
This is the accepted version of the journal article:

Bertold, Mariën; Papadimitriou, Dimitri; Kotilainen, Titta; [et al.]. «Timing
leaf senescence : a generalized additive models for location, scale and shape
approach». Agricultural and Forest Meteorology, Vol. 315 (March 2022), art.
108823. DOI 10.1016/j.agrformet.2022.108823

This version is available at https://ddd.uab.cat/record/299934

under the terms of the license

https://ddd.uab.cat/record/299934


1 
 

Timing leaf senescence: a generalized 1 

additive models for location, scale and 2 

shape approach. 3 

 4 

Bertold Mariën1,*, Dimitri Papadimitriou2, Titta Kotilainen3, Paolo Zuccarini4, Inge Dox1, Melanie Verlinden1, Thilo 5 
Heinecke1, Joachim Mariën5, Patrick Willems6, Mieke Decoster1, Aina Gascó1, Holger Lange7, Josep Peñuelas5,8, and 6 
Matteo Campioli1 7 

1PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium 8 
2IDLab (Internet Data Lab), Department of Computer Science, University of Antwerp, 2000 Antwerp, Belgium 9 
3Luke (Natural Resources Institute Finland), 20520 Turku, Finland 10 
4Centre for Research on Ecology and Forestry Applications (CREAF), 08290 Cerdanyola del Vallès, Spain 11 
5EVECO (Evolutionary Ecology Group), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium 12 
6Hydraulics and Geotechnics Section, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001, Leuven, Belgium 13 
7Division of Environment and Natural Resources, Department of Biogeochemistry and Soil Quality, Norwegian Institute of Bioeconomy Research, 14 
1433 Ås, Norway 15 
8Global Ecology Unit CREAF-CSIC-UAB, CSIC, 08193 Bellaterra, Spain 16 
 17 
 18 
 19 
 20 

*Author for correspondence: 21 
Bertold Mariën 22 
Tel:  032659333 23 
Email: bertold.marien@uantwerpen.be 24 
 25 

Total word count 

(excluding summary, 

author contributions, 

references and 

legends: 

8424 No. of figures: 4 

Summary: 300 No. of Tables 3 

Introduction: 1760 No. of Supporting 

Information files: 

2 

Materials and 

Methods: 

3507   

Results 1403   

Discussion: 1527   

Conclusion: 171   

Acknowledgements: 46   

Author 

Contributions: 

85   

Funding: 21   

  26 



2 
 

Summary  27 

Accurate estimations of phenophases in deciduous trees are important to understanding forest 28 

ecosystems and their feedback on the climate. In particular, the timing of leaf senescence is of 29 

fundamental importance to trees’ nutrient stoichiometry and drought tolerance and therefore to their 30 

vigor and fecundity. Nevertheless, there is no integrated view on the significance, and direction, of 31 

seasonal trends in leaf senescence, especially for years characterized by extreme weather events. 32 

Difficulties in the acquisition and analyses of hierarchical data can account for this.  33 

Our study advances science by collecting four years of chlorophyll content index (CCI) measurements in 34 

thirty-eight individuals of four deciduous tree species (Betula pendula, Fagus sylvatica, Populus tremula 35 

and Quercus robur) in Belgium, Norway and Spain, and analyzing these data using generalized additive 36 

models for location, scale and shape. As a result, (I) the phenological strategy and seasonal trend of leaf 37 

senescence in these tree species could be clarified for exceptionally dry and warm years, and (III) the 38 

average temperature, global radiation, and vapor pressure deficit could be established as main drivers 39 

behind the variation in the timing of the senescence transition date.  40 

Our results show that the onset of the re-organization phase in the leaf senescence, which we 41 

approximated and defined as local minima in the second derivative of a CCI graph, was in all species mainly 42 

negatively affected by the average temperature, global radiation and vapor pressure deficit. All together 43 

the variables explained 89% to 98% of the variability in the leaf senescence timing. An additional finding 44 

is that the generalized beta type 2 and generalized gamma distributions are well suited to model the 45 

chlorophyll content index, while the senescence transition date can be modeled using the normal-46 

exponential-student-t, generalized gamma and zero-inflated Box-Cox Cole and Green distributions for 47 

beech, oak and birch, and poplar, respectively.  48 

 49 
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1. Introduction 61 

1.1. What is leaf senescence? 62 

To survive changing environmental conditions and avoid potential trade-off effects, trees constantly have 63 

to optimize their nutrient stoichiometry and water balance (Keskitalo et al., 2005; Munne-Bosch and 64 

Alegre, 2004). For example, during tree growth, trees might be unable to compensate fluctuations in the 65 

soil’s nutrients using their regular mechanisms (i.e. increasing the expression of root transporter genes, 66 

root growth and branching, or root organic compound exudation) and need to remobilize nutrients from 67 

reserves (Amtmann and Armengaud, 2009; Dakora and Phillips, 2002; Gruber et al., 2013; Maillard et al., 68 

2015).  69 

A significant part of the tree’s nutrients is present in the leaves and can be remobilized during the process 70 

of leaf senescence, a highly coordinated developmental stage of the cells with leaf death as a consequence 71 

(Hörtensteiner and Feller, 2002; Keskitalo et al., 2005; Medawar, 1957). It is evident that changes in the 72 

tree crown through leaf senescence will affect the tree’s water balance and capacity to uptake carbon. 73 

Alternatively, leaf senescence can be triggered to correct the water balance, if the tree fails to compensate 74 

the water deficit via stomata regulation, with nutrient remobilization as co-occurring effect (Matos et al., 75 

2020; Munne-Bosch and Alegre, 2004). Under drought, premature leaf senescence might occur in certain 76 

species (i.e. ‘drought-deciduous’ species; e.g. Betula pendula or Quercus robur) to avoid nutrient losses 77 

through an unanticipated abscission of green leaves, as it occurs in other species (i.e. ‘drought-evergreen' 78 

species; e.g. Fagus sylvatica) (Estiarte and Penuelas, 2015; González, 2012; Harvey and Driessche, 2011; 79 

Manzoni et al., 2015; Marchin et al., 2010; Matos et al., 2020; Sohrt et al., 2018; Vitasse et al., 2011; 80 

Wendler and Millard, 1996). 81 

The main drivers of leaf senescence are the photoperiod (through phytochrome), the light intensity and 82 

spectral quality (through photo-oxidative stress), cold temperatures (through an increasing electrolyte 83 

leakage and decreasing antioxidant metabolism), warm temperatures (through a reduction in the 84 

carboxylation and an increased respiration) and drought stress (through a reduction in the water potential 85 

of the roots cells and increase in the hormones abscisic acid and ethylene) (Estrella and Menzel, 2006; 86 

Feller and Fischer, 1994; Lang et al., 2019; Matos et al., 2020). In all cases, the senescence process is 87 

guided by increased concentrations of reactive oxygen species (ROS) controlled by antioxidant levels (Jajic 88 

et al., 2015; Juvany et al., 2013; Munne-Bosch and Alegre, 2004). During premature senescence, immature 89 

leaves will initiate senescence later than mature leaves, as the former have higher concentrations of 90 

cytokines and auxins (i.e. senescence delaying hormones) than the latter, and are less sensitive to 91 

ethylene (Diamantoglou and Kull, 1988; Marchin et al., 2010; Matos et al., 2020).  92 

The variety in drivers that affect the timing and rate of senescence is reflected in different leaf senescence 93 

strategies of deciduous species (Manzoni et al., 2015). For example, ‘drought-evergreen’ species will only 94 

initiate leaf senescence in autumn, typically as a result of photoperiodic changes (Vitasse et al., 2009). 95 

During a drought, these species can lose carbon and nutrients through respiration or hydraulic failure with 96 

the abscission of green leaves as a consequence. Therefore, they might become outcompeted when 97 

droughts occur more frequently and persist longer (Crabbe et al., 2016; IPCC, 2014; Manzoni et al., 2015). 98 

Alternatively, ‘drought-deciduous’ species will shed their leaves gradually, or rapidly, when the carbon 99 

balance in the leaves becomes negative and the leaf carbon reserves are depleted. When the 100 

circumstances improve, ‘drought-deciduous’ species might develop a new leaf flush to rebalance the 101 

trade-off between the carbon uptake and the nutrient cost of making new leaves, and as long as the 102 
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photosynthesis surpasses the respiration (Manzoni et al., 2015). Some plant genera (e.g. Alnus), 103 

associated with nitrogen-fixing bacteria, might simply desiccate green leaves without initiating 104 

senescence (Gill et al., 2015; Keskitalo et al., 2005). Furthermore, the interaction among different 105 

environmental stressors might also affect the timing of the leaf senescence and explain its variance within 106 

one or multiple individuals (Archetti et al., 2013; Delpierre et al., 2009; Gressler et al., 2015; Liu et al., 107 

2020; Panchen et al., 2015). 108 

The onset of leaf senescence in ‘drought-deciduous’ species can occur at any time, while it is 109 

conservatively timed in drought-evergreen species. In addition, the rate and duration of premature and 110 

autumn leaf senescence can also differ among species and years, and leaves can abscise without initiating 111 

or completing leaf senescence (Primka Iv and Smith, 2019). Therefore, the timing of leaf senescence, as 112 

opposed to the timing of the leaf abscission, is described best on a species-specific basis and in regard to 113 

the actually occurring nutrient remobilization (Gill et al., 2015; Munné-Bosch, 2015; Panchen et al., 2015; 114 

Xie et al., 2018a). For example, studies found that Quercus robur can efficiently remobilize nutrients (e.g. 115 

N, P) and microelements (e.g. Ni, B), can undergo premature senescence, and has strong nutrient sinks 116 

(e.g. reproductive tissue and sinks that are mostly root-based, instead of bark-based) (Maillard et al., 117 

2015; Villar-Salvador et al., 2015). Studies also noted that a significant decline in chlorophyll is a good 118 

indicator of the onset of leaf senescence because the detoxification of chlorophyll always immediately 119 

precedes the dismantling of nutrient-rich macromolecules (e.g. rubisco, RNA, et cet.) (Aerts, 1996; Estiarte 120 

and Penuelas, 2015; Etienne et al., 2018; Feller and Fischer, 1994; Giraldo et al., 2013; Hörtensteiner and 121 

Feller, 2002; Maillard et al., 2015; Marchin et al., 2010; Matile, 2000). 122 

1.2. Leaf senescence on the ecological scale? 123 

Arguably the timing of the onset of leaf senescence is the moment when the senescence-associated genes 124 

(SAGs) are expressed (Andersson et al., 2004; Gepstein et al., 2003; Munne-Bosch and Alegre, 2004; 125 

Schippers et al., 2015). Unfortunately, observing the expression of SAGs on an ecological scale is 126 

unattainable. Since leaf senescence consists of multiple steps and requires an integrative and multi-scale 127 

analysis, assessing the best proxy for detecting temporal trends in leaf senescence therefore becomes of 128 

crucial importance (Bresson et al., 2017; Gill et al., 2015; Keskitalo et al., 2005). Examples in the literature, 129 

of such proxies include visual coloration assessments, chlorophyll measurements, remote sensing 130 

observations of standard indices and coloration analysis through phenocams or drones (Maleki et al., 131 

2020; Piao et al., 2019). Portillo-Estrada et al. (2020) even showed that the onset of senescence 132 

corresponded with an outburst in oxygenated volatile organic compounds (VOCs), suggesting the use of 133 

VOCs to assess the onset of senescence on a regional scale. Because studies use different definitions of 134 

leaf senescence, different proxies, different trend estimation or filtering methods, and even different 135 

indicators for phenological transition dates, the reproducibility, comparability and interpretation of 136 

results on leaf senescence is also hampered (Gallinat et al., 2015; Gill et al., 2015; Gu et al., 2009; Panchen 137 

et al., 2015).  138 

The use of different trend estimation methods and different indictors for phenological transition dates 139 

should be based on theoretical grounds and good statistical practices (i.e. where the model assumptions 140 

are met and ideally the start, rate and end of the leaf senescence process are described separately) 141 

(Gallinat et al., 2015; Houlahan et al., 2017; Hudson and Keatley, 2010). Especially because the temporal 142 

dynamics of ecological processes are inherently complex (Ryo et al., 2019). For example, the trend 143 

estimation methods in the literature range from the fitting of double-logistic functions to  complex 144 
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network-based modelling (Alberton et al., 2019; Bush et al., 2017; Diao, 2019; Menzel et al., 2008; Vander 145 

Mijnsbrugge et al., 2016; Xu et al., 2014; Zhang and Goldberg, 2011; Zhang et al., 2003; Zhao et al., 2019). 146 

Likewise, phenological transition dates are studied using a variety of methods (e.g. threshold values, 147 

spectral signature changes, etc.) (Diao, 2019; Gill et al., 2015; Hudson and Keatley, 2010; Keenan and 148 

Richardson, 2015; Lim et al., 2018; Verbesselt et al., 2010; Wingate et al., 2015; Xie et al., 2018b; Xie and 149 

Wilson, 2020; Zhang et al., 2003).  150 

Zhao et al. (2019) deduced that the detection of phenological transition dates is inherently linked to the 151 

accuracy of the model trend and seasonality, and that many methods have additional pitfalls (e.g. the 152 

inadequate handling of non-linear trends, too restrictive model assumptions, model misspecification, data 153 

noise and usability limitations). Their approach (i.e. ensemble learning) is especially useful for inference 154 

but less suited for exploring the drivers of a process and predicting. We therefore use here generalized 155 

additive models for location, scale and shape (GAMLSS) to assess the temporal trend, while we use local 156 

minima in the second derivative of partial effect functions as phenological transition dates. These should 157 

be interpreted as a proxy for the onset of the ‘re-organization phase’ of senescence, a phase defined by 158 

large changes inside the leaf cells (e.g. chlorophyll degradation, loss of cellular integrity, decrease in 159 

photosynthetic activity, et cet.) (Munne-Bosch and Alegre, 2004). 160 

1.3. Research questions and hypotheses 161 

This study aims (I) to clarify the phenological strategy and seasonal trend of leaf senescence in four 162 

common deciduous tree species (Fagus sylvatica, Quercus robur, Betula pendula and Populus tremula) 163 

during exceptionally warm and dry years, and (II) to determine the environmental drivers of the leaf 164 

senescence timing. The link between the estimation of trends, seasonality and phenological transition 165 

dates was addressed, while using GAMLSS to assess autumn phenology (Akanztiliotou et al., 2002; Rigby 166 

and Stasinopoulos, 2001; Rigby and Stasinopoulos, 2005; Zhao et al., 2019).  167 

We expected no inter-annual trend in the transition dates in Fagus sylvatica because it is assumed to be 168 

a ‘drought-evergreen species’ of which the timing of its leaf senescence is determined by the photoperiod 169 

and cold temperatures (Matos et al., 2020; Vitasse et al., 2013; Vitasse et al., 2009). Likewise, no trend 170 

was expected in the transition dates in Populus tremula because studies suggest that only the photoperiod 171 

and light-derived factors can explain its stable onset of senescence (Brelsford et al., 2019a; Brelsford et 172 

al., 2019b; Fracheboud et al., 2009; Keskitalo et al., 2005; Michelson et al., 2018). In contrast, as the study 173 

period (2017 – 2020) was warm and extremely dry, we expected advanced transition dates in Betula 174 

pendula and Quercus robur because they are ‘drought-deciduous’ species that will initiate premature 175 

senescence when exposed to drought stress (Estrella and Menzel, 2006; Maillard et al., 2015; Wendler 176 

and Millard, 1996). Additionally, the growth pattern between Fagus sylvatica (closed canopy with one leaf 177 

flush and senescence starting in the sun-exposed leaves), Populus tremula (open canopy with one leaf 178 

flush at a mature age), Quercus robur (closed canopy with the potential for multiple leaf flushes and 179 

senescence starting in the sun-exposed leaves) and Betula pendula (open canopy with continuous leaf 180 

flushing and senescence starting in the inner parts of the canopy), might be reflected in the timing of the 181 

transition dates (Koike, 1990).  182 
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2. Methods 183 

2.1. Description of the sites  184 

From mid-July to late November, for each year within the study period, the chlorophyll content index (CCI) 185 

was measured for leaves of trees in Belgium (from 2017 to 2020), Norway (from 2017 to 2019) and Spain 186 

(from 2018 to 2020). We chose these countries because Belgium, Norway and Spain approximately cover 187 

the center, and Northern and Southern edge of our study species’ spatial distribution in Europe. In 188 

Belgium, we measured ten leaves of twenty mature trees in three forests; the Klein Schietveld (KS), Park 189 

of Brasschaat (PB) and Fortress of Borsbeek (BB). Likewise, in Spain, we measured ten leaves of nine trees 190 

in three forests; Fogars de Montclús (FM), Sant Joan de les Abadesses (SJA) and El Puig (EP). In Norway, 191 

we only measured six leaves of nine trees in a Norwegian forest on the farm of Hoxmark (NO). 192 

 193 

Our five Belgian stands (i.e. beech KS, birch KS, beech PB, oak PB and poplar BB) cover an area of ca 0.5 to 194 

3 ha and are all monospecific and homogeneous. The beech and oak trees (ca 60 – 70 and 60 – 120 years 195 

old, respectively) were planted but experienced little human management. The birch and poplar trees (ca 196 

50 – 60 and 20 - 50 years old, respectively) were naturally established. The soil in the BB (i.e. technozol; 197 

sandy loam) is disturbed and wet, while the soil in the KS and PB (i.e. podzol; sandy) is dry to moderately 198 

wet, less nutrient rich, and undisturbed (Mariën et al., 2019). The beech trees in Norway were part of a 199 

small stand (ca 0.05 ha) planted for educational activities ca 15 years before sampling at the Hoxmark  200 

Experimental Farm in Ås. The birch and oak trees (ca. 10 y old) have been spontaneously growing in the 201 

vicinity of the small beech stand. The soil has a thick humus top layer over a layer with a large amount of 202 

clay. The Spanish stands of beech FM and poplar EP are part of a large forested area, mainly covered by 203 

beech, within the Natural park of the Montseny Massif. The poplar trees at EP have been growing 204 

spontaneously on old agricultural land partly recolonized by forest ca 100 years ago. The soils in EP 205 

(leptozol; sandy with granite and granodiorite) and FM are similar (leptozol; sandy with leucogranite), 206 

although the soil in FM contains less organic matter. The Betula trees of SJA are in the park of Sant Joan 207 

de les Abadesses (leptozol; sandy). They were scattered individuals on a pasture, remaining after a clear-208 

cut removing a large birch stand ca. 50 years ago. In Spain, the poplars are estimated to be ca 20 – 40 209 

years old, while the beech and birch trees are estimated to be ca 50 – 100 years old. All individual trees 210 

were selected for dominance and vitality. 211 

Our study included four poplars (Populus tremula L.) in the BB,  four beeches (Fagus sylvatica L.) and four 212 

birches (Betula pendula Roth) in the KS, four oaks (Quercus robur L.) and four beeches in the PB, three 213 

beeches, three birches and three oaks in NO, four beeches in FM, three birches in SJA and two poplars in 214 

EP. Every two weeks from 2017 to 2019, and every week in 2020, we (or tree-climbers in Belgium) 215 

collected five sun-leaves and five shade-leaves from each tree in Belgium and Spain. In Norway, only three 216 

sun-leaves and three shade-leaves were collected from each tree. Subsequently, the CCI of these leaves 217 

was measured immediately using a chlorophyll content meter (CCM-200 plus, Opti-Sciences Inc., Hudson, 218 

NH, USA) measuring the ratio of the transmission of radiation from the red (653 nm) and near-infrared 219 

(931 nm) wavelengths emitted by a diode (Parry et al., 2014). The leaves from each tree were measured 220 

approximately on the same moment of the day; and using the same side of the leaf. Due to its curvilinear 221 

relationship, the CCI acts as a proxy for chlorophyll concentrations and senescence (Bresson et al., 2017; 222 

Michelson et al., 2018).  223 
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All analyses were done using R v.3.6.3. (R Core Team, 2020). R/dplyr was used for data handling, while 224 
R/ggplot2, R/grid, R/viridis and R/cowplot were used for visualization (Garnier, 2018; Wickham, 2009; 225 
Wickham et al., 2018; Wilke, 2019). 226 
 227 

2.2. GAMLSS 228 

2.2.1. Why use GAMLSS 229 

The assumptions of Generalized additive mixed models (GAMMs) were violated (see Text S1). For 230 

example, the residuals of the GAMMs were non-independent and identically distributed (i.i.d.), 231 

heteroscedastic and non-normal, while the data were likely modeled better using different family 232 

distributions, showed over-dispersion, were skewed with heavy tails, and showed bi-modality. A 233 

framework capable of addressing these issues is GAMLSS (Rigby and Stasinopoulos, 2005). 234 

GAMLSS were introduced to model data where the distribution of the response variable does not 235 
necessarily follows an exponential family distribution (e.g. data that is discrete, censored, heterogeneous, 236 
truncated, skewed or kurtotic, etc.) (Akanztiliotou et al., 2002; Rigby and Stasinopoulos, 2001; Rigby and 237 
Stasinopoulos, 2005). Unlike GAMMs, the GAMLSS inferential framework models not only the distribution 238 
parameter µ, but also the distribution parameters σ, ν and τ. These four distribution parameters 239 
correspond to the location, scale and shape of the response variable’s distribution and can generally be 240 
interpreted using the distribution’s moments (i.e. the mean, variance, skewness and kurtosis, 241 
respectively) (Stasinopoulos and Rigby, 2007). In practice, the semi-parametric GAMLSS framework can 242 
use many distribution families to model the response variable whilst providing not only information on 243 
changes in the mean but also on the variance, skewness and kurtosis (Rigby et al., 2019).  244 
 245 
Another advantage of the ‘complete distribution’ approach of GAMLSS, unlike quantile regressions, is that 246 

it offers tools for both rigorous testing of the parametric model assumptions and model selection 247 

(Voudouris et al., 2013). However, the effectiveness of GAMLSS depends largely on choices made by the 248 

user. For example, in GAMLSS, one has to decide the distribution of the response variable, the link 249 

functions for each parameter, the explanatory terms for each parameter and the amount of smoothing 250 

(Voudouris et al., 2013).  251 

2.2.2. The GAMLSS model 252 

GAMLSS can be written as: 253 

Yi ~ D(µi, σi, νi, τi)  254 

g1(µi) = η1 255 

g2(σi) = η2 256 

g3(νi) = η3 257 

g4(τi) = η4 258 

 259 

with Yi as the independent response variable observations for i = 1,…, n, observations, D as the distribution 260 

of the response variable and g being the monotonic link function relating the predictor η to the 261 

distribution parameters (µi, σi, νi, τi) (Rigby et al., 2019; Stasinopoulos and Rigby, 2007; Stasinopoulos et 262 

al., 2017; Stasinopoulos et al., 2018). 263 

To model the CCI as a function of its covariates, we used the gamlss and refit functions in R/gamlss (Rigby 264 

and Stasinopoulos, 2005). First, we used the lowest Akaike Information Criterion (AIC) values returned by 265 

the fitDist function in R/gamlss to select the best potential distributions. Then, we built several models with 266 



8 
 

different distributions and checked their parametric assumptions using the GAIC, plot and wp functions in 267 

R/gamlss. The GAIC function returns the generalized AIC values of the models. The plot function returns a 268 

summary comprising the mean, variance, coefficient of skewness, coefficient of kurtosis and Filliben 269 

correlation coefficient (Filliben, 1975). It also outputs four diagnostic plots of the normalized quantile 270 

residuals, which allow to test for homogeneity of variance and deviations of normality (Dunn and Smyth, 271 

1996; Stasinopoulos et al., 2018). In addition, the plot function gives the ACF and pACF plots to test for 272 

autocorrelation of the regression residuals. The wp function gives a wormplot (a detrended quantile-273 

quantile plot) and is used to test for skewness and kurtosis, or to ensure normality in the residuals 274 

whenever the plot of the residuals is within the two elliptic 95% pointwise confidence intervals (Buuren 275 

and Fredriks, 2001). We selected the most suited distributions based on the generalized R² of Nagelkerke 276 

(given by the Rsq function in R/gamlss), the normalized root mean square error (RMSE; given by the 277 

performance_RMSE function in R/performance) the model assumptions and the results on the fitDist 278 

function (Lüdecke et al., 2021; Nagelkerke, 1991).  We chose the generalized beta type 2 (GB2) distribution 279 

with default logarithmic link functions for our beech and poplar data, while we considered the generalized 280 

gamma (GG) distribution with default logarithmic and identity link functions for our birch and oak data 281 

(Harter, 1967; Lopatatzidis and Green, 2000; McDonald, 1984; McDonald, 1996; McDonald and Xu, 1995; 282 

Stasinopoulos et al., 2018). Both distributions are continuous distributions between 0 to +∞ and can be 283 

found in R/gamlss.dist (Stasinopoulos and Rigby, 2020). Observe that the GB2 and GG distributions have 284 

five and three parameters, respectively (Rigby et al., 2019). 285 

The hierarchical character of our data determined our choice for the ‘most suited’ model. For example, 286 

when identical values are observed in an additive term within a categorical independent variable (e.g. the 287 

same amount of precipitation per site), the additive term behaves as a constant term. The choice to 288 

characterize the dependency among observations of the same point predictors (tree individual or site) is 289 

not trivial. Therefore, together with constrains imposed by the link functions, autocorrelation and 290 

multimodality in the data, we decided to run a GAMLSS model for each species, year and site (Pregibon, 291 

1980). This method yields twenty-six simpler models in which the fixed covariates of the CCI were the leaf 292 

type (categorical with two levels), tree individual (categorical with four levels) and day of the year 293 

(continuous). In another six models, modeling the CCI of birch and oak in NO, the leaf type was not 294 

included as a covariate. A consequence of the separate models was that we sacrificed predictive power in 295 

favor of yearly trend estimation accuracy. To maximize the penalized log-likelihood and reach 296 

convergence, we used the default RS algorithm for fitting mean and dispersion additive models (Rigby and 297 

Stasinopoulos, 1996a; Rigby and Stasinopoulos, 1996b; Stasinopoulos et al., 2017). To reuse the 298 

smoothers of R/mgcv, we implemented the ga function from  R/gamlss.add as argument of the gamlss 299 

function (Stasinopoulos and Rigby, 2020; Wood, 2017; Wood, 2004; Wood, 2011; Zuur et al., 2007). The 300 

ga function hampered stepwise model selection and the extraction of results (the getSmo function was 301 

required to extract smoother information) but its usage reduced and increased the AIC and R² of the 302 

models, respectively. Within the ga argument, the fixed covariates were the leaf type (categorical with 303 

two levels) and day of the year (continuous). The latter covariate was smoothed using P-splines, while the 304 

dependency among observations of the same tree individual was incorporated outside the ga argument 305 

by using tree individual as random intercept. We chose P-splines because they are low rank smoothers 306 

that ease the selection of the optimal number and position of the knots, and because they are suitable 307 

for nonparametric and mixed modeling (Eilers et al., 2015; Eilers and Marx, 1996). We specified the 308 

sigma.fo, nu.fo and tau.fo arguments like we modeled the covariates for the mean and specified the usage 309 

of the restricted maximum likelihood (REML) in the ga argument. The REML argument was chosen as 310 
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smoothness selection method because it is preferred by literature and less prone to overfitting (Models 311 

S1 - S2) (Reiss and Ogden, 2009; Wood, 2011).   312 

The parametric assumptions of the models were ensured using R/gamlss’s summary, getSmo, plot, Rsq, 313 

and wp functions. The graphs were obtained using R/gamlss’s plot and term.plot functions. To evaluate the 314 

risk that a leaf has to present CCI values below a given threshold, we constructed partial quantile plots. 315 

These were constructed using R/gamlss’s getQuantile function and R/graphics curve function, and show the 316 

partial effect of the explanatory variable Day of the year on the quantiles. 317 

2.2.3. Smoother dynamics in GAMLSS  318 

2.2.3.1. The rate of change in the curvature  319 

To asses the rate of change in the leaf senescence progression, Zhang et al. (2003) suggested the use of 320 

the curvature (κ) in order to characterize the phenological transition date. This transition date 321 

corresponds to the time at which the curvature value decelerates most rapidly. Its decrease can be 322 

observed from the function’s graph as the time where its curvature changed the most. Zhang et al. (2003) 323 

suggested to consider a local minimum in the first derivative (i.e. rate of change) of the curvature κ’(t). To 324 

track the rate of variation in the curvature over time, one needs to approximate the signed curvature κ in 325 

the graph of a function y using the parametrized version of equation 1. 326 

Eq. 1 327 

𝐱 = 𝒕 328 
𝐲 = 𝒇(𝒙) 329 

𝛋 =
𝒚′′(𝒙)

(𝟏 + (𝒚′(𝒙))
𝟐

)
𝟑
𝟐

 330 

 331 

With x as value for the explanatory variable, y as the function obtained by the penalized smoother in a 332 

gamlss model and κ as its curvature. 333 

The signed curvature can be approximated using the second derivative, if the first derivative (i.e. slope) 334 
of the function is small (Eq. 2). In this case, when y is sufficiently smooth and y’ is not bigger than y”. 335 
 336 
Eq. 2 337 

𝛋 = 𝒚′′(𝟏 +  𝑶(𝒚′𝟐
)) 338 

 339 

with κ as the curvature of the graph of the function y obtained by the penalized smoother in the gamlss 340 

model, and O is the Bachmann-Landau symbol. 341 

2.2.3.2. The second derivative of a function 342 

To find the transition dates of interest using the functions in R/gamlss, we first ran the getPEF function 343 

which returned the partial effect that the explanatory variable day of the year had on the predictor. 344 

Subsequently, we used the pef function to calculate the elasticity (i.e. derivatives) of the partial effect 345 

function. Then, we could calculate our transition date of interest: a local minima in the second derivative 346 

(i.e. the moment when the CCI decline accelerated most rapidly; in other words, when the curvature of 347 

the graph changed the most). To assess the confidence on this date, we incorporated its calculation in a 348 

resampling procedure iterated 200 times. The number of basis functions (k) in the P-splines was set to five 349 
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or six. The results were plotted as density plots using the geom_density_ridges2 argument in R/ggridges 350 

(Wilke, 2020).  351 

2.2.4. Drivers of the variation in the transition date 352 

We aimed to determine which environmental variables drove the variation in the transition dates. The 353 

selected candidates were the daily average temperature, global radiation, precipitation, vapor pressure 354 

deficit and year (i.e. year represents also all other environmental factors that change throughout time; 355 

e.g. N deposition). Accounting for the nature of the phytochrome system, we opted to include the global 356 

radiation, rather than the day length, as predictor for the transition dates (Legris et al., 2019). The 357 

relationship between the sum of the global radiation and the day length is strong, although not the same 358 

for each year (Fig. S1 – S2). For Belgium, the meteorological data were derived from half-hourly 359 

measurements done at the meteorological station in Brasschaat (21 m.a.s.l.; courtesy from INBO and 360 

ICOS; Fig. S3; see Mariën et al. (2021)). When necessary, the data were gap-filled using data from the 361 

Dutch meteorological station in Woensdrecht (14 m.a.s.l). Meteorological data from Norway and Spain 362 

were measured at the meteorological stations in Ås (92 m.a.s.l.; Fig. S4), and Sant Pau de Segúries (852 363 

m.a.s.l; Fig. S5) and Viladrau (953 m.a.s.l; Fig. S6), respectively. All meteorological data from the 364 

Netherlands, Norway and Spain were taken from the Dutch (KNMI, 2021), Norwegian (MET Norway, 2021) 365 

and Catalan (MeteoCat, 2021) Meteorological Institutes. 366 

The vapor pressure deficit was calculated following the equations in Buck (1981) (Eq. 3). 367 

Eq. 3 368 

𝒆𝟎 = 𝟔𝟏𝟑. 𝟕𝟓 ×  𝒆
(
(𝟏𝟕.𝟓𝟎𝟐 × 𝑻)
(𝟐𝟒𝟎.𝟗𝟕 + 𝑻)

)
  369 

𝒆 = (
𝑹𝑯

𝟏𝟎𝟎
) ×  𝒆𝟎 370 

𝑽𝑷𝑫 = 𝒆𝟎 – 𝒆 371 

 372 

with e0 as the saturation vapor pressure (in Pa), T as the temperature (in °C), e as the actual vapor pressure 373 
deficit (in Pa), RH as the relative humidity (in %) and VPD as the vapor pressure deficit (in Pa). 374 
 375 
To indicate the drought stress for the hydrological years (i.e. from the 1st of April to the 31st of March) 376 
2017 to 2021, we computed the daily rainfall deficit using solar radiation, wind speed, temperature, 377 
relative humidity and precipitation data from the meteorological station in Ukkel (Fig. S7). We first 378 
computed the potential evapotranspiration using the Bultot et al. (1983) method, which is similar to 379 
Penman (1948)’s method but has parameters calibrated specifically for the local conditions (Baguis et al., 380 
2010). Subsequently, we derived the daily rainfall deficit (I) per hydrological year and (II) using continuous 381 
computation by accumulating the daily potential evapotranspiration minus the daily sum of the 382 
precipitation. Unlike for the rainfall deficit starting from a zero deficit at the start of the hydrological year 383 
(i.e. the first of April), we accounted in the calculation of the continuously computed rainfall deficit for 384 
the hydrological fraction in wet periods that does not contribute to building up ground water reserves. As 385 
such, we can account for potential effects of droughts in successive years. Long-term (i.e. since 1898) daily 386 
precipitation and potential evapotranspiration data are available at the station of Ukkel. The data for the 387 
period 1901 - 2000 was considered here as the reference period for the long-term rainfall deficit statistics 388 
(Mariën et al., 2021).  389 
 390 
To combine the half-hourly Belgian meteorological data with our transition dates, we averaged the 391 
temperature and vapor pressure deficit, summed the precipitation and global radiation, and used only 392 
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vapor pressure deficit and global radiation data between 7 a.m. and 7 p.m. (to avoid negative values) for 393 
each day. 394 
 395 
To assess the relevance of the potential drivers behind the variation in the transition dates in Belgium, we 396 
used three methods for each species. First, we made correlation matrices using the rcorr and corrplot 397 
functions in R/Hmisc and R/corrplot, respectively (Harrel Jr, 2020; Wei and Simko, 2017). These provide 398 
Pearson’s correlation coefficient and indicate which explanatory variables will not influence the variation 399 
in the transition dates (Friendly, 2002; Murdoch and Chow, 1996). Then, we ran Random Forest models 400 
to determine which explanatory variable explains most variation (i.e. R²) in the transition dates. The 401 
Random Forests, an ensemble learning method that classifies multiple regression trees and returns the 402 
average regression, were built by first splitting the data in a training and a validation dataset using R’s 403 
floor and sample functions. Subsequently, the percentage increase in the mean square error and the node 404 
purity of the predictions was calculated using the randomForest function in R/randomForest (Breiman, 2001; 405 
Liaw and Wiener, 2002). Finally, to automatically select the ‘significant’ drivers behind the transition 406 
dates, we used multivariate adaptive regression splines (MARS) to perform enhanced adaptive (non-407 
parametric) regressions through hinges (EARTH) (Friedman, 1991; Stasinopoulos et al., 2017). EARTH uses 408 
a form of piecewise linear regressions, which capture the non-linear relationships in the data, to select 409 
the most significant explanatory variables in a similar manner to step functions. Hinge functions first 410 
create kinks or points were linear regressions intersect. These are then continuously assessed using a 411 
generalized cross-validation procedure and pruned until an optimal number is established based on 412 
changes in the R² that are less than 0.001 (Boehmke and Greenwell, 2020). To implement the MARS 413 
algorithm using the earth function in R/earth as an argument in the gamlss function, we required 414 
R/gamlss.add2‘s interface in the GAMLSS framework (Milborrow, 2020; Stasinopoulos et al., 2017; 415 
Stasinopoulos, 2020). Note that R/gamlss.add2 is not openly available and its usage is courtesy of the author.  416 
 417 
To model the transition dates as a function of its covariates, we constructed a GAMLSS model for each 418 
species. We determined the most suitable distribution for the response variable of each species using the 419 
lowest AIC value returned by the FitDist function and the lowest Kullback-Leibler divergence. The latter 420 
performs as a proxy for the information loss that occurs when one describes a real dataset using a 421 
theoretical distribution and is returned by the KLD function in R/LaplacesDemon (Statisticat, 2020). However, 422 
the lack of data hampered the use of these functions, forcing us to fall back on diagnostic plots to assess 423 
the most suitable distribution for the response variable in a trial-and-error fashion. We selected the 424 
normal-exponential-student-t (NET) distribution with default identity and logarithmic link functions for 425 
beech, the GG distribution with default logarithmic and identity link functions for oak and birch, and the 426 
zero-inflated Box-Cox Cole and Green (BCCGo) distribution with default logarithmic and identity link 427 
functions for poplar (Cole and Green, 1992; Harter, 1967; Lopatatzidis and Green, 2000; Rigby and 428 
Stasinopoulos, 1994). The NET and BCCGo distributions are both continuous distributions where the 429 
former can have values between -∞ to +∞ and the latter between 0 to +∞. Both distributions are found 430 
in R/gamlss.dist (Stasinopoulos and Rigby, 2020). The NET distribution has four parameters with fixed shape 431 
parameters, while the BCCGo distribution has three parameters (Rigby et al., 2019). For simplicity and to 432 
exploit the automatic variable selection, we only specified the MARS algorithm in the µ parameter of the 433 
model to allow the fitting of smooth non-linear functions based on the continuous explanatory variables 434 
year, average temperature, average vapor pressure deficit, global radiation and precipitation. No 435 
interactions were considered, while the default RS algorithm was used (Model S3 – S5) (Rigby and 436 
Stasinopoulos, 1996a; Rigby and Stasinopoulos, 1996b; Stasinopoulos et al., 2017). Plots of the results 437 
were retrieved using R/gamlss’s getSmo function and R/earth’s plotmo function. For comparison, we ran 438 
each model again using the resulting significant explanatory variables as linear predictor variables which 439 
we also specified in the sigma.fo and nu.fo arguments when possible (Models S6 – S8). 440 



12 
 

3. Results 441 

3.1. Modeling the chlorophyll content index trend 442 

The diagnostic plots for beech and poplar (Model S1), and oak and  birch (Model S2) showed that the 443 

normalized quantile residuals of the GAMLSS models did not violate any prior assumptions, suggesting 444 

that the CCI was adequately modeled using the GB2 and GG distributions (Fig. S8 – S24). However, the CCI 445 

was better modeled for beech (using the GB2 distribution) than oak, birch and poplar (using the GG and 446 

GB2 distributions) for two reasons. First, the width of the confidence intervals and the quantile functions 447 

in the regression terms and partial quantile plots, respectively, of the GAMLSS models for oak, birch and 448 

poplar was larger in some years than those of the GAMLSS models for beech (Fig. S25 – S36). Second, the 449 

R² of Nagelkerke of the GAMLSS models for beech ranged generally higher (from 0.66 to 0.92) than the R² 450 

of Nagelkerke of the GAMLSS models for oak and birch (from 0.29 to 0.89; Table S1). In general, the fitted 451 

GAMLSS models for beech also had a lower global deviance and AIC value, and more degrees of freedom.  452 

Note that the GB2 and GG distributions were chosen here as the best quantitative distributions with a 453 

bias towards particular years. They were not necessarily the most suitable distributions to model the CCI 454 

at a particular year, but they were the most suitable distributions for modeling the CCI of a given species 455 

during all years.  456 

3.2. Characterizing the transition date  457 

The CCI of the trees was high in summer and rapidly declined in autumn (Fig. 2). Its decline started first in 458 

oak and was followed by poplar, birch and beech, respectively. The standard errors on the average CCI 459 

were consistently low. 460 

Despite the simple resampling approach, the histograms and density plots of the transition dates reflect 461 

each species phenological strategy of leaf senescence (Fig. 3; Table 1). For example, the beech trees in 462 

Belgium, Norway and Spain all show a stable timing in their transition dates centered around the third, 463 

first and second week of October, respectively. There are exceptions, for example: the beech trees of the 464 

KS in 2018 and the beech trees of NO in 2017. The former shows a much earlier and very small peak in the 465 

transition dates around the end of July, while the latter show transition dates centered around the fourth 466 

week of September. Likewise, in 2018 and 2019, there are earlier and very small peaks in the transition 467 

dates around the end of July in the beech trees in FM. In 2019 and 2020, in the beech trees in FM, one 468 

can also observe slightly bigger peaks in the transition dates around one to half a month earlier than the 469 

major peak in mid-October. 470 

The oak trees in the PB show two peaks, with a first small peak (except in 2019 when the peak is large) in 471 

the distribution of the transition dates centered around the fourth week of July (2017 - 2019) or late 472 

September (2020), and a second much bigger peak around the fourth week of October. The oak trees in 473 

NO also show two peaks in 2017 and 2018. However, unlike for the oak trees in the PB, the oak trees in 474 

NO show a first bigger peak around the second (2018) and third (2017) week of August and a second 475 

smaller peak around the second (2017) and fourth (2018) week of September. In 2019, the oak trees in 476 

NO shows only one big peak in the transition dates centered around the second week of September.  477 

The transition dates of the poplars in the BB occurred largely in the third week of October in 2018 and 478 

2019, and ca one week earlier in 2020. A similar pattern can be observed in the poplars in EP where the 479 

transition dates peaked in the third week of October in 2018, in the first week of November in 2019 and 480 
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the fourth week of September in 2020. However, the long tail in the histograms and density plots of the 481 

poplar data suggest that poplars are susceptible to an advance in their timing of the transition dates.  482 

For birch trees, in most stands, spread out histograms and density plots of the transition dates suggest a 483 

high probability of premature senescence events rather than a clearly defined peak distribution in 484 

autumn. However, birch shows a variable pattern in transition dates among years. For example, in 2018, 485 

the birch trees of the KS, NO and SJA show only one peak around the fourth and first week of October, 486 

and third week of September, respectively. The timing of birch seems similar to that of beech in the regard 487 

that birch trees in Belgium have transition dates that generally occurred later than those of Spain. The 488 

birch trees of NO show the latest transition dates centered around the first week of September in 2017 489 

and the fourth week of August in 2019.  490 

3.3. Determining the drivers of the leaf senescence timing 491 

The results of the correlation matrices, the Random Forests and the EARTH procedure in the fitted 492 

GAMLSS models with MARS (Models S3 – S5) were similar (Fig. 4; Fig. S37 – S39). For example, all methods 493 

show the concurring result that the transition date in all four species was - with a different degree of 494 

importance - negatively related to the average temperature, the vapor pressure deficit and the global 495 

radiation. In addition, most methods suggest that the precipitation did not much affect the timing of the 496 

transition dates in any species, while the effect of the year was likely only substantial in birch (Table 2). 497 

Note here that the poor man’s partial dependence plots showing the precipitation effect on the transition 498 

dates seems horizontal for all species, suggesting that the precipitation did not have a substantial effect. 499 

Likewise, the poor man’s partial dependence plots do not show a clear yearly trend in the transition dates 500 

in any of the species, despite the correlation matrices suggesting a small positive and negative correlation 501 

in beech and birch, respectively (Fig. 4; panel C). 502 

The diagnostic plots of the GAMLSS models with MARS show violations of the assumptions on the 503 

normalized quantile residuals (Fig. S40 – S43; Table 3). First, the residuals in the wormplots suggest 504 

leptokurtosis, indicating that the kurtosis is modeled too light (Stasinopoulos et al., 2017). Likely, because 505 

MARS is a local nonparametric algorithm sensitive to insufficient data at key knots. Although the 506 

combination of GAMLSS (semi-parametric) and MARS avoids the use of more complex global 507 

nonparametric algorithms (e.g. neural networks) and the problems related to parametric methods (e.g. 508 

error distribution knowledge), the explanatory variables could only be specified in the µ parameter. The 509 

consequential assumption that the process is driven by the mean shows the limits to modeling the 510 

response variable using one distribution parameter. Second, the ACF and pACF show serial 511 

autocorrelation. One reason might be that insufficient data hampered efficient use of specialized 512 

functions to determine the most suitable distribution or specialized smoothers to cope with non-linear 513 

effects. The interactions between the explanatory variables were also not considered in favor of 514 

computability. Third, the Durbin-Wu-Hausman, and Breusch-Pagan’s LM and Pesaran’s CD tests showed 515 

the presence of endogenous variables (i.e. variables correlated with the error term) and cross-sectional 516 

dependence, respectively (Breusch and Pagan, 1980; Durbin, 1954; Hausman, 1978; Pesaran, 2004; 517 

Pesaran, 2014; Wu, 1973). The former and latter tests were executed using the ivreg, and plm and pcdtest 518 

functions in R/ivreg and R/plm, respectively (Croissant and Millo, 2008; Fox et al., 2020; Millo, 2017). The 519 

consequence of endogeneity is that the likelihood of reporting significant, but biased, coefficient 520 

estimates increased, and that there is always a bias-variance tradeoff in the current experimental set-up. 521 

The cross-sectional dependence shows that the explanatory variables influenced the response variable at 522 
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different velocities and the cofounding effects that arise when integrating different datasets. While the 523 

model output is valid in its local context, future improvements might include probabilistic approaches or 524 

lagged/dynamic variable modeling. 525 

The above reasons also explain why the diagnostic plots of the GAMLSS models with linear predictors 526 

indicate violations on the assumptions of the residuals, and why the direction and magnitude of the effect 527 

shown in some of the regression terms in the alternative GAMLSS models might not concur with the 528 

results found in the GAMLSS models with MARS (e.g. the effect of the global radiation on the transition 529 

dates in beech; Fig. S44 – S51, Tables S2 – S3). 530 

4. Discussion 531 

4.1. Timing the transition date  532 

Our results show that the GB2 and GG distributions are well-suited to infer trends in the CCI of beech, 533 

oak, birch and poplar. Henceforward, their probability density functions (see the dGB2 and dGG functions 534 

in R/gamlss) can be used to predict the probability that a leaf reaches a certain CCI value at a given date. 535 

Alternatively, their inverse cumulative distribution functions (see qGB2 and qGG functions in R/gamlss) can 536 

now be used to predict the quantile value of the CCI at any given probability (i.e. the value of the CCI for 537 

which the probability is at or below a given quantile). One could test whether more specialized members 538 

of the GB distribution family are more suited than the GB2 and GG distributions to infer trends from more 539 

frequently sampled CCI measurements, and whether the GB2 and GG distributions can model the CCI of 540 

other deciduous tree species. 541 

The resampling approach used to extract the transition dates is less sensitive to outliers and large 542 

deviations than parametric methods. However, to deal with heteroscedasticity and spatio-temporal 543 

correlation in the data, a case could be made for future implementation of wild bootstrap methods or 544 

block non-uniform resampling approaches. Nevertheless, although the variance in the phenological 545 

transition dates refers here only to the variance among species and sites, the histograms and density plots 546 

of the transition dates reflect our hypotheses well.  547 

We did not expect a trend in the transition dates in beech and poplar, while we expected an advance in 548 

the transition dates in oak and birch in response to the dry and warm weather. The distributions of the 549 

transition dates in beech (and poplar in Belgium) overlapped each year, indicating that the onset of 550 

senescence in beech is rather conservative with no clear trend. However, the kurtosis in the distribution 551 

of the transition dates in poplars did differ between years. In addition, the distribution parameters for 552 

beech and poplar changed slightly each year suggesting that although the bulk of the leaves initiated the 553 

re-organization phase of senescence at one given moment, the leaves were not completely insensitive to 554 

the effect of environmental variables. This is certainly true for poplar in Spain, where the distribution of 555 

the transition dates in 2020 peaks around one month earlier than in 2017. Nevertheless, the onset of 556 

senescence in beech can be considered a singular event in correspondence with a singular leaf flush. 557 

Premature shedding of beech leaves in summer, as occurred during our study (personal observation) and 558 

the study of Bréda et al. (2006), was barely reflected by our estimations of the transition dates or CCI 559 

measurements. Therefore, the amount of nutrient remobilization during these events is likely negligible, 560 

meaning that these events, in beech, can hardly be considered true senescence (Bréda et al., 2006).  561 
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The situation is different for oak where the transition date can perhaps be characterized as two events, 562 

one low probability event in summer (i.e. marked by a small peak in the distribution of the transition date) 563 

and one high probability event in autumn (i.e. marked by a big peak in the distribution of the transition 564 

date) in Belgium, and vice-versa in Norway. This result corresponds with the literature where oak is found 565 

to show premature senescence and rare polycyclic behavior with a large intraspecific variability (Bobinac 566 

et al., 2012; Maillard et al., 2015). Finally, our result concur with our hypothesis that the onset of 567 

senescence in birch can occur in several events, concurring with birch’s nondeterministic growth pattern. 568 

As a consequence, it is sometimes hard to pinpoint the onset of senescence in birch to one specific 569 

moment.  570 

It remains difficult to forecast the direction of the transition date in our deciduous trees (an advance or 571 

delay) because the years 2017 to 2020 were, in Belgium, all exceptionally warm and dry, offering little 572 

background on the ‘normal’ timing for the onset of senescence (Mariën et al., 2019). The extreme drought 573 

of 2018, and the heat stress with increased aridity in 2019 were nevertheless not associated with a 574 

substantially larger probability for an advanced transition date.  575 

We do notice that beech, birch and oak trees in Norway  generally have earlier transition dates than trees 576 

of the same species in Belgium. Likewise, beech and birch trees in Spain have earlier and later transition 577 

dates than trees of the same species in Belgium and Norway, respectively. In 2020, the poplar trees also 578 

showed earlier transition dates in both Belgium and Spain. However, drawing generalized conclusion from 579 

this result is difficult due to the age differences between the trees. The meteorological circumstances in 580 

Belgium, Norway and Spain were also profoundly different, although 2018 was extremely dry and warm 581 

in both Belgium and Norway. 582 

4.2. What drives the variation in the transition date? 583 

Our results show that the NET, GG and BCCGo distributions can be used to model the transition dates for 584 

beech, oak, birch and poplar (see the dNET, qNET, dGG, qGG, dBCCGo, and qBCCGo functions in R/gamlss). 585 

However, the AIC and Kullback-Leibler divergence values, and the deviations in the diagnostic plots of our 586 

models indicate that more data, more suitable or specialized distributions (e.g. finite mixture 587 

distributions), and more suitable link functions might be required to improve (I) our estimations of the 588 

timing of the transition dates and (II) our estimations of the direction and magnitude of the effects of 589 

environmental parameters on the transition dates (Aitkin et al., 2009; Everitt, 2014; Leisch, 2004; 590 

Stasinopoulos et al., 2017).  591 

Nevertheless, the magnitude in which the timing of senescence in deciduous trees is affected by 592 

environmental parameters is clearly species-specific (Xie et al., 2018b). In addition, our results showing 593 

that the average temperature, vapor pressure deficit and global radiation significantly and negatively 594 

affected the transition dates in all four species supports the idea that the balance between the ROS 595 

(especially H2O2) and antioxidants drives the timing of senescence (Andersson et al., 2004; Jajic et al., 596 

2015; Juvany et al., 2013; Khanna-Chopra et al., 2013; Munne-Bosch and Alegre, 2004). Senescence would 597 

then be initiated by a variety of stress factors, whether or not the leaves first reached or required a ‘point 598 

of no return’ established by the effect of the photoperiod on the phytochrome system (Keskitalo et al., 599 

2005; Olsen et al., 1997). All species would still maintain different mechanisms and thresholds to control 600 

their timing of senescence. Note here that the transition date remains a proxy for the actual onset of 601 

senescence (i.e. the ‘initiation phase’ or moment the SAG genes are expressed); a proxy whose value 602 
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depends on the length between the initiation phase and the moment a significant change occurs in the 603 

curvature of the CCI graph (Munne-Bosch and Alegre, 2004).  604 

In contrast to literature, our data does not suggest that the photoperiod is solely responsible for the actual 605 

onset of senescence in beech and poplar (Keskitalo et al., 2005; Michelson et al., 2018). In fact, the global 606 

radiation explained only around 17% and 25% of the variation in the transition dates in beech and poplar, 607 

respectively. On the other hand, our results indicate that the temperature and vapor pressure both 608 

explain more than 19% to 25%, and 19% to 24% of the variation in the transition dates in beech, poplar, 609 

oak and birch. Although the transition date is just a proxy, it relates strongly to the onset of relevant 610 

ecological processes (i.e. maintenance of the tree’s nutrient stoichiometry and response to drought 611 

stress) defining the onset of senescence (i.e. or at least its re-organization phase). As expected, and shown 612 

by the small variation that is found in the transition dates of beech and poplar, the transition date in oak 613 

and birch is more sensitive to environmental variables. In future studies, changes in the photon ratios of 614 

blue to green, and blue to red could be could be examined as potential cues related to the diurnal cycle 615 

and the timing of senescence (Brelsford et al., 2019a; Brelsford et al., 2019b; Chiang et al., 2019; Kotilainen 616 

et al., 2020). In addition, the water vapor column thickness and the total ozone column thickness affect 617 

the red to far-red photon ratio. The annual pattern of these atmospheric factors could therefore also have 618 

a role as a seasonal cue for changes in the timing of senescence as, for example, studies predicts an 619 

increase in future atmospheric water vapor levels (IPCC, 2012; Kotilainen et al., 2020; Solomon et al., 620 

2009).  621 

We highlight three additional results. First, the variation in the data explained by the EARTH GAMLSS 622 

models (R² ranges from 0.71 to 0.93) and the Random Forest models (the percentage of variance 623 

explained ranges from 89% to 98%) is rather high. Second, the precipitation did not have large immediate 624 

effects on  the transition date in our species, certainly not in beech. Third, the year (interpreted here as a 625 

measure for the unexplained variance, rather than its temporal meaning) explained only around 12% to 626 

23% of the variation of the transition dates. Any legacy effect or changes in the timing of the leaf out are 627 

not expected to explain more than 23% of the variation in the transition dates (Chen et al., 2019; Fu et al., 628 

2014; Keenan and Richardson, 2015). 629 

5. Conclusion 630 

The GB2 distribution is well suited to model the CCI in beech and poplar leaves, while the GG distribution 631 

yields satisfactory results to model the CCI in oak and birch. The distributions on the transition dates, (NET, 632 

BCCGo and GG), give a good indication of the uncertainty that surrounds the onset of senescence in beech, 633 

oak, birch and poplar, and can be used as prior information for Bayesian analyses. They also allow the 634 

inference of environmental variables, mainly the average temperature, vapor pressure deficit and global 635 

radiation, that negatively affected the yearly and species-specific variation in the transition dates. The 636 

effect of the precipitation and year on the transition dates in beech (and poplar in Belgium) was small. 637 

However, the effect of the year on the scale and shape of the transition date distribution was substantial 638 

in oak and birch, two deciduous tree species known for their premature senescence. To conclude, we 639 

highlight the link that has been made between the estimation of trends, seasonality and phenological 640 

transition dates.  641 
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 981 

Figures 982 

 983 

Fig. 1: The location of each tree within the different municipalities in the province of Antwerp (Belgium; A), the county of  Viken (Norway; B) and 984 

the provinces of Barcelona and Girona (Spain; C; yellow rectangles). The colored dots represent the location of each individual Betula pendula 985 

(blue), Fagus sylvatica (purple), Populus tremula (red) and Quercus robur (yellow) tree. The shape of each dot shows the site where each tree is 986 

located. In Belgium, BB stands for the Fortress of Borsbeek (circle), KS stands for the Klein Schietveld (triangle) and PB stands for the Park of 987 

Brasschaat (square). In Norway, NO stands for the farm of Hoxmark (circle). In Spain, EP stands for El Puig (circle), SJA stands for Sant Joan de les 988 

Abadesses (square) and FM stands for Fogars de Montclús (triangle). Municipality, county or province names are printed in Bold. 989 
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 990 

 991 

Fig. 2: The chlorophyll content index (CCI) of the mature Fagus sylvatica (nKS = 4, nPB= 4, nFM = 4  and nNO = 992 

3), Quercus robur (nPB = 4 and nNO = 3), Betula pendula (nKS = 4, nSJA = 3 and nNO = 3) and Populus tremula 993 

(nBB = 4 and nEP = 2) trees at the sampling sites of the Klein Schietveld (KS), Park of Brasschaat (PB) and 994 

Fortress of Borsbeek (BB) in Belgium, El Puig (EP), Sant Joan de les Abadesses (SJA) and Fogars de Montclús 995 

(FM) in Spain, and the farm of Hoxmark (NO) in Norway. Dots and error bars represent the mean CCI with 996 

standard errors in the years 2017 (blue), 2018 (purple), 2019 (green) and 2020 (yellow).  997 
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Fig. 3: Histograms and density plots of the resampled values showing the distribution of the second 999 

derivative’s transition dates for the mature Fagus sylvatica (nKS = 4, nPB= 4, nFM = 4  and nNO = 3; teal), 1000 

Quercus robur (nPB = 4 and nNO = 3; yellow), Betula pendula (nKS = 4, nSJA = 3 and nNO = 3; purple) and Populus 1001 

tremula (nBB = 4 and nEP = 2; light green) trees at the sampling sites of the Klein Schietveld (KS), Park of 1002 

Brasschaat (PB) and Fortress of Borsbeek (BB) in Belgium, El Puig (EP), Sant Joan de les Abadesses (SJA) 1003 

and Fogars de Montclús (FM) in Spain, and the farm of Hoxmark (NO) in Norway from 2017 to 2020. The 1004 

second derivative’s transition date represent here (I) the moment when the acceleration in the decline of 1005 

the chlorophyll content (CCI) graphs was the highest or (II) a local minima in the second derivative of any 1006 

of the CCI graphs. As the curvature (κ) of the CCI graphs was approximated here by the second derivative, 1007 

we can also interprete the second derviative’s transition date as (III) the moment when the change in 1008 

curvature of any of the CCI graphs was the highest or (IV) the moment when the declination of the CCI 1009 

graphs concavity was highest. The density plots therefore indicate here the range of dates that constitute 1010 

the variation surrounding the actual timing on the onset of senescence (defined as the moment when the 1011 

acceleration in the CCI’s decline occurs most rapidly, or the curvature of the CCI’s graph is highest). A 1012 

priori, these plots best characterize the process behind the onset of senescence.1013 
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 1014 

Fig. 4: Assessment of the effects that five environmental variables can have on the second derivative’s transition date (SDER) in mature Fagus 1015 

sylvatica (nKS = 8) trees at the sampling sites of the Klein Schietveld and Park of Brasschaat from 2017 to 2019. The five potential environmental 1016 

drivers are the daily average temperature (C°; AvTemp), the daily sum of precipitation (mm; Prec), the daily sum of global radiation (w/m²; GR) 1017 

between 7 a.m. to 7 p.m., the daily average vapor pressure deficit (kPa; VPD) between 7 a.m. to 7 p.m. and the year (Year). The year represents 1018 

here both time and any other potential time-dependent factor (e.g. herbivory effects). Panel A shows correlation matrices indicating Pearson’s 1019 

correlation coefficient. Panel B shows the result of random forest models indicating the percentage increase in the mean square error rate 1020 

(%IncMSE) and the increase in node purity (IncNodePurity). Panel C shows the response of GAMLSS models with multivariate adaptive regression 1021 

splines (MARS) that performed enhanced adaptive regressions through hinges (EARTH). Alternatively, panel C shows poor man’s partial 1022 

dependence plots that indicate the model’s response when one predictor variable is varying while the other predictor variables medians are kept 1023 

constant. Red dots indicate the response points, while the black and blue dashed lines indicate nonlinear functions through hinges  and smooth 1024 

lines, respectively. The effect of the year and precipitation is not considered significant for Fagus sylvatica.   1025 
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Tables 1026 

Table 1: Overview of the mean, median, mode, standard deviation and standard errors (SE) of the second derivative’s transition dates’ distributions 1027 

for the mature Fagus sylvatica (nKS = 4, nPB = 4, nFM = 4  and nNO = 3), Quercus robur (nPB = 4 and nNO = 3), Betula pendula (nKS = 4, nSJA = 3 and nNO = 1028 

3) and Populus tremula (nBB = 4 and nEP = 2) trees at the sampling sites of the Klein Schietveld (KS), Park of Brasschaat (PB) and Fortress of Borsbeek 1029 

(BB) in Belgium, El Puig (EP), Sant Joan de les Abadesses (SJA) and Fogars de Montclús (FM) in Spain, and the farm of Hoxmark (NO) in Norway 1030 

from 2017 to 2020. 1031 

Species Site Year Mean (Doy) Mean (Date) SE Mean (Days) Median (Doy) Median (Date) SE Median (Days) Standard deviation (Days) Mode (Doy) Mode (Date) 

Betula pendula KS 2017 281 8 October 2017 2 283 10 October 2017 2 20 283 10 October 2017 

Betula pendula KS 2018 300 27 October 2018 1 301 28 October 2018 1 11 301 28 October 2018 

Betula pendula KS 2019 288 15 October 2019 1 279 6 October 2019 1 15 279 6 October 2019 

Betula pendula KS 2020 267 23 September 2020 2 287 13 October 2020 3 32 233 20 August 2020 

Betula pendula NO 2017 248 5 September 2017 1 248 5 September 2017 1 13 231 19 August 2017 

Betula pendula NO 2018 262 19 September 2018 0 262 19 September 2018 0 1 262 19 September 2018 

Betula pendula NO 2019 240 28 August 2019 1 240 28 August 2019 1 9 240 28 August 2019 

Betula pendula SJA 2018 258 15 September 2018 0 258 15 September 2018 0 1 258 15 September 2018 

Betula pendula SJA 2019 286 13 October 2019 1 287 14 October 2019 1 11 287 14 October 2019 

Betula pendula SJA 2020 272 28 September 2020 1 281 7 October 2020 2 19 240 27 August 2020 

Fagus sylvatica FM 2018 286 13 October 2018 1 291 18 October 2018 2 20 291 18 October 2018 

Fagus sylvatica FM 2019 287 14 October 2019 1 294 21 October 2019 2 19 293 20 October 2019 

Fagus sylvatica FM 2020 288 14 October 2020 0 290 16 October 2020 1 7 291 17 October 2020 

Fagus sylvatica KS 2017 297 24 October 2017 1 299 26 October 2017 1 15 299 26 October 2017 

Fagus sylvatica KS 2018 288 15 October 2018 2 295 22 October 2018 2 25 295 22 October 2018 

Fagus sylvatica KS 2019 299 26 October 2019 0 299 26 October 2019 0 4 299 26 October 2019 

Fagus sylvatica KS 2020 300 26 October 2020 1 301 27 October 2020 1 11 301 27 October 2020 

Fagus sylvatica NO 2017 268 25 September 2017 1 270 27 September 2017 1 7 269 26 September 2017 

Fagus sylvatica NO 2018 278 5 October 2018 1 280 7 October 2018 1 9 280 7 October 2018 

Fagus sylvatica NO 2019 279 6 October 2019 1 280 7 October 2019 1 10 281 8 October 2019 

Fagus sylvatica PB 2017 296 23 October 2017 1 299 26 October 2017 1 11 299 26 October 2017 

Fagus sylvatica PB 2018 298 25 October 2018 0 298 25 October 2018 0 1 298 25 October 2018 

Fagus sylvatica PB 2019 299 26 October 2019 1 300 27 October 2019 1 9 300 27 October 2019 

Fagus sylvatica PB 2020 299 25 October 2020 1 301 27 October 2020 1 12 301 27 October 2020 

Populus tremula BB 2018 273 30 September 2018 3 294 21 October 2018 3 33 296 23 October 2018 

Populus tremula BB 2019 286 13 October 2019 2 296 23 October 2019 3 23 296 23 October 2019 

Populus tremula BB 2020 279 5 October 2020 1 281 7 October 2020 2 18 270 26 September 2020 

Populus tremula EP 2018 297 24 October 2018 0 297 24 October 2018 0 4 297 24 October 2018 

Populus tremula EP 2019 301 28 October 2019 2 309 5 November 2019 2 21 309 5 November 2019 

Populus tremula EP 2020 271 27 September 2020 1 273 29 September 2020 1 9 278 4 October 2020 

Quercus robur NO 2017 237 25 August 2017 1 234 22 August 2017 1 10 231 19 August 2017 

Quercus robur NO 2018 242 30 August 2018 2 223 11 August 2018 2 22 221 9 August 2018 

Quercus robur NO 2019 254 11 September 2019 0 252 9 September 2019 1 7 248 5 September 2019 

Quercus robur PB 2017 291 18 October 2017 2 300 27 October 2017 3 26 301 28 October 2017 

Quercus robur PB 2018 293 20 October 2018 2 298 25 October 2018 2 19 298 25 October 2018 

Quercus robur PB 2019 257 14 September 2019 4 240 28 August 2019 5 49 208 27 July 2019 

Quercus robur PB 2020 299 25 October 2020 1 303 29 October 2020 1 12 303 29 October 2020 

  1032 
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Table 2: Overview of the variation (i.e. R²) in the transition dates explained by each variable in the Random Forest models for Fagus sylvatica, 1033 

Quercus robur, Betula pendula and Populus tremula. %IncMSE and IncNodePurity stand for the percentage increase in the mean square error and 1034 

the node purity of the predictions, respectively. 1035 

 Fagus sylvatica Quercus robur Betula pendula Populus tremula 

 %IncMSE IncNodePurity %IncMSE IncNodePurity %IncMSE IncNodePurity %IncMSE IncNodePurity 

Year 12 3816 17 22215 22 18372 23 7588 

Average temperature 19 42270 27 145023 21 57090 25 47115 

Global radiation 17 45654 21 85850 21 46866 25 35847 

Vapor pressure deficit 23 51638 19 75337 21 55008 24 43001 

Precipitation 11 3632 18 38492 18 23974 19 8148 

% Total variance explained 92 NA 98 NA 97 NA 89 NA 
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Table 3: Overview of the GAMLSS model response indicators for the fitted GAMLSS models with multivariate adaptive regression splines for Fagus 1037 

sylvatica, Quercus robur, Betula pendula and Populus tremula (Models S3 – S5). Family represent the normal-exponential-student-t (NET), 1038 

generalized gamma (GG) and zero-inflated Box-Cox Cole and Green (BCCGo) distribution families that are used to model the response variable. 1039 

The distribution’s intercept coefficients for the mean (μ), variation (σ), skewness (ν) and kurtosis (τ) distribution parameters are also given. 1040 

Furthermore we represent the generalized R² of Nagelkerke, a summary of the quantile residual values, the degrees of freedom (Df) of the model 1041 

fit, the degrees of freedom of the residuals, the global deviance, Akaike Information Criterion (AIC) and normalized root mean square error (RMSE). 1042 

Indicative for a ‘good’ model fit is a mean, variance, skewness, kurtosis and Filliben correlation coefficient of 0,1,0,3 and 1, respectively (Hohberg 1043 

et al., 2020) 1044 

Species Family Algorithm R² - Cox Snell R² - Cragg Uhler Summary of the Quantile Residuals Distribution's intercept coef. Df 
fit 

Df 
residuals 

Global 
Deviance 

AIC Normalized 
RMSE 

     Mean Variance Coef. of 
skewness 

Coef. of 
kurtosis 

Filliben 
correlation 

coef. 

µ σ ν τ      

Fagus 
sylvatica 

NET RS 0.83 0.83 -0.0879 1.4681 -0.2429 3.8768 0.9835 297.4 -0.291 NA NA 17 1559 5809 5843 0.01 

Quercus 
robur 

GG RS 0.93 0.93 -0.0070 1.0060 0.1860 13.5411 0.9086 5.639 -4.057 -31.81 NA 18 592 3729 3765 0.009 

Betula 
pendula 

GG RS 0.93 0.93 -0.0001 1.0013 -0.0192 23.7295 0.8250 5.64 -4.03 -8.296 NA 18 658 4101 4137 0.009 

Populus 
tremula 

BCCGo RS 0.92 0.92 -0.0034 1.0260 -0.0193 5.2149 0.9756 5.628 -3.977 20.24 NA 19 442 2902 2940 0.01 
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