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Abstract Remote sensing detection of autumnphenology is challenging and highly uncertain, as exemplified
by the observed divergence in autumn phenology extracted from different proxies. Here, we compared the
autumn phenology derived from Solar‐Induced chlorophyll Fluorescence (SIF), Chlorophyll/Carotenoid Index
(CCI), Enhanced Vegetation Index (EVI), and Normalized Difference Vegetation Index (NDVI) over deciduous
forest sites. We observed a clear temporal sequence in the derived autumn phenology from various proxies:
SIF < CCI < EVI < NDVI. Comparison with field measurements supported that SIF, EVI, and NDVI can
successfully capture the attenuation of photosynthetic activity, leaf coloration, and leaf fall, respectively. The
sequence among the autumn phenology derived from those proxies was also consistent with their responses to
climate cues, where SIF had the highest partial correlation coefficient to solar radiation in autumn, followed by
CCI, EVI, and NDVI, while NDVI was more correlated with temperature, followed by EVI, CCI, and SIF.

Plain Language Summary The autumn phenology of deciduous forests is critical for estimating
carbon sequestration and understanding the responses of vegetation to climate change. However, the autumn
phenology metrics derived from different satellite proxies show high discrepancies. Here, we hypothesized that
leaf senescence of deciduous forests is a progressive process, and that the different satellite proxies capture
different stages of this timetable. To test this hypothesis, we compared the autumn phenology of deciduous
forests derived from Solar‐Induced chlorophyll Fluorescence (SIF), Chlorophyll/Carotenoid Index (CCI),
Enhanced Vegetation Index (EVI), and Normalized Difference Vegetation Index (NDVI). We revealed the
timetable of autumn phenology derived from different satellite proxies, that is, SIF‐based autumn phenology is
the earliest, followed by CCI‐based, EVI‐based, and NDVI‐based autumn phenology, which had a close
relationship with their responses to temperature and solar radiation in autumn. Comparison with field
measurements supported that SIF, EVI, and NDVI can successfully capture the attenuation of photosynthetic
activity, leaf coloration, and leaf fall, respectively, which occur in sequence during the leaf senescence process.
These findings improved our understanding on the meaning of remote sensing derived autumn phenology, and
will contribute to the accurate estimation of the length of photosynthetic active season.

1. Introduction
Deciduous forests account for approximately a half of the terrestrial surface forests and offset massive anthro-
pogenic CO2 emissions (Bonan, 2008; Le Quere et al., 2009). The autumn phenology of deciduous forests marks
the transition of plant growth from the active to the dormant stages (Estiarte & Penuelas, 2015), and is a critical
factor determining the length of growing season and carbon sequestration (Richardson et al., 2010; Wu
et al., 2013). Accurate characterization of autumn phenology is therefore necessary for understanding seasonal
carbon, water, and energy cycles of ecosystems and revealing the response of forests to climate change
(Bonan, 2008; Gallinat et al., 2015; Zheng et al., 2002).

Remote sensing is currently the only feasible way to support the extraction of vegetation phenology on a large
scale. The satellite‐based Vegetation Indices (VIs), for example, the Normalized Difference Vegetation Index
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(NDVI), and Enhanced Vegetation Index (EVI), are the most widely used VIs employed to derive phenological
metrics, which tend to characterize the canopy greenness/structural changes (Gamon et al., 1995; Huete
et al., 2002; Myneni et al., 1995). Different from those greenness/structural VIs, physiological vegetation
variables are not limited to monitor changes in visible leaf color and amount, but also changes in the intrinsic
photosynthetic activities of vegetation (Wu et al., 2013). The Chlorophyll/Carotenoid Index (CCI), representing
the seasonal changes in chlorophyll/carotenoid pigment ratios (Penuelas et al., 1994; Wong & Gamon, 2015), is
strongly correlated with the composition of the pigment pool, specifically the chlorophyll/carotenoid ratio
(Gamon et al., 2016; Wong et al., 2019; Yin et al., 2020), which is an important determiner of light‐use ef-
ficiency and ultimately influences photosynthesis (Croft et al., 2017). Besides, the Solar‐Induced chlorophyll
Fluorescence (SIF), representing the signal emitted by green plants when solar photons are absorbed by
chlorophylls within photosynthetic machinery (Porcar‐Castell et al., 2014), provides insights to estimate
phenology from the canopy photosynthetic (physiological) perspective (Jeong et al., 2017; Lu et al., 2018;
Walther et al., 2016).

Remote sensing detection of autumn phenology (i.e., End of growing Season, EOS) is challenging and highly
uncertain (Elmore et al., 2012;Ganguly et al., 2010; Guyon et al., 2011), as exemplified by the observed divergence
in EOS extracted from different proxies (Lu et al., 2018; X. Wang et al., 2020). Recent studies revealed that EOS
extracted from SIF was significantly different with that extracted from EVI or NDVI for deciduous forests in the
Northern Hemisphere. For example, Walther et al. (2016) presented that SIF‐based EOS was significantly earlier
than the green biomass changing period proxied byEVI orNDVI for northern forests, butwas consistentwithGross
Primary Production (GPP)‐based one. A similar phenomenon was also reported by Yin et al. (2020): CCI‐derived
EOSwasmuch earlier than the ones fromEVI or NDVI for both deciduous forest and evergreen coniferous forests,
which has been proved to have the capability of detecting photosynthetic autumn phenology proxied by GPP
(Gamon et al., 2016; Yin et al., 2020, 2022). However, the differences between SIF and CCI in extracting EOS of
deciduous forests have not been explored, and the mechanisms underlying the divergence in EOS extracted from
different proxies are still elusive.

Recently, field measurements indicate that leaf senescence over deciduous forests is a progressive process
following a specific timetable, for example, leaf nutrient relocation, chlorophyll degradation, leaf coloration
and leaf shedding (Marien et al., 2019). It is currently unclear which specific stages of leaf senescence can
be captured through the extraction of autumn phenology information from different satellite proxies. In this
study, we compared the autumn phenology extracted from different satellite‐based proxies, that is, SIF, CCI,
EVI, and NDVI. The phenology extracted from continuous flux tower‐based GPP time series and field
observations of autumn phenophases over deciduous forest sites were employed as a reference to validate
the satellite metrics. Finally, we analyzed the climatic factors determining the autumn phenology from
different satellite proxies. This work highlighted the divergent autumn phenology extracted from different
satellite proxies and their relationship with filed‐observed phenological process, improving our under-
standing for interpretation of land surface phenology as well as their responses to climate clues, which will
in turn promote satellite‐based autumn phenology applications in different usage scenarios.

2. Materials and Methods
2.1. Remote Sensing Data Sets

2.1.1. GOSIF Product

The GOSIF (Global OCO‐2 SIF) is a global spatio‐temporal continuous SIF product at 0.05° and 8‐day resolution
available from 2001 to present (Li & Xiao, 2019). It was derived with a machine learning algorithm trained with
Orbiting Carbon Observatory‐2 (OCO‐2) SIF and using Moderate Resolution Imaging Spectroradiometer
(MODIS) vegetation data and meteorological reanalysis data as inputs. The data sets had a good performance
validated by original SIF observations (Root Mean Square Error [RMSE]= 0.07Wm− 2 μm− 1 sr− 1) and had been
widely applied for autumn phenology extraction over large scales (Ren et al., 2021; C. Wang et al., 2022; J. Zhang
et al., 2022).

2.1.2. Vegetation Indices

The NDVI, EVI and CCI were calculated as:
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NDVI =
B2 − B1
B2 + B1

(1)

EVI =
2.5(B2 − B1)

B2 + 6B1 − 7.5B3 + 1
(2)

CCI =
B11 − B1
B11 + B1

(3)

where B1, B2, B3, and B11 are the MODIS surface reflectances in bands 1 (620–670 nm), 2 (841–876 nm), 3 (459–
479 nm), and 11 (526–536 nm), respectively.

We used the MCD19A1 Version 6 product which provides daily surface reflectance for MODIS bands 1–12 at a
spatial resolutions of 1 km. This product was generated using the Multi‐Angle Implementation of Atmospheric
Correction algorithm, which used an adaptive time series and spatial analysis to derive atmospheric aerosol
concentration and surface reflectance without empirical assumptions (Lyapustin et al., 2012). Pixels contami-
nated by cloud, snow or a high aerosol optical depth were excluded based on the layer of quality assurance of the
data set. Data with viewing zenith angles >45° were also excluded to minimize the effects of the bidirectional
reflectance distribution function (BRDF) (Middleton et al., 2016; R. Wang et al., 2020). Finally, the daily CCI,
EVI, and NDVI were composited at 8‐day period by computing the mean of all valid observations within the 8‐
day period to match the temporal resolution of the GOSIF products.

2.1.3. MODIS Land Cover Map

We utilized the MODIS Terra and Aqua Combined Land Cover Version 6 data product (MCD12Q1) to screen
representative deciduous forest sites. This product provides global land cover types at yearly intervals and 500 m
spatial resolution, which is derived using supervised classifications of MODIS Terra and Aqua reflectance data.
The Annual International Geosphere‐Biosphere Programme classification schemes was chosen in this study,
including 11 natural vegetation classes, 3 developed and mosiacked land classes, and three non‐vegetated land
classes.

2.2. Ground Observations

2.2.1. In Situ GPP Measurements

In‐situ GPP measurements were also used to extract autumn phenology, which provided a benchmark for the
comparison among the satellite proxies. We obtained GPP measurements of deciduous forest sites from the
FLUXNET‐2015 data set. The GPP in the FLUXNET‐2015 data set was provided by using gap‐filled data for net
ecosystem exchange and the daytime flux‐partitioning method (Pastorello et al., 2020). Sites were selected based
on the following criteria: (a) latitudes > 30°N; (b) at least one year of the observations were valid after 2001; and
(c) the fraction of deciduous and mixed forests in a 0.05°× 0.05° area surrounding the sampled site was more than
80% based on MODIS Land Cover Map. Detailed information for selected flux‐tower‐based GPP sites can be
found in Table S1 in Supporting Information S1.

2.2.2. Phenological Field Observations

We used field observations of the “colored leaves” and “leaves falling” phenophases from the United States of
America National Phenology Network. Sites were selected based on the following criteria: (a) latitudes > 30° N;
(b) at least one year of both “colored leaves” and “leaves falling” observations were valid after 2001; and (c) the
fraction of deciduous and mixed forests in a 0.05° × 0.05° area surrounding the sampled site was more than 80%
based on MODIS Land Cover Map. Detailed information for selected field phenology observation sites can be
found in Table S2 in Supporting Information S1. For comparison with satellite derived EOS, we averaged the
timing when 50% colored leaves occurred for all deciduous species. The same processing method was also
conducted for the item of “leaves falling.”
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2.3. Reanalysis Climate Data Set

The relationship between satellite‐derived autumn phenology and climate cues was implemented to disentangle
the underlying mechanisms of the divergent autumn phenology from different proxies. Considering that light and
temperature are the main cues controlling leaf senescence in deciduous species in mid‐ and high‐latitude of the
Northern Hemisphere (Figure S1 in Supporting Information S1), we employed the downward surface solar ra-
diation and 2‐m temperature to represent the environmental cues (Descals et al., 2022; Y. Zhang et al., 2020). This
data set was obtained from the ERA5‐Land data set at 0.1° and one‐hour resolutions, which was developed by the
Copernicus Climate Change Service at the European Centre for Medium‐Range Weather Forecasts (Munoz‐
Sabater et al., 2021). For comparison purposes, we integrated the hourly shortwave radiation and temperature data
sets to 8‐day intervals, and adopted the partial correlation analysis between time series of vegetation variables
(i.e., SIF, CCI, EVI, NDVI, and GPP) and climate data. The time series over all selected flux‐tower‐based GPP
sites (Table S1 in Supporting Information S1) were used to illustrate the partial correlation between autumn
phenology and climate cues.

2.4. Autumn Phenology Extraction

The satellite‐based autumn phenology was extracted from the SIF, CCI, EVI, and NDVI time series through
three main steps: (a) Gap filling. In winter time, the missing values contaminated by snow were replaced
with snow‐free background values, which were calculated at pixel level by the average of valid values
during the period when GPP was lower than 5% of the annual magnitude. If the GPP measurements were
not available at USA NPN sites, the missing values contaminated by snow were replaced with the lower
quartile of valid values in November and March. During the growing season, linear interpolation was
conducted to fill the missing values such as the cases that were filtered out due to clouds or BRDF effects.
(b) Curve fitting. A double logistic function was fitted to the smoothed and snow corrected time series to
produce continuous curves. The double logistic was suited for phenological monitoring of forests, as it
allows asymmetry in the temporal evolution of spring and autumn (Elmore et al., 2012). The double logistic
function is as follows:

V(t) = Vmina +
Vmax − Vmina
1 + e− Sa · (t− Tmida)

+
Vmax − Vminb
1 + e− Sb · (t− Tmidb)

(4)

where V(t) is the value of vegetation proxy at the day of the year t, Vmax is the maximum value during the year,
Vmina and Vminb, are the minimum value of the curve in greenup and senescence, respectively, Tmida and Tmidb are
the DOYs of maximum slope of the curve in greenup and senescence, respectively, whereas Sa and Sb are the
slopes of the curve at DOYs Tmida and Tmidb. (c) Autumn phenology extraction. We adopted two widely used
methods to extract EOS: (a) the date when 50% relative threshold of the annual magnitude during the decline of
time series (Shen et al., 2020, 2022; White et al., 1997), (b) the date when the fastest rate of change during the
decline of time series (Elmore et al., 2012), that is, Tmidb in function 4 in step 2. To avoid systematic errors of
different phenological extraction methods and make our results robust, we averaged the EOS obtained from the
above‐mentioned two methods as the final EOS (Peng et al., 2019; Wu et al., 2017, 2021).

For the extraction of autumn phenology from flux‐tower GPP time series, the same curve fitting and phenology
extraction method described above was used but only with steps 2 and 3, as flux‐tower GPP had been gap filled by
Marginal Distribution Sampling method (Pastorello et al., 2020).

2.5. Evaluation of Satellite‐Derived Autumn Phenology Based on Ground Observations

We compared satellite‐derived autumn phenology with field‐observed leaf coloration and leaf fall as well as GPP‐
based autumn phenology. First, the two‐sample t‐test was conducted to test whether the mean difference between
satellite‐based EOS and in‐situ autumn phenology observations was significantly different to 0. Then, the R‐
square (R2), Mean Error (ME), Mean Absolute Error (MAE), and RMSE, were used to evaluate the satellite‐based
EOS based on in situ autumn phenology observations.
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3. Results
3.1. Comparison of Autumn Phenology Extracted From Different Proxies

We found that SIF‐based EOS matched the best with GPP‐based EOS, followed by CCI‐based, EVI‐based and
NDVI‐based ones (Figure 1a). Specifically, the SIF‐based EOS was not significantly different from GPP‐based
EOS. EOS derived from CCI, EVI, and NDVI were instead significantly different from GPP‐based EOS for a
confidence interval of 99.9%, according to the two‐sample t‐test. The estimates of EOS were systematically
delayed for CCI, EVI, and NDVI, and the delay was larger for NDVI than for CCI and EVI. However, EOS
derived from CCI and EVI were closer to leaf coloration (both with no significant differences) than that from SIF
and NDVI (Figure 1b). Compared to leaf coloration, the estimates of EOS were delayed for NDVI, but advanced
for SIF. On the contrary, NDVI‐based EOS matched the best with leaf fall, followed by EVI‐based, CCI‐based
and SIF‐based ones (Figure 1c). Specifically, the NDVI‐based EOS had an insignificant difference with leaf fall.
EOS derived from EVI, CCI, and SIF had, instead, significant difference with leaf fall for a confidence interval of
99.9%. The estimates of EOS were systematically advanced for EVI, CCI, and SIF, and the delay was larger for
SIF than for CCI and EVI.

The EOS from SIF had a close relationship with that from GPP with the highest R2 (0.331), and the smallest ME
(− 1.36 days), MAE (6.98 days), and RMSE (9.32 days), as shown in Table 1. The EOS of CCI followed GPP by
∼13 days, which provided an intermediate accuracy with a higher MAE (13.42) and RMSE (16.81 days) than SIF
derived metrics. The EOS from EVI and NDVI lagged the GPP by ∼17 and ∼25 days respectively, especially for
NDVI, which provided the highest MAE (25.79 days) and RMSE (28.26 days). The EOS from EVI was the most
correlated with leaf coloration (R2= 0.257) with the lowest ME (1.07 days). The CCI‐based EOSwas also close to
leaf coloration with a little lower ME (− 2.41 days) and similar MAE (13.36) and RMSE (16.19) with EVI‐based
EOS. The EOS of NDVI lagged leaf coloration by ∼16 days with a higher MAE (19.85) and RMSE (24.06 days)
than that of EVI, but it was the closest to leaf fall (ME = − 2.93 days, MAE = 8.93 days, RMSE = 10.17). The
EOS of SIF, CCI and EVI advanced the leaf fall by ∼28, ∼12, and ∼9 days respectively. The EOS from SIF was
the least correlated with leaf fall (R2 = 0.077) with the highest MAE (30.02 days) and RMSE (33.59 days).

3.2. Partial Correlation Between Autumn Phenology and Climate Cues

The above systematic differences between SIF, CCI, EVI, and NDVI indicated that they capture different stages
of leaf senescence. In order to disentangle their underlying driving mechanisms, we compared the trajectories of
satellite‐based proxies with climate cues, that is, solar radiation and temperature, which are the main cues con-
trolling leaf senescence in deciduous species in mid‐ and high‐latitude of the Northern Hemisphere (Descals
et al., 2022; Y. Zhang et al., 2020). We found that a decoupling of physiological status and structural information
occurred in autumn, with asynchronous solar radiation and temperature (Figures 2a and 2b). As shown in
Figure 2c, the partial correlation coefficient of SIF to solar radiation was higher than that of CCI, EVI and NDVI
(0.59 vs. 0.42, 0.42, 0.27, respectively), which was a little lower than that of GPP to solar radiation (R = 0.66). In
contrast, the partial correlation coefficient of NDVI to temperature was the highest (R = 0.31), followed by EVI

Figure 1. Boxplot of differences between autumn phenology extracted from satellite‐based Solar‐Induced chlorophyll Fluorescence, Chlorophyll/Carotenoid Index,
Enhanced Vegetation Index, Normalized Difference Vegetation Index and flux‐tower‐based Gross Primary Production (a), colored leaves (b), and falling leaves (c). The
student's t‐test was conducted to test the significance of the difference, where *** represents a p‐value less than 0.001.
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(R = 0.30), CCI (R = 0.16) and SIF (R = 0.06). To confirm the robustness of the analysis, we further test the
sensitivity of satellite proxies (i.e., GPP, SIF, CCI, EVI, and NDVI) to climate cues (see Table S3 in Supporting
Information S1). We found that the sensitivity of NDVI, EVI, CCI, SIF, and GPP to solar radiation in autumn was
increased sequentially, while it was decreased in sequence to temperature. In summary, the sequence among the
autumn phenology derived from different satellite proxies was consistent with their responses to climate cues,
where SIF had the highest partial correlation coefficient to solar radiation in autumn, followed by CCI, EVI, and
NDVI, while NDVI was more correlated with temperature, followed by EVI, CCI, and SIF.

4. Discussion
4.1. Mechanism Analysis of Divergence in Autumn Phenology Extracted From Different Satellite Proxies

Autumn phenology has been increasingly studied with varied satellite proxies (Jeong et al., 2017; Liu et al., 2016;
Lu et al., 2018; C. Wang et al., 2023; Yin et al., 2020), however, the autumn phenology derived by different
satellite proxies were divergent. In this study, we compared autumn phenology extracted from different satellite
proxies with field observations at deciduous forest sites. The sequence among the autumn phenology derived from
different satellite proxies was highlighted in this study, where SIF‐based autumn phenology was the earliest,
followed by CCI‐based, EVI‐based and NDVI‐based autumn phenology. Some recent studies have presented that
SIF‐based EOS is close to GPP‐based EOS (Jeong et al., 2017; Lu et al., 2018; C. Wang et al., 2019), but is
significantly earlier than the green biomass decrease proxied by EVI or NDVI (D'Odorico et al., 2015; Walther
et al., 2016; C. Wang et al., 2022; Yang et al., 2022), which are consistent with our findings. In addition, we found
the newly emerged physiological index CCI performed between SIF and EVI, demonstrating its potential for
estimating GPP‐derived EOS for deciduous forests (Yin et al., 2020), but not as good as SIF.

The timing of leaf senescence is likely to be a trade‐off between photosynthetic carbon assimilation and autumnal
nutrient resorption at different stages in the seasonal functioning of leaves (Fracheboud et al., 2009; Keskitalo
et al., 2005). When trees reach their maximum carbon storage capacity, they will initialize nutrient resorption and
senescence (Chen et al., 2021). The photosynthetic carbon assimilation reflects photosynthesis activity which is
mainly controlled by photoperiod and radiation (Descals et al., 2022; Y. Zhang et al., 2020). The initial stage of
leaf senescence is a decrease in photosynthetic activity due to decreasing incoming radiation (Chen et al., 2021; Y.
Zhang et al., 2020). SIF, as a direct and effective proxy for photosynthesis by way of complex mechanisms of
energy dissipation (Porcar‐Castell et al., 2014; Y. G. Zhang et al., 2014), decreased the earliest in autumn (Joiner
et al., 2011), followed by leaf nutrient relocation and chlorophyll degradation (Marien et al., 2019), when leaves

Table 1
Comparison Between Autumn Phenology Extracted From Satellite‐Based Solar‐Induced Chlorophyll Fluorescence,
Chlorophyll/Carotenoid Index, Enhanced Vegetation Index, Normalized Difference Vegetation Index, and Field
Observations

Field observations Statistics SIF‐based EOS CCI‐based EOS EVI‐based EOS NDVI‐based EOS

GPP‐based EOS ME (days) −1.36 13.13 17.32 25.79

MAE (days) 6.98 13.42 17.35 25.79

RMSE (days) 9.32 16.81 20.56 28.26

R2 0.331 0.263 0.199 0.250

Colored leaves ME (days) − 19.30 − 2.41 1.07 16.37

MAE (days) 20.11 13.36 12.70 19.58

RMSE (days) 25.15 16.19 15.80 24.06

R2 0.216 0.220 0.257 0.155

Falling leaves ME (days) − 28.96 − 12.94 − 9.45 3.66
MAE (days) 30.02 17.10 16.27 11.30
RMSE (days) 33.59 19.84 19.32 15.44
R2 0.077 0.248 0.131 0.277

Note. Statistics of the comparisons (mean error [ME], mean absolute error [MAE], root mean square error [RMSE], and
R‐square [R2]) are reported. Values in bold highlight the highest R2 and smallest deviation from satellite‐based SIF, CCI, EVI,
NDVI, and field observations.
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undergo to recover valuable elements contained in their pigments (Estiarte et al., 2023). Thus, CCI decreased a
little later than SIF as it tracks chlorophyll decomposition (Gamon et al., 2016). The chlorophyll degradation
progressively leads to the leaf coloration as other non‐green pigments, such as carotenoids, become visible (Croft
& Chen, 2018; Feild et al., 2001). CCI can also track leaf coloration since carotenoids are involved. In fact, CCI is
the index more correlated to leaf coloration after EVI, as chlorophyll degradation and leaf coloration are inter-
related, resulting in similar performance between CCI and EVI in autumn phenology derivation. At the end of the
leaf senescence process, nutrient transport through the phloem is stopped by the formation of an abscission and
separation layer in the petiole, which leads to leaf coloration, and finally leaf fall (Fracheboud et al., 2009;
Keskitalo et al., 2005; Ruttink et al., 2007).

4.2. Limitations, Uncertainties, and Future Outlook

The SIF time series utilized in this study were obtained from the spatially and temporally continuous GOSIF
product, which was generated by a predictive SIFmodel using theMODIS EVI andmeteorological reanalysis data
as inputs. This ensured that the autumn phenology could be generated by continuous SIF time series, but the un-
certainty in SIF estimates from the predictive model and data sources (e.g., the meteorological reanalysis data,
biases in EVI) would inevitably introduce to the phenological extraction. Furthermore, it should be noted that the
autumn phenology in this study was derived from 0.05° and 8‐day composite satellite data, whereas ground ob-
servations relied on daily point‐basedmeasurements. Although studied sites are representative for each station and
the surrounding area, mismatches between satellite‐based phenology and ground‐based observations at both

Figure 2. Relationship between satellite proxies and climatic factors at all available fluxnet sites in the second half of the year. Time series of multi‐year mean (dots) and
standard error (shaded area) values of flux‐tower‐based Gross Primary Production (GPP) and satellite‐based Solar‐Induced chlorophyll Fluorescence (SIF),
Chlorophyll/Carotenoid Index (CCI), Enhanced Vegetation Index (EVI), and Normalized Difference Vegetation Index (NDVI) (a), and solar radiation and temperature
(b). Partial correlation coefficients between GPP, SIF, CCI, EVI, and NDVI with solar radiation and temperature (c).
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temporal and spatial scales are unavoidable (Helman, 2018; X. Zhang et al., 2006). Future applications of satellite
proxies (especially for satellite SIF) in phenological studies will further benefit from the next generation of sensor
development with higher spatial and/or temporal resolutions. (e.g., downscaling the current SIF products,
launching new satellites, etc.). Besides, another limitation of this study is thatwe could not directly validatewhether
CCI captures the timing of chlorophyll degradation because of the lack of such fieldmeasurements.More dedicated
experiments integrating field campaigns and satellite observations are warranted to further validate our hypothesis
with in situ time series of leaf photosynthetic rate, chlorophyll content and leaf area index. Moreover, the per-
formances of different satellite proxies in different ecosystem types (e.g., grasslands or croplands) should be further
explored.

This study revealed the sequence of the autumn phenology extracted from different satellite proxies, that is,
SIF < CCI < EVI < NDVI, and explained this interesting phenomenon in terms of leaf senescence timetable
captured by them. The capacity of CCI to capture chlorophyll degradation has been demonstrated by in situ
measurements (Gamon et al., 2016; Wong et al., 2019). This study, furthermore, provided empirical evidence that
SIF, EVI and NDVI also capture complementary stages of the progressive leaf senescence process. Specifically,
the autumn phenology extracted from SIF corresponds with the attenuation of photosynthetic activity, while EVI
is prone to track leaf color changes from greenness perspective (X. Zhang, 2015), and NDVI is more sensitive to
structural changes such as leaf fall (Hashemi & Chai, 2013; Nagai et al., 2010). This indicated that the neglect of
the specific definition of different satellite proxies is one of the main reasons resulting in diverse satellite‐derived
autumn phenology. Therefore, it is suggested that the definition of the phenology metrics derived from different
satellite proxies should be carefully considered for a correct interpretation of autumn phenology. In addition, we
found that the divergent autumn phenology derived by different satellite proxies was contributed to their different
responses to asynchronous solar radiation and temperature in autumn. The partial correlation analysis and
sensitivity test between autumn phenology and environmental cues further supported this foliar senescence
timetable. It should be noticed that autumn phenology would also be affected by extreme climate events with
uncertainty (e.g., heat, flood, and drought) (Li & Xiao, 2020; Yoshida et al., 2015). Future work should take into
account that autumn phenology derived by different satellite proxies have different responses to climate/envi-
ronmental factors under different levels of stress, to better promote satellite‐based autumn phenology applications
in different usage scenarios.

5. Conclusion
This study compared the autumn phenology extracted from satellite‐based SIF, CCI, EVI, and NDVI in deciduous
forests with ground observations, and explored the underlying mechanisms by analyzing their responses to cli-
matic conditions in autumn. We highlighted that leaf senescence over deciduous forests is a progressive process
following a specific timetable, and autumn phenology derived from SIF, CCI, EVI, and NDVI successfully
capture the sequential attenuation of photosynthetic activity, chlorophyll degradation, leaf coloration, and leaf
fall, respectively. These findings help to improve our interpretation of land surface phenology. We suggest that
the definition of the phenology metrics derived from different satellite proxies should be carefully considered for
a correct interpretation of autumn phenology, to better promote satellite‐based autumn phenology applications in
different usage scenarios.

Data Availability Statement
The pre‐processed data is openly available (C. Wang, 2024). The data includes phenological observations at
selected NPN sites, GPP observations with an interval of 8 days at selected Fluxnet sites, climate reanalysis
data and satellite‐extracted vegetation proxies (i.e., SIF, CCI, EVI, and NDVI) at an 8‐day interval across those
sites.
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