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The seasonal dynamics of the vegetation canopy strongly regulate the surface 22 

energy balance and terrestrial carbon fluxes, providing feedbacks to climate 23 

change. Whether the seasonal timing of maximum canopy structure was optimized 24 

to achieve a maximum photosynthetic carbon uptake is still not clear due to the 25 

complex interactions between abiotic and biotic factors. We used two solar-26 

induced chlorophyll fluorescence (SIF) data sets as proxies of photosynthesis, and 27 

the normalized difference vegetation index (NDVI) and leaf area index (LAI) 28 

products derived from the Moderate Resolution Imaging Spectroradiometer 29 

(MODIS) as proxies of canopy structure, to characterize the relationship of their 30 

seasonal peak timing from 2000 to 2018. We found that the seasonal peak was 31 

earlier for photosynthesis than canopy structure in >87.5% of the northern 32 

vegetated area, probably leading to a suboptimal maximum seasonal 33 

photosynthesis. This mismatch in peak timing significantly increased during the 34 

study period mainly due to the increasing atmospheric CO2, and its spatial 35 

variation was mainly explained by climatic variables (47%) and nutrient 36 

limitations (28.6%). State-of-the-art ecosystem models overestimated this 37 

mismatch in peak timing by simulating a delayed seasonal peak of canopy 38 

development. These results highlight the importance of incorporating the 39 

mechanisms of vegetation canopy dynamics to accurately predict the maximum 40 

potential terrestrial uptake of carbon under global environmental change. 41 

  42 
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The seasonal characteristics of terrestrial vegetation strongly regulate the global carbon 43 

(C) cycle1,2. Changes in growing-season length (GSL) and maximum seasonal 44 

photosynthesis well explain the interannual variations of gross primary production 45 

(GPP), but maximum seasonal photosynthesis (GPPmax) accounts for more of the 46 

interannual changes in GPP than does GSL3. Understanding the underlying mechanisms 47 

that determine GPPmax is therefore critical4. The magnitude of GPPmax is jointly 48 

controlled by the canopy structure and the canopy performance that are regulated by 49 

environmental condition5-8. But the potential maximum GPPmax would only be achieved 50 

when the densest canopy's timing matches the timing where environmental resources 51 

are most abundant during the growing season5,8. In this case, the timing (day of the year, 52 

DOY) of the GPPmax (DOYGPP) should be close to the timing of the peak canopy 53 

structure (DOYCAN), i.e., synchrony of DOYGPP and DOYCAN. Satellite observations 54 

showed pervasive earlier DOYGPP than DOYCAN across the northern lands9, indicating 55 

a "suboptimal" configuration of the seasonal canopy development. Interestingly, 56 

evidence suggests an enhancement of the peak growth of global natural vegetation10, 57 

and an advance in DOYCAN in the midlatitudes11 and DOYGPP across the north12 in 58 

recent decades. The northern plants seem to have been adjusting the DOYCAN towards 59 

a more optimal configuration for GPPmax, but there is still room for further optimization9. 60 

The canopy development significantly determines the photosynthetic capacity and 61 

often consumes only a fraction of photosynthate13. Plants should be able to develop the 62 

densest canopy structure when the maximum seasonal resources emerge. However, why 63 

the plants across the northern lands failed to do so is unknown. The lack of an in-depth 64 
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understanding of the underlying mechanisms controlling the spatiotemporal variations 65 

in DOYCAN and its impact on GPPmax constitutes a large uncertainty in understanding 66 

the plant's regulation mechanisms and ecosystem carbon uptake capacity under future 67 

climate change. 68 

 69 

Here, we investigate the synchrony of seasonal peak timing between photosynthesis 70 

and canopy structure in northern ecosystems (>30°N) and its influencing factors during 71 

2000-2018 based on satellite observations, flux tower measurements, and the boosted 72 

regression tree (BRT) model that incorporates a set of 18 biotic and abiotic factors (see 73 

Methods). We quantify the differences between DOYGPP and DOYCAN using two solar-74 

induced chlorophyll fluorescence (SIF) satellite data sets (spatially contiguous SIF, 75 

CSIF14 and SIF from the Global Ozone Monitoring Experiment-2, GOME-2 SIF15, as 76 

proxies of vegetation photosynthesis) and two vegetation indices (MODIS NDVI and 77 

gap-filled MODIS LAI16, as proxies of canopy structure). An optimized 78 

"photosynthesis-canopy structure" conceptual model was built to investigate the 79 

potential of maximum seasonal photosynthesis using flux-tower data (see Methods). 80 

The influencing factors of the spatiotemporal differences between DOYGPP and 81 

DOYCAN was investigated with the BRT model17. The performance of an ensemble of 82 

fourteen state-of-the-art ecosystem models in reproducing the observed differences 83 

between DOYGPP and DOYCAN was also evaluated. 84 

 85 

Results and discussion 86 
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Seasonal peak timing and potential climatic constraints 87 

We first analyzed the relationship of seasonal peak timing between vegetation 88 

photosynthesis, canopy structure, and climatic variables. Soil-water content (SWC) 89 

peaked across northern vegetated land in May (DOYSWC: 134), followed by solar 90 

radiation (Rad) and temperature (TEMP) in June (DOYRad: 172) and July (DOYTEMP: 91 

202) respectively. Vegetation generally reaches its annual maximum photosynthesis and 92 

canopy structure in July, which is closer to the timing of the seasonal peak temperature 93 

compared to SWC and Rad. The timing of peak seasonal photosynthesis and canopy 94 

structure were mismatched, with the former peaking 8 d earlier than the latter (DOYCSIF: 95 

188 vs DOYNDVI: 196) (Fig. 1a). The spatial patterns of DOYCSIF and DOYNDVI were 96 

nevertheless similar (Fig. 1b). Photosynthesis and canopy structure peaked around July 97 

and August at high northern latitudes and in southern China, closer to the timing of the 98 

seasonal peak of temperature, and in other temperate regions, they peaked much earlier, 99 

closer to the timing of the seasonal peak of SWC. These spatial patterns of peak timing 100 

of photosynthesis and canopy structure derived from CSIF and NDVI were also 101 

corroborated by the independent GOME-2 SIF data set and the gap-filled LAI data set 102 

(Supplementary Figs. 1-2). 103 

 104 

Photosynthesis peaked earlier than canopy structure in >87.5% of the northern 105 

vegetated area (average negative 𝛿DOYCSIF, NDVI = -10 d) (Fig. 2a). The widespread 106 

negative 𝛿DOYCSIF, NDVI suggested that the vegetation at most northern latitudes did not 107 

allocate sufficient C to leaves to form the maximum canopy structure until the seasonal 108 
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photosynthetic peak. In contrast, 12.3% of northern vegetation (mainly in midwestern 109 

Eurasia, parts of China, and midwestern North America) had a positive 𝛿DOYCSIF, NDVI 110 

(average positive 𝛿DOYCSIF, NDVI = 5 d), indicating a strategy prioritizing the allocation 111 

of C to leaves. This relationship of peak timing between photosynthesis and canopy 112 

structure was consistent with a previous study18 and was also supported by the 113 

independent GOME-2 SIF data set and the gap-filled MODIS LAI data set 114 

(Supplementary Figs. 3-4). We also examined the climatic constraints on the timing of 115 

seasonal peak photosynthesis across northern ecosystems based on the positioning of 116 

DOYCSIF with respect to the peak timing of climatic factors12 (see Methods). We found 117 

that seasonal temperature played a critical role across >75.9% of vegetated areas in 118 

northern ecosystems, and water availability was the dominant factor for other regions 119 

(Fig. 2b). Interestingly, the geographical distributions of 𝛿DOYCSIF, NDVI and the 120 

dominant climatic constraint were strongly correlated. The temperature constraint was 121 

spatially consistent with a negative 𝛿DOYCSIF, NDVI, and the water constraint was 122 

correlated with a positive 𝛿DOYCSIF, NDVI, indicating the impacts of climatic regulation 123 

on the mismatch between the peaking time of photopheresis and the canopy. In other 124 

words, climatic factors seem to have influences on the strategy of seasonal allocation 125 

of photosynthetic C to the canopy in the northern lands. 126 

 127 

Climatic and nutrient limitations explain the negative 𝛿DOYCSIF, NDVI 128 

We further investigated the underlying mechanisms of the prevalent earlier peak timing 129 

of seasonal photosynthesis than canopy structure (negative 𝛿DOYCSIF, NDVI). To do so, 130 
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we trained boosted regression tree (BRT) models to examine the influence of 18 biotic 131 

and abiotic factors on the negative 𝛿DOYCSIF, NDVI. These factors are closely associated 132 

with photosynthesis and the allocation of photosynthates, including climatic factors 133 

(climatic conditions and synergies), foliar economic traits, hydraulic traits, indices of 134 

biodiversity, and other related factors (see Methods). The relationship of seasonal peak 135 

timing between photosynthesis and canopy structure differed across vegetation types 136 

(Supplementary Fig. 5), so we developed separate BRT models for northern ecosystems 137 

(entire study area), forests, shrublands, and grasslands. The BRT models performed 138 

reasonably well (R2 ranging from 0.53 to 0.78) in explaining the spatial variations of 139 

negative 𝛿DOYCSIF, NDVI (Supplementary Fig. 6). 140 

 141 

Climatic factors and foliar economic traits accounted for large fractions of the spatial 142 

variation in negative 𝛿DOYCSIF, NDVI in northern ecosystems, and other three plant types 143 

(24.7-36.9% for climatic conditions, 11.5-21.1% for climatic synergy, and 19.3-31.6% 144 

for foliar economic traits) (Fig. 3). Climatic factors strongly influenced the peak timings 145 

of seasonal photosynthesis and canopy structure in three ways: supplying solar 146 

radiation, regulating light use efficiency (LUE), and determining the strategy for 147 

allocating photosynthates. An obvious limitation of light was first detected at high 148 

northern latitudes, with a relative contribution of radiation of 22.7% in shrublands (Rad 149 

13.1% and 𝛿DOYCSIF, Rad 9.6%). We further emphasize that a decrease in radiation after 150 

summer solstice may not support ongoing vegetation photosynthesis and may therefore 151 

alter the seasonal synergy between photosynthesis and canopy structure, consistent with 152 
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a recent study reporting a limitation of light on autumnal photosynthesis19. LUE is 153 

sensitive to environmental conditions, as predicted by many LUE models20. Climatic 154 

synergistic variables would have obvious relative contributions if climatic factors 155 

significantly accounted for the negative 𝛿DOYCSIF, NDVI by inhibiting LUE. However, 156 

this was not supported due to the low contributions of 𝛿DOYCSIF, TEMP and 𝛿DOYCSIF, 157 

SWC. The apparent contribution of temperature in forests (TEMP 10.6%) and shrublands 158 

(TEMP 9.3%) could therefore be partly attributed to its influence on adaptive strategies 159 

of allocating photosynthates. Previous studies have reported that low temperatures 160 

could increase the proportion of new C allocated to roots in forests13,21, leading to a 161 

later seasonal peak of canopy structure than photosynthesis. We nonetheless cannot 162 

exclude the possibility that climatic factors contributed to the negative 𝛿DOYCSIF, NDVI 163 

through other physiological processes, even though their influences may not have been 164 

as strong as mentioned above. 165 

 166 

Foliar economic traits are closely associated with plant photosynthetic capacity, 167 

representing plant nutritional status and amount of foliage22. Nitrogen concentration per 168 

unit dry mass (Nm), phosphorus concentration per unit dry mass (Pm), and specific leaf 169 

area (SLA) were used to account for foliar economic traits. Pm was the primary factor 170 

driving the spatial variation in 𝛿DOYCSIF, NDVI, explaining 16.8 and 13.5% of the 171 

𝛿DOYCSIF, NDVI for forests and northern ecosystems respectively (Fig. 3). Nutrient 172 

limitations have two main physiological impacts on plant growth: primarily limiting 173 

the development of leaf area and secondarily regulating photosynthesis23. Foliar 174 
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phosphorus (P) concentration plays a more important role than nitrogen (N) 175 

concentration in limiting the development of leaf area23,24, but foliar N concentration 176 

has a stronger and more direct influence than P concentration in regulating 177 

photosynthesis25,26. Our results emphasize a larger contribution of foliar P concentration 178 

than N concentration (Pm 13.5% vs. Nm 6.1% for northern ecosystems), suggesting 179 

that foliar properties may contribute to negative 𝛿DOYCSIF, NDVI primarily by delaying 180 

canopy development. Delayed canopy structure cannot develop in parallel with 181 

maximum photosynthetic activity. Nm also did not significantly contribute at high 182 

northern latitudes (Nm 2.4% for shrublands), even though widespread N limitation has 183 

been reported27,28, implying that the effects of nutrient limitations on photosynthetic 184 

capacity were not responsible for the seasonal mismatch between photosynthesis and 185 

canopy structure. 186 

 187 

As a structural component of genetic material, P strongly controls cell division and the 188 

synthesis of enzymes. Experimental studies have reported that plants reduce the growth 189 

of biomass before stored P is depleted29. Stoichiometry, however, cannot easily set a 190 

threshold of P concentration because the growth of biomass declines before P becomes 191 

limited25. Recent studies have paid more attention to N limitation in northern 192 

ecosystems, because, as a dominant component of enzymes, N directly influences 193 

photosynthetic enzymatic activity30-32. Our study emphasizes the neglected effect of P 194 

limitation on canopy development at ecosystem scales. This restriction may result in 195 

delayed canopy development and seasonal decoupling of photosynthesis and canopy 196 
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structure and thus influence ecosystem potential maximum photosynthesis, even though 197 

it is not linearly connected to photosynthetic activity. The dominant factor driving the 198 

spatial variation in negative 𝛿DOYCSIF, NDVI differs across plant types, partly due to 199 

variations in the complexity of canopy structure and environmental conditions (Fig. 3). 200 

The seasonal synergy between photosynthesis and canopy structure for forests was 201 

primarily controlled by P limitation (Fig. 3a). The limitation of radiation, mainly at high 202 

northern latitudes, controlled the timing of peak seasonal photosynthesis for shrublands, 203 

and biodiversity was also a dominant factor as a proxy for co-variation with 204 

environmental resources, or as an indicator for the ability of the ecosystem in adjusting 205 

the timing of the peak canopy structure that was synthesized from the different 206 

phenological responses of different species33,34 (plant species 14.9%). The 207 

accumulation of C between daytime photosynthesis and nighttime consumption by 208 

respiration directly determined the seasonality of canopy structure for grasslands, 209 

where the diurnal range in temperature (Tdr) was larger than for other plant types (Tdr 210 

17.4%). Maximum seasonal photosynthesis was generally hindered by late canopy 211 

development due to nutrient limitation and climatic regulation in northern ecosystems 212 

(Fig. 3b). 213 

 214 

GPPmax potential under an optimized synergy between canopy and resources 215 

The degree to which maximum seasonal photosynthesis (GPPmax) would be enhanced 216 

if the late development of canopy structure could be adjusted to match the most 217 

abundant resources in a strategy of vegetation optimization is another critical question. 218 
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We therefore idealized the seasonal peak timing of canopy structure using flux-tower 219 

data based on an optimized "photosynthesis-canopy structure" conceptual model. The 220 

seasonality of canopy structure in this model was regulated to find an optimized peak 221 

timing where environmental resources were most abundant, and then an optimized 222 

GPPmax was reconstructed jointly by the optimized canopy structure and the most 223 

abundant resources (Conceptual illustration see Supplementary Fig. 7). The difference 224 

between optimized and observed GPPmax (𝛿GPPmax) can be regarded as the potential 225 

increase of ecosystem GPPmax. Our results indicated that canopy structure peaked later 226 

than photosynthesis at >80% of the flux sites (average negative 𝛿DOYGPP, NDVI = -11 d) 227 

and later than the peak of environmental resources (average negative 𝛿DOYNDVI = -19 228 

d), implying that more resources would be obtained with an advanced peak timing of 229 

canopy structure (Fig. 4). A larger asynchrony between the peak timings of 230 

photosynthesis and canopy structure (𝛿DOYGPP, NDVI) generally indicated a larger 231 

potential increase of GPPmax (R
2 = 0.68) and a more intensive regulation of the peak 232 

timing of canopy structure (𝛿DOYNDVI). We emphasize that a potential increase of 233 

GPPmax (average δGPPmax = 0.17 g C m-2 d-1) would be achieved by advancing the 234 

seasonal peak timing of canopy structure (average 𝛿DOYNDVI = -19 d). These results at 235 

the site level imply that the prevalent earlier peak timing of seasonal photosynthesis 236 

than canopy structure at northern latitudes probably led to a suboptimal maximum 237 

seasonal photosynthesis. 238 

 239 

Ecosystem models overestimated 𝛿DOYCSIF, NDVI 240 
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We evaluated the performances of 14 dynamic global vegetation models (DGVMs) that 241 

participated in the "Trends and drivers of the regional scale sources and sinks of carbon 242 

dioxide" project (TRENDY version 7) in reproducing the relationship of seasonal peak 243 

timing between photosynthesis and canopy structure using their GPP and LAI results35. 244 

The results indicated that all the models overestimated the number of days that 245 

vegetation photosynthesis preceded canopy structure (𝛿DOYGPP, LAI) compared with 246 

observations, due to a notable delayed peak timing estimation of canopy structure 247 

(DOYLAI) (Fig. 5 and Supplementary Figs. 8-9). Benefiting from the mechanistic 248 

understanding of photosynthetic processes and the unified photosynthesis module, i.e. 249 

Farquhar model or its variants36, the DGVMs simulated a reasonable peak timing of 250 

photosynthesis (Supplementary Fig. 10). However, the simulation of the seasonal 251 

dynamics of canopy structure involved processes that are currently poorly understood 252 

and represented, especially the seasonal C allocation mechanisms, resulting in reported 253 

systematic bias of modeled seasonal variations in LAI37,38. 254 

The modules of C allocation in recent DGVMs are mainly developed based on three 255 

strategies: (1) allometric relationships between plant organs39,40, (2) the limitation of 256 

resources on vegetation growth41, and (3) both allometric relationships and resource 257 

limitation42,43. We divided the TRENDY models into three groups according to their 258 

strategies for C allocation. We found that models developed based on a single C 259 

allocation strategy provided better (but still poor) simulations of the peak timings of 260 

canopy structure (DOYLAI from 195 to 230 d for allometric relationships and DOYLAI 261 
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= 213 d for resource limitation) compared with observations (DOYNDVI = 196 d) (Fig. 262 

5). However, models considering both allometric relationships and resource limitation 263 

do not improve their performance, simulated notably delayed DOYLAI (221 to 255 d) 264 

and thus overestimated the 𝛿DOYGPP, LAI (-58 to -25 d). Our results emphasized that all 265 

the C allocation mechanisms represented in current DGVMs need further 266 

improvements, and combining allometric and resource limitation theories without 267 

refinement does not improve the performance of the models in simulating seasonal 268 

canopy dynamics. 269 

 270 

Increasing discrepancy between DOYCSIF and DOYNDVI 271 

Satellite observations suggested that the discrepancy in peak timing between vegetation 272 

photosynthesis and canopy structure significantly increased during 2000-2018 (0.39 273 

d/decade, p < 0.001). The overall increasing discrepancy between DOYCSIF and 274 

DOYNDVI across the northern lands indicated that the northern vegetation might not be 275 

able to tackle the environmental changes and sufficiently alter its seasonal foliar 276 

allocation to achieve a larger GPPmax. Interestingly, the spatial pattern of the trend in 277 

𝛿DOYCSIF, NDVI was associated with the spatial pattern of climatic constraints on 278 

photosynthesis, with the discrepancy increasing in temperature-limited regions and 279 

decreasing in water-limited regions (Fig. 2b and Fig. 6b). However, the TRENDY 280 

models failed to capture the observed trends in the discrepancy between DOYCSIF and 281 

DOYNDVI, in terms of both the overall trends across the northern lands (0.32±0.48 282 

d/decade, p = 0.20) and the spatial pattern (Fig. 6c). 283 
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 284 

We further explored the effects of rising atmospheric CO2 concentration and climate 285 

change on the increasing discrepancy between DOYCSIF and DOYNDVI during 2000-286 

2017 based on the BRT model that considers temporal varying atmospheric CO2 287 

concentration and climate change (see Methods). The results indicated that the 288 

increasing discrepancy was mainly due to CO2 fertilization (0.49 d/decade), and was 289 

slightly alleviated by climate change (-0.06 d/decade) (Supplementary Figs. 11-12). 290 

The rising atmospheric CO2 concentration amplified the discrepancy between DOYCSIF 291 

and DOYNDVI across most of the northern vegetated lands (Supplementary Fig. 12), 292 

likely due to a combined result of earlier DOYCSIF due to the CO2 fertilization effects 293 

on photosynthesis and a relative stable DOYNDVI that was likely limited by temperature 294 

and nutrients and a more conservative carbon allocation strategy27,44,45. The increasing 295 

CO2-induced discrepancy suggested that there was room for further enhancement if the 296 

northern vegetation could develop an earlier peak canopy structure, although CO2 297 

fertilization effects have been proved to enhance the GPPmax
10. The effects of climate 298 

change on 𝛿DOYCSIF, NDVI trend was relatively weak and spatially heterogenous 299 

(Supplementary Fig. 12). We also explored the contributions of climate change and CO2 300 

fertilization to the changes in 𝛿DOYGPP, LAI based on TRENDY models. The model 301 

simulations showed a positive effect of climate change (0.73±0.73 d/decade) and a 302 

negative effect of CO2 fertilization (-0.10±0.25 d/decade) with large spreads 303 

(Supplementary Figs. 13-14), opposite to the results based on the BRT models. 304 

Nevertheless, further studies are needed, especially field experiments designed to 305 
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investigate the underlying mechanisms controlling the changes in DOYGPP, DOYCAN, 306 

and the 𝛿DOYGPP, CAN, which could provide explicit guidance to improve further the 307 

processes and mechanisms that drive the variations in vegetation canopy development 308 

in state-of-the-art ecosystem models. 309 

 310 

This study used data from multiple sources and analyzed the synchrony between the 311 

timings of seasonal peak photosynthesis and seasonal peak canopy structure at northern 312 

latitudes. Our findings identified a widespread mismatch between the two peak timings 313 

and an increasing discrepancy between them, suggesting that northern vegetation could 314 

not mediate the seasonal canopy structure to match the availability of resources to 315 

maximize its growth, with climatic regulation and nutrient limitation being potential 316 

vital reasons. The current DGVMs generally performed poorly in identifying the 317 

observed mismatch in peak timings. Incorporating the findings of this study will 318 

provide new insights for improving the modeling of seasonal vegetation growth (e.g., 319 

P cycling and its effects on regulating peak vegetation growth). These mechanisms will 320 

help improve our understanding and projection of the maximum potential uptake of C 321 

by terrestrial vegetation under dramatic global environmental change. 322 

 323 

Methods 324 

Data sets and study area. We used the clear-sky CSIF data set with 4-d temporal and 325 

0.05° spatial resolutions to derive the annual peak timing of vegetation photosynthesis 326 

(DOYCSIF) from 2000 to 2018 in northern ecosystems (>30°N). The CSIF data set uses 327 
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surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS) 328 

Collection 6 (C6) (MCD43C1) as inputs and trains machine-learning algorithms on 329 

daily SIF observations from Orbiting Carbon Observatory-2. It was demonstrated to 330 

capture well the seasonal dynamics of satellite-observed SIF, which shows high 331 

consistency with ecosystem GPP46-48, and be suitable for vegetation phenology 332 

retrievals as a proxy for GPP14,19. We used the NDVI data set from the MODIS C6 333 

(MOD13C1) with 16-d temporal and 0.05° spatial resolutions to retrieve the annual 334 

peak timing of vegetation canopy structure (DOYNDVI) from 2000 to 2018. Continuous 335 

snow cover leads to abundant missing data at high northern latitudes, so we 336 

reconstructed the NDVI time series using an adaptive method of spatiotemporal tensor 337 

completion based on the "pixel reliability" layer from the MOD13C1 data set to 338 

improve the quality of the data49. We then interpolated CSIF and reconstructed NDVI 339 

to daily temporal resolutions using linear interpolation. Another 16-day NDVI data set 340 

with 500 m spatial resolution from the MODIS C6 (MOD13A1) was also used to extract 341 

the seasonality of canopy structure around flux-tower sites. 342 

 343 

To test the robustness of the peak timing of photosynthesis derived from CSIF, we used 344 

an independent SIF data set from the Global Ozone Monitoring Experiment-2 (GOME-345 

2)50. The GOME-2 SIF v28 product suffered from sensor degradation and large 346 

uncertainties due to low signal levels51. Therefore, we filtered the good quality 347 

observations and derived the peak timing from the mean seasonal cycle of daily average 348 

SIF during 2007-2018. We also used a reprocessed leaf area index (LAI) data set16 to 349 
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characterize the peak timing of canopy structure in northern ecosystems to ensure the 350 

robustness of our analyses. This LAI data was generated by reprocessing the MODIS 351 

C6 LAI product with 8-d temporal and 0.05° spatial resolutions, and it performed more 352 

continuously and consistently in temporal and spatial domains than MODIS LAI16, 353 

suitable for seasonal peak timing retrievals. 354 

 355 

Surface air temperature (TEMP), shortwave radiation (Rad), and soil-water content 356 

(SWC) were used in this analysis to define the climatic constraints on vegetation 357 

photosynthesis in northern ecosystems. TEMP and Rad were obtained from the 358 

Climatic Research Unit-National Centers for Environmental Prediction (CRU-NCEP, 359 

version 9) with 6-h temporal and 0.5° spatial resolutions. The SWC data set was 360 

provided by the Global Land Data Assimilation System (GLDAS, version 5)52 with 3-361 

h temporal and 0.25° spatial resolutions, and we adopted SWC to a depth of 40 cm. 362 

These data were aggregated into daily temporal and 0.5° spatial resolutions to derive 363 

their annual peak timings (DOYTEMP, DOYRad, and DOYSWC) from 2000 to 2018. 364 

 365 

We used the FLUXNET2015 Tier 1 data set to analyze the potential increase of GPPmax 366 

from the regulation of the seasonality of canopy structure. We first rigorously selected 367 

sites and focused on the sites with only one seasonal GPP peak from spring to autumn 368 

(52 sites, Supplementary Table 2). We controlled daily flux data with >75% valid 369 

observations and calculated daily GPP as the average of both nighttime53 and daytime54 370 

partitioning methods. We also compared the GPP estimates of both methods and 371 
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excluded biased daily GPP to reduce the uncertainty caused by the NEE-partitioning 372 

method. The observed seasonal cycles of GPP and shortwave radiation were extracted 373 

from the daily data with valid fluxes. 374 

 375 

The vegetation map was derived from the MODIS C6 (MCD12Q1) with the IGBP 376 

classification scheme. We only considered vegetated areas >30°N with one peak during 377 

the growing season from summer to autumn. Vegetated areas with multiple peaks 378 

throughout the year were eliminated using harmonic analysis. We also ignored the 379 

vegetated areas with low seasonality based on a threshold of the coefficient of variation 380 

of the annual seasonal cycle of NDVI (>0.2). 381 

 382 

Retrieval of peak timing. We retrieved annual peak timings of vegetation 383 

photosynthesis (DOYCSIF), canopy structure (DOYNDVI), and climatic factors 384 

(DOYTEMP, DOYRad, and DOYSWC) from 2000 to 2018. The peak timings were 385 

identified as the days of the year when the factors arrived at their annual maxima. We 386 

applied a nonparametric singular spectrum analysis (SSA) to obtain smoothed time 387 

series, reduce noise, and maintain the seasonal signal of the time series55. SSA first 388 

decomposes the original time series into oscillatory components and noises with 389 

different frequencies based on the singular value decomposition and then reconstructs 390 

seasonal signals using the decomposed components. This nonparametric approach can 391 

reduce noise components, makes no prior assumptions about the original time series, 392 

and is widely used to reconstruct time series12,56. 393 
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 394 

Definition of climatic constraints. We investigated the impacts of climatic limitations 395 

on the allocation of vegetation photosynthetic carbon (C) by defining climatic 396 

constraints on vegetation growth in northern ecosystems based on the framework 397 

proposed by Park et al.12. This framework is based on two fundamental principles. First, 398 

vegetation photosynthesis and radiation will be seasonally consistent without climatic 399 

limitations, suggesting that DOYCSIF tends to be similar to DOYRad. Second, DOYCSIF 400 

will tend to be closer to the peak timing of the dominant limiting factor to obtain this 401 

more restricted resource than other factors. We adopted the idea of this framework using 402 

peak timings as proxies for resource availability. The sequential order of the peak 403 

timings of climatic factors in northern ecosystems had three scenarios: DOYSWC < 404 

DOYRad < DOYTEMP, DOYRad < DOYSWC < DOYTEMP, and DOYRad < DOYTEMP < 405 

DOYSWC (Supplementary Fig. 15). We analyzed the climatic constraints on vegetation 406 

photosynthesis based on all three scenarios, different from the original framework only 407 

considering the most common scenario in northern ecosystems (DOYSWC < DOYRad < 408 

DOYTEMP). 409 

 410 

Spatial analysis. We retrieved the seasonal peak timing of photosynthesis, canopy 411 

structure, and climatic variables and analyzed their multi-year average relationship 412 

from 2000 to 2018 (Fig. 1). We then quantified the mismatched peak timing between 413 

photosynthesis and canopy structure and examined the climatic constraints on the peak 414 

timing of photosynthesis (Fig. 2).  415 
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 416 

We used boosted regression tree (BRT) models to quantify the relative contributions of 417 

18 extrinsic and intrinsic factors to the spatial variations of mismatched peak timing 418 

between vegetation photosynthesis and canopy structure (𝛿DOYCSIF, NDVI). The BRT 419 

model is a machine-learning method based on the regression tree and boosting method, 420 

which can accommodate missing data and handle complex interactive effects between 421 

predictors. We developed four BRT models dependent on plant type (northern 422 

ecosystems, forests, shrublands, and grasslands). The BRT models were established 423 

based on the "gbm" R package and defined with a tree complexity of 5, a bag fraction 424 

of 0.5, and a learning rate of 0.001 or 0.01 based on the sample size of the response 425 

factor. The z-scores of all numeric variables were standardized, and the response 426 

variable satisfied the assumption of normality in the BRT models. 427 

 428 

Eighteen variables were used as explanatory factors in the BRT models, including 429 

climatic factors: TEMP, SWC, Rad, and diurnal temperature range (Tdr) for climatic 430 

conditions and correlation coefficient between TEMP and SWC (r(TEMP, SWC)), 431 

𝛿DOYCSIF, TEMP, 𝛿DOYCSIF, SWC, and 𝛿DOYCSIF, Rad for climatic synergies; foliar 432 

economic traits: nitrogen concentration per unit dry mass (Nm), phosphorus 433 

concentration per unit dry mass (Pm), the ratio of Nm to Pm (NPr), and specific leaf 434 

area (SLA); hydraulic traits: maximum rooting depth (rooting depth) and canopy height 435 

(Height); indices of biodiversity: anthropogenic species richness (ASR) and plant 436 

species (Species); and other related factors: GSL and tree density (Supplementary Table 437 
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1). The climatic factors were divided into two subcategories: climatic conditions and 438 

climatic synergies, to emphasize the effects of different processes on the peak timing of 439 

seasonal vegetation. Although these explanatory variables may be partially correlated, 440 

the BRT model requires no prior assumption and can well handle the interactions 441 

between the explanatory variables17. 442 

 443 

TEMP, SWC, and Rad were averaged from 2000 to 2018. Tdr was obtained from NCEP 444 

v9 and averaged during the growing season of the study period to determine their effect 445 

on vegetation growth. We took foliar economic traits and hydraulic traits into account 446 

because they are closely associated with vegetation photosynthetic capacity and the 447 

dynamics of water transport, respectively. Foliar economic traits include Nm, Pm, NPr, 448 

and SLA, derived from the trait maps based on the TRY database57. Hydraulic traits 449 

contain maximum rooting depth and canopy height obtained from the Global Earth 450 

Observation project for Integrated Water Resource Assessment and the Global 1 km 451 

Forest Canopy Height data set58. We also adopted variables of biodiversity in the BRT 452 

models, including ASR and plant species, because biodiversity and ecosystem functions 453 

and processes, such as terrestrial C storage and productivity, are strongly correlated. 454 

ASR was developed by Ellis et al.59 using a set of global models and estimates of 455 

anthropogenic species gains and losses. Data for plant species were obtained from the 456 

data set Number of Plant Species by Terrestrial Ecoregion developed by Kier et al.60. 457 

We aggregated predictive variables into a common spatial resolution of 0.5°. 458 

 459 
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Optimized "photosynthesis-canopy structure" conceptual model. We divided the 460 

seasonality of photosynthesis into canopy structure and environmental resources based 461 

on the light-use efficiency (LUE) – the fraction of absorbed photosynthetically active 462 

radiation (FAPAR) model framework and age-dependent LUE (Eq. 1 - 3). The 463 

seasonality of canopy structure determines the FAPAR and represents the effects of leaf 464 

age on LUE. Environmental resources represent photosynthetically active radiation 465 

(PAR) and the effects of hydrothermal conditions (HT) on LUE. 466 

 
LUE(t) =  

GPP(t)

PAR (t)  ×  FAPAR (t)

 (Eq 1) 

GPP was obtained from data of eddy-covariance fluxes. PAR was calculated as the 467 

product of the observed shortwave radiation from the flux-tower and 0.45. FAPAR was 468 

quantified by NDVI obtained from the MOD13A1 data set within a radius of 1 km 469 

(forests) or 200 m (grasslands and shrublands) of the flux-tower site61, and t represents 470 

one day of the year. 471 

 LUE(t) = 𝐻𝑇(t) × Leaf Age(t) (Eq 2) 

LUE is jointly controlled by HT and Leaf Age (i.e., age-dependent LUE). Leaf Age was 472 

quantified by a linear relationship with NDVI. HT was calculated as the quotient of 473 

LUE and Leaf Age. 474 

 
𝐹𝐴𝑃𝐴𝑅(t) × Leaf Age(t) =

GPP(t)

PAR (t)  ×  HT (t)

 (Eq 3) 

The product of FAPAR and leaf age represents the part related to canopy structure in 475 

photosynthesis, and the product of PAR and HT indicates the effects of environmental 476 

resources on photosynthesis. 477 
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 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐺𝑃𝑃max = (FAPAR × Leaf Age)max × (PAR × HT)max (Eq 4) 

We simulated an optimized GPPmax assuming that the canopy structure could obtain the 478 

most abundant resources by adjusting the peak timing of the canopy structure (observed 479 

DOYNDVI) to match the peak timing of constant seasonal environmental resources 480 

(adjusted DOYNDVI = DOYResources and 𝛿DOYNDVI = adjusted DOYNDVI - observed 481 

DOYNDVI). Optimized GPPmax could therefore be calculated as the product of seasonal 482 

maximum canopy structure and seasonal maximum environmental resources. 483 

 484 

Model simulations. We used GPP and LAI outputs of fourteen DGVMs from the 485 

TRENDY S3 simulations (dynamic CO2, climate, and land-use) to evaluate the 486 

performances of recent DGVMs to simulate peak vegetation growth35. These DGVMs 487 

included CABLE-POP, CLASS-CTEM, CLM5.0, DLEM, ISAM, JSBACH, JULES, 488 

LPJ-GUESS, LPX, OCN, ORCHIDEE, ORCHIDEE-CNP, SURFEX, and VISIT 489 

(details of individual models see Supplementary Table 3). We retrieved annual peak 490 

timings of vegetation photosynthesis (DOYGPP) and canopy structure (DOYLAI) from 491 

2000 to 2017 and calculated their difference (𝛿DOYGPP, LAI). Then we compared the 492 

spatial patterns and temporal trends of DOYGPP, DOYLAI, and 𝛿DOYGPP, LAI with 493 

observed DOYCSIF, DOYNDVI, and 𝛿DOYCSIF, NDVI, respectively (Figs. 5-6 and 494 

Supplementary Figs. 8-10). The model outputs from TRENDY S0-S2 simulations were 495 

also used in our study and were reported in the section of temporal analysis. All model 496 

outputs were linearly interpolated to a temporal resolution of 1 d and aggregated to a 497 

spatial resolution of 0.5°. 498 
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 499 

Temporal analysis. To explore the variation in mismatched peak timing between 500 

vegetation photosynthesis and canopy structure and its potential drivers over time, we 501 

examined the trend in absolute 𝛿DOYCSIF, NDVI during 2000-2018(Fig. 6). Then, we 502 

further identified the potential drivers of the trend in 𝛿DOYCSIF, NDVI by developing a 503 

new BRT models considered temporal varying atmospheric CO2 concentration and 504 

climatic variables. The effects of CO2 fertilization and climate change on the trend in 505 

𝛿DOYCSIF, NDVI can tbe attributed to controlling the related variables constant from 506 

2000-2018 (Supplementary Figs. 11-12). In addition, we estimated the contributions of 507 

CO2 fertilization and climate change to the trend in absolute 𝛿DOYGPP, LAI based on the 508 

model outputs from the TRENDY S0-S2 simulations (Supplementary Figs. 14-15).  509 

 510 

Data availability 511 

The CSIF data set is from https://doi.org/10.17605/OSF.IO/8XQY6, the GOME-2 SIF 512 

data set is from https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/, the 513 

MODIS NDVI data set is from https://lpdaac.usgs.gov/products/mod13c1v006/, the 514 

reprocessed LAI data set is from http://globalchange.bnu.edu.cn/research/laiv6, the 515 

FLUXNET2015 data set is from https://fluxnet.org/data/fluxnet2015-dataset/, the 516 

surface air temperature and shortwave radiation data sets are from 517 

https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/cruncep/V9_1901_2017/catal518 

og.html, the soil-water content data set is from 519 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary?keywords=520 

https://doi.org/10.17605/OSF.IO/8XQY6
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/
https://lpdaac.usgs.gov/products/mod13c1v006/
http://globalchange.bnu.edu.cn/research/laiv6
https://fluxnet.org/data/fluxnet2015-dataset/
https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/cruncep/V9_1901_2017/catalog.html
https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/cruncep/V9_1901_2017/catalog.html
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary?keywords=GLDAS
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GLDAS, the SLA, Nm, and Pm data sets are from 521 

https://github.com/abhirupdatta/global_maps_of_plant_traits, the canopy height and 522 

maximum rooting depth data sets are from 523 

https://webmap.ornl.gov/ogc/dataset.jsp?dg_id=10023_1 and 524 

https://wci.earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html, the ASR and 525 

plant species data sets are from https://ecotope.org/anthromes/biodiversity/plants/data/ 526 

and https://databasin.org/datasets/43478f840ac84173979b22631c2ed672/ and the tree 527 

density data set is from https://elischolar.library.yale.edu/yale_fes_data/1/. 528 
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 698 

Figure Legends 699 

Figure 1 | Timing of seasonal peak photosynthesis, canopy structure, and climatic 700 

variables. a, Probability densities of DOYCSIF, DOYNDVI, DOYSWC, DOYRad, and 701 

DOYTEMP. The colors and dotted lines indicate their averages weighted by area and 702 

CSIF value at the pixel level. b, Spatial patterns of DOYSWC, DOYRad, DOYTEMP, 703 

DOYCSIF, and DOYNDVI in northern ecosystems. The legend shows the month DOY 704 

belonging to, with a and b indicating the first and second half of the month. 705 

 706 

Figure 2 | Comparison between the timing of seasonal peak photosynthesis and 707 

canopy structure in northern ecosystems. a, Spatial pattern of the relationship of 708 

seasonal peak timing between photosynthesis and canopy structure represented by 709 

𝛿DOYCSIF, NDVI (DOYCSIF - DOYNDVI). b, Climatic constraints of temperature (blue) and 710 

soil-water content (orange) on vegetation photosynthesis in northern ecosystems, 711 

represented by 𝛿DOYCSIF, TEMP (DOYCSIF – DOYTEMP) and 𝛿DOYCSIF, SWC (DOYCSIF – 712 

DOYSWC) respectively. 713 

 714 

Figure 3 | Factors accounting for the mismatch in seasonal peak timing between 715 

photosynthesis and canopy structure. a, Relative contribution of 18 factors 716 

influencing the spatial variation of negative 𝛿DOYCSIF, NDVI evaluated by BRT models 717 

based on four ecosystems: northern ecosystems, forests, shrublands, and grasslands. 718 

mailto:slpiao@pku.edu.cn
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The color scales represent different categories of factors: variables of climatic 719 

conditions (TEMP, Tdr, SWC, and Rad; dark blue); variables of climatic synergy 720 

(r(TEMP, SWC), 𝛿DOYCSIF, TEMP, 𝛿DOYCSIF, SWC, and 𝛿DOYCSIF, Rad; light blue); foliar 721 

economic traits (Nm, Pm, NPr, and SLA; green); hydraulic traits (rooting depth and 722 

canopy height, yellow); variables of biodiversity (ASR and Species, red); and others 723 

(GSL and tree density, gray) (see Methods). b, Statistics for the cumulative contribution 724 

of the factors from the same category. The colors of the donut chart correspond to the 725 

color scale in a. 726 

 727 

Figure 4 | Relationship between potential increase of GPPmax (𝛿GPPmax) and the 728 

synchrony of peak timings between canopy structure and photosynthesis 729 

(𝛿DOYGPP, NDVI) at 52 flux-tower sites. Each dot represents a site. The color scale 730 

indicates the differences in seasonal peak timings between canopy structure and 731 

environmental resources (𝛿DOYNDVI). The solid gray line indicates a linear regression 732 

fit, and the dashed lines represent the 95% confidence interval. 733 

 734 

Figure 5 | Timing of seasonal peak photosynthesis and canopy structure in 735 

northern ecosystems simulated by the 14 TRENDY models. a, Comparison of 736 

modeled DOYLAI and 𝛿DOYGPP, LAI with observed DOYNDVI and 𝛿DOYCSIF, NDVI. The 737 

colored dots indicate means. The vertical and horizontal error bars represent 0.5 738 

standard deviations for DOYLAI and 𝛿DOYGPP, LAI. The numerical labels indicate 739 

different strategies of allocation of photosynthetic carbon: (1) only considering an 740 
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allometric relationship, (2) only considering resource limitation, and (3) considering 741 

both. The gray shading represents the range of observations composed of means (solid 742 

lines) and 0.5 standard deviations (dotted lines) for DOYNDVI and 𝛿DOYCSIF, NDVI. b, 743 

Same as a, but for DOYGPP and 𝛿DOYGPP, LAI. 744 

 745 

Figure 6 | Changes in the mismatch in seasonal peak timing between 746 

photosynthesis and canopy structure. a, Interannual changes in observed absolute 747 

𝛿DOYCSIF, NDVI (black lines) and simulated absolute 𝛿DOYGPP, LAI (green lines) by 748 

averaging 14 TRENDY models. The solid lines with markers and dotted lines indicate 749 

annual mismatched days and regression lines. The trend is calculated by the Theil-Sen 750 

estimator and tested with the Mann-Kendall test. Double asterisks indicate p < 0.001. 751 

The shaded area shows the uncertainty range of models represented by half of the 752 

standard deviation of the trends. b and c, Spatial patterns of trends in 𝛿DOYCSIF, NDVI 753 

during 2000-2018 and 𝛿DOYGPP, LAI during 2000-2017. 754 
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