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Abstract
The frequency and intensity of wild�res in recent decades have reached unprecedented levels1-3, raising
questions about the role of vegetation phenology in driving these changes. By examining both terrestrial
�re perimeters and satellite observations, we found that an earlier peak photosynthesis timing (PPT)
contributes to the acceleration of wild�re outbreaks and the expansion of burned areas across the
Northern Hemisphere. This correlation can be attributed to intensi�ed drought conditions and an
increased leaf supply resulting from earlier senescence. We further show that current �re-vegetation
models are capable of reproducing the negative correlation between PPT and burned area, but they
signi�cantly underestimate the strength of this relationship. Our �ndings provide valuable insights for
enhancing early wild�re detection and prediction methods by considering the feedback effects of
vegetation on �re risk.

Introduction
The intensi�cation of wild�res in recent decades has had signi�cant impacts on the land surface, with
far-reaching consequences for global carbon uptake and ecosystem functioning4,5. Both local and
regional observations have provided evidence of a notable increase in the frequency and intensity of
wild�res2,6. However, understanding the underlying reasons for these changes is a complex task. Climate
change, for example, has ampli�ed the risk of extreme wild�res through rising temperatures and declining
atmospheric humidity7. Additionally, the impact of climate change on wild�res can be in�uenced by
changes in vegetation productivity, either exacerbating or mitigating the risks8. Therefore, it is crucial to
gain a better understanding of how vegetation feedbacks drive wild�res to improve early warning
systems and estimate carbon emissions under future climate change scenarios.

The mid-high latitudes of the Northern Hemisphere play a critical role in wild�re dynamics, as boreal
wild�res alone accounted for approximately one-quarter of global �re carbon dioxide emissions in 20213.
Moreover, these regions have undergone substantial climate warming, resulting in substantial changes in
vegetation growth9,10. These changes in vegetation dynamics can in turn feedback to climate through
biophysical and biogeochemical processes, thereby modulating seasonal cycles of energy and water
�uxes and landscape properties11. For example, an earlier onset of growth in spring may exacerbate
summer soil drying due to large increases in evaporative water loss12. This prolonged soil water depletion
can cause more severe and longer droughts and heat waves12,13. The advanced leaf-out additionally
enhances surface warming through feedbacks on water vapor, snow albedo and solar radiation14.

To explore the hypothesis that vegetation growth during the summer period contributes to the occurrence
and extend of subsequent wild�res, we conducted a comprehensive analysis using various datasets and
models. We analyzed long-term series from 2001 to 2018 of terrestrial �re perimeters, satellite-derived
burned area (BA) (Supplementary Fig. S1), maximum photosynthesis and its timing from novel satellite
solar-induced chlorophyll �uorescence (SIF) and normalized difference vegetation index (NDVI) data
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(Supplementary Fig. S2), as well as climate and meteorological variables (Table S1). To investigate the
feedback loops between advanced summer phenology and �re-season drought conditions, we employed
an earth system model. Furthermore, we examined the relationship between peak vegetation
photosynthesis and burned area in state-of-the-art �re-vegetation models participating in the Fire Model
Intercomparison Project (FireMIP; Table S2). Integrating these diverse datasets and models allowed us to
explore the connections between vegetation phenology, climate conditions, and subsequent �re activity.

Results
Our analysis revealed signi�cant effects of peak photosynthesis timing (PPT) on wild�re timing (FT) and
burned area (Fig. 1). SIF-based PPT (PPTSIF) had a strong predictive relationship with both wild�re
occurrence and BA. Across the majority of pixels of Northern Hemisphere (65.2%), an earlier PPTSIF led to
signi�cant (p-value<0.1) advances in wild�re timing, as determined by terrestrial �re perimeters (FTFP),
whereas a delaying effect was only found for 3.4% of pixels (Fig. 1a1). Regarding BAFP, we observed a
predominantly negative correlation with PPTSIF, with 42.9% of pixels showing a signi�cant increase in
burned area with earlier PPT, whereas the opposite was found for only 2.4% of pixels (Fig. 1a2).
Consistent results were obtained with remote sensing wild�re products (Fig. 1a3-a4).

By contrast, the maximum SIF (SIFmax) had limited effects on wild�re occurrences, as we observed
comparable proportions of signi�cant positive and negative correlations (13.9% vs. 10.0%, Fig. 1b1) with
FTFP. Similar patterns were observed for BAFP (Fig. 1b2). The remote sensing wild�re products
corroborated these �ndings, showing no dominant positive or negative relationships between SIFmax and
FT/BA (Fig. 1b3-b4).

In addition to characterizing vegetation peak growth using SIF, we also characterized it using NDVI.
Aligning with the SIF-based analysis, the timing of peak photosynthesis (PPTNDVI) outperformed its
amplitude (NDVImax) in predicting FT and BA for both the terrestrial �re perimeters (Fig. 1c1-c2, d1-d2)
and the remote sensing wild�re products (Fig. 1c3-c4, d3-d4). This demonstrates a high level of
consistency between the results obtained from SIF and NDVI data, particularly in terms of the direction of
correlations (Extended Data Fig. 1).

Our analyses provided additional insights into the relationship between peak photosynthesis timing and
wild�re outbreak and burned area, highlighting the mediating role of multiple factors (Fig. 2). PPTSIF

exhibited an overall negative correlation with atmospheric vapor pressure de�cit (VPD), with 53.5% of
pixels showing signi�cant (p-value<0.1) increases in VPD with earlier PPT. In contrast, only 4.0% of pixels
exhibited decreases in VPD with earlier PPT (Fig. 2a). Similar patterns were observed for the climatic
water de�cit (CWD), with 42.6% of pixels showing signi�cant increases in CWD with earlier PPT, and only
6.5% of pixels showing the opposite effect (Fig. 2b). Furthermore, we identi�ed a positive relationship
between PPTSIF and the date of foliar senescence (DFSSIF), with an earlier PPT leading to signi�cantly
earlier senescence in 47.5% of the pixels, while only 2.6% of pixels showed the opposite effect (Fig. 2c).
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Consistent results were obtained when analyzing NDVI data (Fig. 2d-f). Considering the impacts of VPD,
CWD, and DFS on wild�re outbreak and burned area as shown in Extended Data Fig. 2, these variables act
as mediators between peak photosynthesis timing and wild�re activity. These �ndings were also
supported by the analysis of terrestrial �re perimeters (Extended Data Fig. 3a-f and 4).

To better understand the individual connections between these variables, we conducted a path analysis,
establishing three pathways linking peak photosynthesis timing and wild�re activity: PPT-VPD-wild�re,
PPT-CWD-wild�re, and PPT-DFS-wild�re (Supplementary Fig. S3). Consistent with the partial correlation
analyses (Fig. 1), the path analysis showed that earlier PPTSIF led to earlier wild�re timing (FTMODIS) and
an increase in burned area (BAMODIS) (Fig. 2g-h). The most signi�cant pathway in�uencing wild�re timing
and burned area was the senescence effect (“PPT-DFS-wild�re” path, Fig. 2h). This indicates that an
earlier PPT enhances wild�re activity primarily by advancing senescence dates. A likely explanation is
that the advancement in senescence stimulates wild�re activity by increasing the accumulation of dry
and dead plant material throughout the leaf senescence period (Supplementary Fig. S4). Furthermore, the
link between earlier PPTSIF and increased VPD and CWD can likely be explained by biophysical feedback
mechanisms, further amplifying wild�re activity (Fig. 2g-h). These potential mechanisms were also
supported by additional analyses using NDVI data (Fig. 2i-j) and terrestrial �re perimeters (Extended Data
Fig. 3g-j). Overall, these analyses provide strong support that PPT enhances wild�re activity by advancing
senescence dates and increasing VPD and CWD.

The observations and modeling results provide insights into the climate feedbacks resulting from
advanced summer phenology in northern ecosystems, shedding light on how �re-season drought
conditions respond to PPT. We employed the Community Earth System Model 2.2 to provide mechanistic
insights into these climate feedbacks (see Methods for details). The simulations showed that a 10-day
earlier PPT in temperate and boreal trees led to an enhanced summer-autumn warming in most regions
of the Northern Hemisphere (Fig. 3a-b). This warming effect, in turn, in�uenced precipitation patterns.
Speci�cally, in broad swaths of Eurasia and North America, advanced summertime vegetation activity
resulted in reduced rainfall during summer and autumn (Fig. 3c). The combination of warmer air
temperature and decreased precipitation contributed to higher VPD and CWD in most temperate and
boreal regions (Fig. 3d-e). Additionally, surface soil moisture was reduced due to warmer and drier
conditions, particularly in the Paci�c United States, Northwest Canada and East Siberia (Fig. 3f). These
regions have also experienced remarkable increasing trends in burned area over the past two decades8.
Therefore, the observations and the earth system model consistently indicate that advanced PPT can
exacerbate drought conditions, creating more favorable conditions for wild�res.

The advanced summer phenology has mechanistic impacts on the seasonal patterns of vegetation
evapotranspiration, leading to increased vegetation-induced moisture �ux in early summer but less in the
following months (Extended Data Fig. 5a-c). Consequently, the surface sensible heat from July to
September is increased, resulting in higher daily maximum temperatures and enhanced growth of the
planetary boundary layer (Extended Data Fig. 5d-f). With reduced surface water vapor input and a deeper
planetary boundary layer, there is a more e�cient boundary-layer mixing of moisture. This tends to inhibit
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the formation of low-level clouds and local convective precipitation (Extended Data Fig. 5g-h). As a result,
there is a decrease in cloud coverage and precipitation, leading to greater land-surface sensible heating
through increasing downward solar radiation and decreased latent heat �ux. This, in turn, brings about a
further warming of the surface. The pattern of large-scale precipitation change appears to be noisy,
possibly due to vegetation-induced disturbances in the large-scale circulation regimes (Extended Data
Fig. 5i). Therefore, the enhanced VPD and CWD due to advanced summer phenology appear to primarily
arise from a warmer surface, declined convective precipitation and land-air feedbacks. 

To assess the representation of the observed relationship between PPT and wild�re activity in state-of-
the-art �re-vegetation models, we used seven models participating in the FireMIP that simulate seasonal
variations in vegetation photosynthesis (represented by gross primary productivity, GPP) and wild�re
activity (represented by burned area)15. These models employ empirical and process-based approaches
and incorporate the impacts of climate conditions, vegetation productivity, and human activities on �re
occurrence15,16. We found that the FireMIP models were able to replicate the correlation between PPT and
BA in northern ecosystems, showing a predominantly negative relationship that aligned with the satellite-
derived SIF observations (Fig. 4a-h). However, further sensitivity analysis revealed that most FireMIP
models could not reproduce the magnitude of this effect. On average, the models underestimated the
sensitivity of BA to PPT by 270% when compared with satellite SIF observations (Fig. 4i and Extended
Data Fig. 6). Notably, the Community Land Model, which serves as the land model for the Community
Earth System Model, performed comparatively better than the other FireMIP models in replicating the
observed relationship between PPT and burned area, underestimating the sensitivity by only 28%.

Discussion
In recent decades, the frequency and intensity of wild�res have reached unprecedented levels, due to
changes in various factors, including fuel availability, aridity, ignition sources, and extreme �re weather
conditions that promote �re spread17. While previous studies have primarily focused on the impacts of
climate change on annual-scale wild�re activities7, the in�uence of vegetation growth and phenology on
wild�res has received less attention. However, vegetation growth and phenology can provide feedback to
the climate system and the land surface, affecting energy and water exchanges, as well as landscape
properties10,11,18, thereby in�uencing wild�re dynamics.

In this study, we provide a novel perspective by demonstrating the feedback of peak photosynthesis
timing on wild�re activities, particularly in northern ecosystems. Our �ndings are supported by various
sources of wild�re data, including detailed terrestrial �re perimeters and large-scale MODIS products, as
well as observations of peak photosynthesis timing based on satellite solar-induced chlorophyll
�uorescence (SIF) and the normalized difference vegetation index (NDVI). Moreover, our simulation
results using an earth system model con�rm the climate feedback resulting from advanced summer
vegetation phenology in the middle and high latitudes of the Northern Hemisphere. These results
highlight the relationships among plant growth, drought conditions and subsequent wild�re activities. A
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key contribution of our study is the emphasis on the seasonal dynamics of wild�res, which have received
relatively less attention in previous studies. We identify a strong in�uence of vegetation phenology on the
seasonality of wild�res. Notably, a substantial portion (60-80%) of burned area and CO2 emissions from
wild�res occurs after the peak photosynthesis timing (Supplementary Fig. S5). Additionally,
approximately 65% of the analyzed pixels exhibit maximum wild�re activity following peak
photosynthesis timing (Supplementary Fig. S6).

Moreover, we investigated the ability of state-of-the-art �re-vegetation models (FireMIP models) to
replicate the observed effects of peak photosynthesis timing on burned area. In agreement with the
empirical results, the simulations show that an earlier PPT results in an increase in wild�re activity.
FireMIP models have been shown to adequately represent the seasonal peak timing in GPP and the
seasonality in burned area15, explaining why they were able to replicate the direction of the correlation
between PPT and burned area. However, our �ndings also reveal that the FireMIP models do not capture
the magnitude of this effect, meaning that they largely underestimated the sensitivity of burned area to
PPT by up to 270% compared to satellite observations. This discrepancy may arise from the failure to
adequately represent pre-season fuel build-up and its subsequent effect on burned area in the
models15,19. These limitations in capturing pre-season fuel dynamics can contribute to the divergent
sensitivities observed in the models.

Using empirical and mechanistic models, we attempted to understand the connection between peak
photosynthesis timing and wild�res, taking into account both biophysical and biogeochemical factors.
Our �ndings suggest that the timing of leaf senescence plays a crucial role in connecting peak
photosynthesis timing and wild�re activities. An advanced peak photosynthesis timing leads to earlier
leaf senescence, independent of climate and greening effects. This �nding is consistent with previous
studies highlighting the in�uence of greener and more productive spring and summer periods on driving
earlier autumn leaf senescence20,21. The earlier leaf senescence likely contributes to an increased and
earlier accumulation of dead fuel (Supplementary Fig. S4), which possesses lower moisture content than
live fuel, making it more susceptible to weather conditions and more �ammable22. As a result, it
contributes to the occurrence of wild�res23 and the expansion of burned areas24.

In addition to the in�uence of leaf senescence on wild�re activity, our study reveals that an earlier peak
photosynthesis timing also has signi�cant impacts on atmospheric conditions and water availability,
further exacerbating wild�re risks. Both observations and numerical simulations show that an earlier
peak photosynthesis timing increases atmospheric vapor pressure de�cit (VPD) and climatic water de�cit
(CWD), which create favorable conditions for �re ignition and propagation. These biophysical feedbacks
are related to increased soil moisture stress resulting from extensive water use under earlier and
enhanced vegetation growth and subsequent evaporative water loss12,13,18. As a consequence, the
progressive soil moisture de�cit reduces evaporative cooling, increases sensible heat �ux, ampli�es
temperature anomalies25,26, and inhibits locally convective precipitation. These changes lead to earlier
wild�re outbreaks and an increase in the area being burned. The absence of accounting for these
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biophysical feedback loops between vegetation and climate likely explain why the current �re-vegetation
models drastically underestimate the extent of how changes in peak photosynthesis timing can in�uence
wild�re occurrence and the subsequent expansion of burned areas.

In summary, our �ndings reveal that earlier peak photosynthesis timing has signi�cant implications for
wild�re activities, leading to an acceleration of wild�re outbreaks and an expansion of burned areas. This
relationship is driven by the interplay of multiple factors, including enhanced atmospheric aridity (VPD),
heightened plant water stress (CWD), and the increased availability of combustible material due to earlier
leaf senescence (DFS). However, current �re-vegetation models underestimate the sensitivity of burned
area to peak photosynthesis timing, despite capturing the negative correlation. The seasonal variations in
plant growth have the potential to alter the distribution of fuel sources, and the biophysical feedback
mechanisms resulting from these changes can in�uence local climate conditions by modulating energy
and water exchange between terrestrial ecosystems and the atmosphere18. Therefore, it is crucial to
consider these processes and underlying mechanisms in both data-driven and process-based �re models.
Incorporating the effects of peak photosynthesis timing on local climate and wild�re activities can
improve predictions of the magnitude and seasonality of wild�re outbreaks. By considering the
bioclimatic interactions among climate, vegetation and �re, we can better understand the dynamics of
wild�res and improve our ability to anticipate and mitigate their impacts.
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We employed two metrics to monitor the peak vegetation growth in northern ecosystems (>30°N) during
the period of 2001-2018. These metrics included the maximum solar-induced chlorophyll �uorescence
(SIF) and the corresponding peak photosynthesis timing (SIFmax and PPTSIF). SIF serves as a direct

indicator of photosynthetic activity27-29, and we utilized a monthly temporally corrected long-term satellite
SIF product (LT_SIFc) with a resolution of 0.05° to track the seasonal variations in SIF30. Additionally, we
utilized the normalized difference vegetation index (NDVI) and its peak photosynthesis timing (PPTNDVI).

NDVI is a widely-used ecological index that re�ects vegetation photosynthesis and phenology10,18. The
long-term dynamics of NDVI were derived from the MODIS vegetation indices product (MOD13C1 V6),
which provides 16-day 0.05° NDVI observations, enabling the tracking of vegetation seasonal dynamics.
To obtain yearly peak vegetation growth values (i.e., PPTSIF, SIFmax, PPTNDVI, and NDVImax), we employed

the SG-cubic spline method, following the approach proposed by ref. 31 (Supplementary Fig. S2).
Furthermore, we utilized a 8-day spatiotemporally continuous GOSIF product with a resolution of 0.05° to
extract the maximum photosynthesis and its timing32, and consistent results were obtained
(Supplementary Fig. S7-S9). The maximum values and PPT were upscaled to a resolution of 0.25° using
bilinear and nearest interpolations, respectively. To mitigate the in�uence of abnormally high values in
SIFmax and NDVImax, we employed the 95th quantile to remove outliers.

Terrestrial �re perimeters
We utilized terrestrial �re perimeter (FP) products from Canada (National Burned Area Composite, NBAC),
USA (Monitoring Trends in Burn Severity, MTBS), and Europe (European Forest Fire Information System,
EFFIS) to extract information on wild�re timing (FT) and burned area (BA) following the PPT for the
period of 2001-2018 (Supplementary Fig. S1). In the case of the USA, the analyses using FP products
excluded Alaska and Hawaii. For Europe, we selected three countries, namely Portugal, Spain, and Italy,
which had the largest annual averaged burned areas based on the EFFIS statistics
(https://e�s.jrc.ec.europa.eu/apps/e�s.statistics/estimates). These FP products, with a �ner resolution
compared to global remote sensing products, were compiled through ground-based and airborne surveys
and/or �ne-scale satellite imagery (e.g., 30 m Landsat imagery)33,34. They provided precise date
information for each �re polygon. To align with the MODIS burned area product, the FP data were initially
rasterized at a spatial resolution of 0.00025° (approximately 30 m), ensuring good correspondence
between �re pixels and �re perimeters. Subsequently, FT and BA were calculated within each 0.25° grid
cell, which covered an area of 1000×1000 30 m pixels. For each grid cell, FT represented the date of the
�rst wild�re outbreak DOY following the peak photosynthesis timing, while BA represented the total
burned area after PPT. The detailed processing steps for the FP product are presented in Supplementary
Fig. S10.

Satellite wild�re product
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We also utilized the MODIS burned area product (MCD64A1 V6) with a 500 m resolution to examine the
correlation between PPT and wild�re activities across the entire northern ecosystems (>30°N) from 2001
to 201835. Using the “burn of date” information and considering uncertainty, we calculated FT and BA
after PPT within each 0.25° grid cell (covering an area of 60×60 500 m pixels). We excluded burned pixels
with high uncertainty (>50%) and those located in croplands and non-vegetated areas. The plant
functional types (PFTs) and non-vegetated areas were identi�ed using the IGBP classi�cation scheme
provided in the MODIS land cover type product (MCD12Q1 V6) for the period of 2001-2018. Note that the
pixels repeatedly marked as burned in one year were only recorded once in burned area calculation.

VPD, CWD, and DFS
To elucidate the linkages between PPT and wild�re activities, we considered three factors: VPD,
representing atmospheric aridity and �re weather7; CWD, indicating plant water stress2; and DFS,
re�ecting leaf supply due to leaf senescence36. Monthly VPD was calculated based on air temperature (T)
and dewpoint temperature (Td) at 2 m above the surface37, derived from ERA5-Land monthly averaged
products with a 0.1° resolution38. Monthly CWD, representing the difference between potential and actual
evapotranspiration, was obtained from the TerraClimate dataset with a 1/24° resolution39. DFS based on
SIF was derived from the vegetation photosynthetic phenology dataset with a 0.05° resolution40. This
dataset was retrieved by the method of combining smoothing splines with multiple change-point
detection, in which we selected the end of the growing season determined by the amplitude threshold of
50%40. The DFS based on NDVI was extracted from the half-monthly MODIS NDVI product (MOD13C1
V6) with a 0.05° resolution, following the method proposed by ref. 41. These factors were upscaled to a
0.25° resolution using bilinear interpolation, except for DFS using nearest method. We used the monthly
difference of SIF/NDVI from July to October (representing the entire senescence period in northern
ecosystems36) to represent the accumulated dead fuel due to leaf senescence (ΔSIF/ΔNDVI). Then,
spearman correlation between DFS and ΔSIF/ΔNDVI was conducted (Supplementary Fig. S4).

Other climatic data
To characterize the climatic conditions in the northern ecosystems for the period of 2001-2018, we
utilized the ERA5-Land monthly averaged products with a 0.1° resolution, provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF)38. The climatic variables considered included air
temperature (T), total precipitation (PRE), and volumetric soil water content at the 0-7 cm layer (SM).
These climatic variables were resampled to a 0.25° resolution using bilinear interpolation.

Analyses
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Partial correlation analysis was employed to investigate the impact of PPT on FT and BA. Two partial
correlation scenarios were designed: (1) PPT versus FT and BA, while removing the effects of T, PRE, and
the maximum photosynthesis; (2) the maximum photosynthesis versus FT and BA, while eliminating the
effects of T, PRE, and PPT. It is important to note that the climatic conditions were represented by the
monthly averaged T and accumulated PRE from the month of PPT to FT, re�ecting the preseason forcing
that controls wild�re outbreak. For BA, the climatic conditions (T and PRE) were calculated from the
month of PPT to November, representing the climate during the potential �re season that in�uences
wild�re propagation and total burned areas.

VPD, CWD, and DFS were utilized as explanatory factors between peak photosynthesis timing and wild�re
activities. Partial correlation analysis was employed to elucidate the effect of PPT on these explanatory
factors, and subsequently, the impact of these factors on FT and BA after accounting for the effects of T,
PRE, SM, and the maximum photosynthesis. VPD, CWD, T, and SM were averaged from the month of PPT
to FT, while PRE was accumulated.

To quantitatively explore the underlying mechanisms between PPT and wild�re activities, path analysis
was employed. Three pathways were considered: PPT-VPD-wild�re, PPT-CWD-wild�re, and PPT-DFS-
wild�re (Supplementary Fig. S3). The path analysis was conducted on a pixel-by-pixel basis. Five metrics
were selected to assess the goodness of �t of the model, including the Goodness-of-�t Index (GFI≥0.95),
Comparative Fit Index (CFI≥0.90), Root Mean Square Error of Approximation (RMSEA<0.1), Non-Normed
Fit Index (NNFI≥0.92), and Standardized Root Mean Square Residual (SRMR<0.08). A model for each
pixel was deemed reliable when three out of the �ve criteria were met42. The regional standard path
coe�cient was calculated as the regional mean, considering the goodness of �t of the model and the
signi�cance level of the path coe�cient (p-value<0.1). The corresponding standard deviation was
considered as the uncertainty. The goodness of �t of the models and the standard path coe�cient of
each path for different sources of photosynthesis and wild�re observations are presented in
Supplementary Fig. S11-S14.

To enhance the reliability and spatial consistency of the estimates by increasing the sample size, a 9×9
spatial moving window (2.25°×2.25°) was employed to represent the central grid cell during partial
correlation and path analysis. The partial correlation analyses were based on the anomaly of each factor,
obtained by subtracting the multi-year mean from the original data. To ensure model stability in the path
analysis, normalized anomalies of each factor were used to �t the model. All analyses were conducted
solely on burned grid cells.

Model con�guration and experimental design
We used the Community Earth System Model version 2.2, which is the latest version of the coupled Earth
system model developed at the National Center for Atmospheric Research in collaboration with
universities and other research institutions43. We ran the model for AMIP-type simulations with two-way
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coupled atmosphere (Community Atmosphere Model version 6, CAM6) and land (Community Land Model
version 5, CLM5) components, and prescribed sea surface temperature and sea ice concentration of
present-day climatology (1995-2005), with biogeochemistry model being inactive. The CAM6 and CLM5
use a nominal 2° (1.9° in latitude and 2.5° in longitude) horizontal resolution with 32 vertical levels and a
model top pressure at 3.64 hPa. Satellite-observed vegetation phenology, monthly leaf area index (LAI),
stem area index (SAI) and other vegetation features around the year 2000 are prescribed for each plant
functional types (PFT) in CLM5. Monthly PFT LAI values were produced based on the 1-km MODIS-
derived monthly grid cell average LAI44,45. The SAI was calculated from the monthly PFT LAI using the
method proposed by ref. 46.

To spin-up the earth system model, we �rst ran it for 50 simulation years starting from prescribed initial
conditions. Then we employed a consistent set of �nal restart �les for the initial conditions in following
100-year control and sensitivity simulations. We kept all the vegetation parameters unchanged in the
control simulation, but modi�ed the prescribed LAI and SAI of temperate and boreal trees in the Northern
Hemisphere (>30°N) in the sensitivity simulation by shifting their summertime (June, July and August)
growing phases earlier by 10 days. Speci�cally, we obtained summer daily LAI and SAI series by linearly
interpolating between monthly values and replaced the original indices with those 10 days later. Note that
the values of LAI and SAI in other seasons remained unchanged. Considering that the annual maximum
photosynthesis for most northern boreal and temperate trees occurs in summer (Supplementary Fig. S6),
the simulated differences between the control and sensitivity experiments largely represent the climatic
feedbacks from an advanced PPT in the Northern Hemisphere.

FireMIP
To investigate whether the state-of-the-art �re-vegetation models were able to reproduce the observed
impacts of PPT on wild�re activities, we employed the outputs of FireMIP models to compare with
satellite results over the period of 2001-201247. The FireMIP aims to evaluate the advanced global �re
models and promote projections of global �re characteristics and impacts on ecosystems and human
societies under the ongoing climate change15. These models, with varied complexity including empirical
and process-based models, and different representations of the impacts of climate conditions, vegetation
productivity, and human activities on �re occurrence, have divergent abilities to reproduce the
spatiotemporal patterns of global wild�res15,16. We utilized the seven out of nine FireMIP models
(including CLM, JSBACH-SPITFIRE, LPJ-GUESS-SPITFIRE, ORCHIDEE-SPITFIRE, CTEM, JULES-INFERNO,
and LPJ-GUESS-SIMFIRE-BLAZE) that can model the monthly GPP and BA with divergent spatial
resolutions (Table S2), which allows us to calculate PPT based on the SG-cubic spline method31 and
subsequent BA.

We examined the abilities of these models compared with satellite SIF derived from LT_SIFc in two
aspects: (1) using partial correlation to qualitatively compare the correlation between PPT and
subsequent burned area; (2) utilizing ridge regression to quanti�cationally estimate the sensitivity of
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burned area to PPT after eliminating the effects of T, PRE, and the maximum photosynthesis. To mitigate
the implication of divergent spatial resolutions among seven FireMIP models and satellite SIF product, we
calculated the area-weighted mean and 95% con�dence interval of sensitivities for the entire northern
ecosystems.
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Figure 1

Controls of peak vegetation growth on wild�re outbreak and burned area in northern ecosystems (>30°N).
Partial correlations (ρ) between peak vegetation photosynthesis (maximum photosynthesis and its timing
[PPT]) and wild�re timing (FT) and burned area (BA) for different sources of photosynthesis and wild�re
observations. a-d, SIF-derived timing (PPTSIF) and maximum (SIFmax), and NDVI-derived timing (PPTNDVI)
and maximum (NDVImax), respectively. 1-4 indicate the FT and BA derived from terrestrial �re perimeters
(FTFP and BAFP) and MODIS observations (FTMODIS and BAMODIS), respectively. Black dots indicate the
regions with signi�cant partial correlations (p-value<0.1). P and N indicate the percentage of positive and
negative correlations, respectively. PPT positively correlated with wild�re timing but had a negative effect
on the burned area.
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Figure 2

Potential mechanisms underlying the linkage between wild�re activity and peak photosynthesis timing. a-
f, Spatial patterns of partial correlations: PPTSIF versus VPD (a), PPTSIF versus CWD (b), PPTSIF versus
DFSSIF (c), PPTNDVI versus VPD (d), PPTNDVI versus CWD (e), and PPTNDVI versus DFSNDVI (f). Black dots
indicate the regions with signi�cant partial correlations (p-value<0.1). g-j, Path diagrams and path effects
for PPTSIF-wild�reMODIS (g-h) and PPTNDVI-wild�reMODIS (i-j). The numbers in the path diagrams represent
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the mean and standard deviation of standardized path coe�cients across the northern ecosystems
(>30°N), asterisks indicate the path coe�cients are signi�cant (p-value<0.1) and the colors (red and blue
arrows represent positive and negative effects, respectively) and widths of the arrows represent the signs
and magnitudes of the path coe�cients, respectively. Red and blue bars represent path effects for PPT-FT
and PPT-BA, respectively.

Figure 3

Earth system simulations of the effects of advanced summer phenology in northern temperate and
boreal vegetation on climate parameters. Changes in daily mean and daily maximum surface air
temperature (a-b), precipitation (c), vapor pressure de�cit (d), climatic water de�cit (e), and surface soil
moisture content at a depth of 0-10 cm (f) in summer and autumn. The black dot marks the region with a
statistically signi�cant change (Student’s t-test, p-value<0.1). P and N indicate the percentage of
increased and decreased effects due to advanced summer phenology, respectively.
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Figure 4

Comparisons of the effects of peak photosynthesis timing on burned area from satellite observations
and FireMIP �re-vegetation models. Partial correlations (ρ) between PPT and BA for seven FireMIP
models, including CLM (a), JSBACH-SPITFIRE (b), LPJ-GUESS-SPITFIRE (c), ORCHIDEE-SPITFIRE (d),
CTEM (e), JULES-INFERNO (f), and LPJ-GUESS-SIMFIRE-BLAZE (g). PPT and BA was derived from
monthly GPP and burned area simulated by FireMIP, respectively. Comparisons of the impacts of PPT on
BA between satellite observations and FireMIP models in terms of correlation (h) and sensitivity (i). The
labels in h indicate the percentages of signi�cantly negative and positive correlations (p-value<0.1). The
bars and error bars in i indicate the area-weighted mean and 95% con�dence interval of sensitivity,
respectively. Burned area in the sensitivity analysis was represented by burned fraction (BF, %).
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