The colored scatters 

corresponding to the joint multifractal spectrum separated individually about SOC (b) and 

PB (c) at q = −15, 0, and 15.

Figure 5. Joint multifractal spectra between microbial necromass carbon (MNC) and soil 

organic carbon (SOC) for q[PB] = −15, 0, and 15. Joint multifractal spectra between MNC 

and plant biomass (PB) for q[SOC] = −15, 0, and 15. The depth of grey represents the 

normalized values of f(α[MNC], α[SOC], α[PB]), where black for 1 and white for 0.

Figure 6. Single multifractal spectra of MNC obtained for different q[SOC] and q[PB] 

scenarios. MNC, microbial necromass carbon; SOC, soil organic carbon; PB, plant 

biomass.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Table 1. Multifractal parameters obtained from the generalized dimension and singularity 

spectra of microbial necromass carbon (MNC), soil organic carbon (SOC), and plant 

biomass (PB), (D−30, D0, D1, D2, D30, and ΔD; αmin, α0, αmax, Δα, L and R).

Generalized dimension spectra (Dq - q)

D−30 D0 D1 D2 D30 D−30−D30

MNC 1.121 1.00 0.993 0.987 0.919 0.202

SOC 1.054 1.00 0.996 0.992 0.911 0.143

PB 1.054 1.00 0.998 0.995 0.948 0.106

Singularity spectra (f(α) - α)

αmin α0 αmax αmax−αmin L R

MNC 0.895 1.009 1.152 0.257 0.114 0.143

SOC 0.882 1.003 1.078 0.196 0.121 0.075

PB 0.924 1.002 1.079 0.155 0.078 0.077
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