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Abstract 13 

Climate change substantially advances the leaf onset date (LOD) and regulates 14 

carbon uptake by plants. Unlike temperature, the effect of precipitation remains 15 

largely elusive. Here we use carbon flux measurements, in situ records of leaf 16 

unfolding, and satellite greenness observations to examine the role of 17 

precipitation frequency (Pfreq, number of rainy days) in controlling the LOD in 18 

northern ecosystems (>30°N). Widespread decreases in Pfreq during the last three 19 

decades positively contributed to the advance in LOD, possibly due to increased 20 

exposure to radiation, exhibiting a dominant control of LOD over ~10% of the 21 

area. Lower Pfreq may also enhance chilling at night and warming at daytime, 22 

leading to earlier LOD consequently. We further develop a weighted precipitation 23 

growing-degree-day algorithm that projected a generally earlier LOD than 24 

currently predicted. These results highlight the need for a comprehensive 25 

understanding of the impacts of precipitation on LOD, which is necessary for 26 

improved projections.  27 



Main 28 

The earlier leaf onset date (LOD) of northern vegetation under recent warming 29 

has been widely reported based on eddy-covariance flux measurements1,2, in situ 30 

records3-6, and satellite observations7,8. This shift in LOD can contribute to 31 

enhanced ecosystem productivity, with an earlier start of carbon uptake by 32 

plants1,9,10. Previous studies have mainly focused on the warming effect on LOD5,6,8, 33 

particularly in northern areas with a large carbon sequestration11,12. The impacts 34 

of precipitation on LOD, however, are largely elusive, partially because studies 35 

have focused on total amount of precipitation (Ptotal) without accounting for the 36 

frequency of precipitation (Pfreq, number of rainy days)13,14. Exploring the impacts 37 

of Pfreq may therefore help us better understand the responses of LOD to climate 38 

change and reduce the considerable uncertainty in predicting LOD. 39 

Recent warming has generally advanced spring LOD with a heterogeneous sensitivity 40 

to temperature (d °C−1) in northern ecosystems5,8. This is because the chilling 41 

accumulation (the amount of chilling received by plants during the first dormant 42 

stage -endodormancy) and heat requirement (the accumulated forcing temperature 43 

required for breaking the second dormant stage - ecodormancy) for budburst and 44 

leaf formation are controlled by temperature, precipitation, radiation, and other 45 

forcings6,8,15. For example, it has been reported that an increase of daytime 46 

temperature by 1°C advanced satellite-based LOD by 4.7 days in Europe, 4.3 days 47 

in the United States, and >10 days in northern Siberia and northwestern Canada 48 

during 1982-20118. Unlike temperature, the effects of precipitation on LOD has 49 



received less attention, due to complex mechanisms related to interactions with 50 

temperature, radiation, soil moisture, and snow cover14,16,17. To date, Ptotal has 51 

been used as the main characteristic of rainfall to look for influences on 52 

ecological processes and energy and carbon fluxes at terrestrial surfaces17-19. 53 

Extant studies suggested that an increase in Ptotal may delay LOD in northern 54 

ecosystems14-16, due to the increase in snowmelt heat requirement and the decrease 55 

in absorbed solar radiation. For example, larger winter precipitation acts as a 56 

critical cause of longer-lasting snow cover in high latitudes, leading to 1) 57 

lower temperature because of increased snow-melting latent heat consumption, and 58 

2) a decrease of absorbed radiation due to high albedo of snow-covered surfaces15,16. 59 

Consequently, a wet winter could delay the heat accumulation required for leaf 60 

onset. Apart from Ptotal, Pfreq is crucial to access climate change impacts20. Pfreq 61 

has been reported to be decreasing based on observations21 and model 62 

projections22,23, due to surface warming (thermodynamic contribution) and weakening 63 

of tropical circulation (dynamic contribution)24. Changes in Pfreq have notably 64 

affected plant growth and productivity by regulating runoff25, soil moisture26, 65 

exposure to high radiation and temperature, and energy fluxes27. Thus, interannual 66 

variations of Pfreq are expected to increase the effects on plant phenological 67 

transitions under warming, especially in arid regions. We hypothesize that 68 

changes in Pfreq control the effects of precipitation on LOD related to incoming 69 

radiation, heat and chilling accumulation, and soil water availability. We tested 70 

this hypothesis by analyzing gridded meteorological data, including near-ground 71 



mean temperature (Tmean, °C), total cloudiness (Ctotal, %, a proxy of solar 72 

radiation), Ptotal (mm), and Pfreq (days), together with LOD proxies from four 73 

independent data sets at northern middle and high latitudes (>30°N): (a) 745 74 

site-year records of gross primary productivity (GPP) from 66 flux sites 75 

(Supplementary Fig. 1), (b) 30,369 time-series observations from 4,329 in situ 76 

sites since the 1950s, (c) the third generation of the normalized difference 77 

vegetation index (NDVI, GIMMS NDVI3g version 1) for 1982–2015, and (d) the NDVI 78 

data set from the MOD13C1 Moderate-Resolution Imaging Spectroradiometer (MODIS) 79 

product (collection 6) for 2001–2018. 80 

Widespread decreases in Pfreq in northern ecosystems 81 

In the observation records, both winter and spring Pfreq tended to decrease 82 

significantly in the Climatic Research Unit gridded Time Series (CRU), the fifth 83 

generation ECMWF re-analysis for agriculture and agro-ecological studies (AgERA5) 84 

(1982-2018), and the FLUXNET rain gauge data (1989-2014) (Fig. 1a,c). Average 85 

Pfreq and its spatial distribution and temporal pattern were overall consistent 86 

for CRU and AgERA5 (Supplementary Fig. 2), so we used the average (CRU and AgERA5) 87 

data as the final Pfreq. We found predominantly decreasing trends of winter Pfreq 88 

(42.7% of the area) and spring Pfreq (37.8%) against smaller areas with increasing 89 

trends (winter: 9.2%; spring: 7.3%) in northern ecosystems (P < 0.05) during 90 

1982-2018 (Fig. 1b,d). Decreasing trends of Pfreq were widespread (such as in 91 

Siberia and northern Europe) while increasing trends were localized in specific 92 

areas like western Canada and the northern United States. 93 



 94 

Response of LOD to Pfreq at different scales 95 

As for trends in LOD, we found that GPP-based LOD of 66 sites significantly 96 

advanced and delayed (P < 0.05) at nine and two sites, respectively (Supplementary 97 

Fig. 3a). Similarly, LOD showed advancing (40.5, 52.2, and 8.6% of the area) and 98 

delaying (4.5, 16.1, and 3.5%) trends (P < 0.05) for in situ, NDVI3g, and MODIS 99 

data, respectively (Supplementary Fig. 3b-d). Tmean, Ptotal, and Ctotal of preseason, 100 

the site-dependent period before LOD with the highest absolute partial 101 

correlation coefficient (see Methods), have been reported to have larger impacts 102 

on LOD than in winter or spring4,8. Thus, we applied partial-correlation analyses 103 

to investigate the response of LOD to variations of preseason precipitation under 104 

three scenarios: 1) LOD versus Ptotal controlling Tmean and Ctotal (PARCOR1), (2) LOD 105 

versus Ptotal controlling Tmean, Ctotal, and Pfreq (PARCOR2), and (3) LOD versus Pfreq 106 

controlling Tmean, Ctotal, and Ptotal (PARCOR3) (see Methods, Supplementary Table 1). 107 

The partial correlation between anomalies of GPP-based LOD and Ptotal under PARCOR1 108 

was significantly positive for the 66 sites combined (745 site-year records) (P 109 

< 0.05), indicative of the strong control of GPP-based LOD variability. Grouping 110 

sites into plant functional types generated similar results, with significant 111 

partial correlations for deciduous broadleaf forests (P < 0.01) and mixed forests 112 

(P < 0.05) (Fig. 2a). The overall partial correlation became non-significant, 113 

however, after removing the effect of preseason Pfreq on GPP-based LOD (PARCOR2) 114 

(Fig. 2e). In contrast, positive partial correlations (P < 0.001) were overall 115 



maintained between anomalies of GPP-based LOD and Pfreq under PARCOR3 (Fig. 2i), 116 

indicating the importance of Pfreq in controlling interannual variability of LOD 117 

and the relationship between LOD and Ptotal. 118 

Analysis of in situ observations of LOD from 4,329 sites for 28 species (total 119 

of 30,369 time series) generated similar results. The partial correlation between 120 

ground-based LOD and Ptotal under PARCOR1 was significantly positive (P < 0.05) 121 

for 14.7% of the time series, nearly twice the number of the significantly 122 

negative counterparts (7.3%, Fig. 2b). The total percentages of significant time 123 

series decreased to 9.3% under PARCOR2 (Fig. 2f). Yet, 22% of ground-based LOD 124 

remained significantly (P < 0.05) partially correlated with Pfreq under PARCOR3, 125 

64.4% with positive partial correlation (Fig. 2j). Positive-dominant effects of 126 

Ptotal (PARCOR1) on ground-based LOD, especially for typical temperate tree species 127 

(A. hippocastanum L. and B. pendula Roth), agreed with the previous study14. 128 

Interestingly, we found contrasting effects of Ptotal (PARCOR1) and Pfreq (PARCOR3) 129 

on ground-based LOD between temperate tree species (positive-dominant) and 130 

meadows (negative-dominant), indicating divergent responses of woody versus 131 

herbaceous species to the two precipitation indicators. Sites with significantly 132 

negative correlations under PARCOR1 and PARCOR3 were generally located in 133 

relatively warm areas (> 4 °C) during preseason (Supplementary Fig. 4a,d).  134 

Results from the analysis of satellite greenness products were in agreement with 135 

the above findings. Partial correlations between NDVI3g-based LOD (1982-2015) 136 

and Ptotal under PARCOR1 were positive (P < 0.05) in 22.5% of the area, nearly 137 



four times the area with significantly negative correlations (5.8%, Fig. 2c). 138 

The total area with significant partial correlation decreased by 49% under 139 

PARCOR2 (Fig. 2g). Moreover, 16.7% of the area had significant and positive 140 

partial correlations under PARCOR1, more than twice the area with significantly 141 

negative correlation for MODIS data (2001-2018) (Fig. 2d). The total areas with 142 

significant correlations, however, also decreased by 32% under PARCOR2 (Fig. 2h). 143 

As for Pfreq effects, 73% and 64% of the area with significant correlation under 144 

PARCOR3 were positive for NDVI3g (17.2%) and MODIS (15.6%) data (Fig. 2k,l). For 145 

NDVI3g data, significantly negative correlations under PARCOR1 and PARCOR3 were 146 

mainly in warm and dry regions with soil temperatures > 3 °C and soil moisture 147 

< 0.15 m3 m−3 (Supplementary Fig. 4b,e). For MODIS data, negative correlations 148 

under PARCOR1 and PARCOR3 were mainly in relatively dry regions (Supplementary 149 

Fig. 4c,f). Patterns of PARCOR1 and PARCOR3 were similar in different biomes 150 

(Supplementary Fig. 5), and satellite-based LOD for herbaceous biomes (temperate 151 

and montane grasslands) and woody biomes showed contrasting responses to Ptotal 152 

and Pfreq. To account for the effect of rainfall size in the frequency indicator, 153 

we also explored the impact of Pfreq for different rainfall event sizes (1 mm d−154 

1, 5 mm d−1, 10 mm d−1) on satellite-based LOD. Two-thirds of the significant 155 

correlations between Pfreq at 1 mm d−1 and LOD are positive (P < 0.05) under 156 

PARCOR3, but this discrepancy became non-existent for Pfreq at 5 mm d−1 and Pfreq 157 

at 10 mm d−1 (Supplementary Fig. 6), indicating that the effect of Pfreq is 158 

controlled by total Pfreq rather than by the frequency of large rainfall events. 159 



These results suggest that the dominant positive partial correlation between LOD 160 

and precipitation was mainly influenced by Pfreq instead of Ptotal.  161 

 162 

Sensitivity of Pfreq to LOD 163 

Analyses of all four independent lines of evidence (carbon flux measurements, in 164 

situ records, and data from the NDVI3g and MODIS greenness) confirmed an essential 165 

role of Pfreq in controlling the effect of precipitation on LOD (previous section). 166 

Here we used the climatic signal, calculated as the absolute value of climatic 167 

sensitivity (SV, see Methods)28, to assess the extent to which climatic factors 168 

influence LOD and determine the dominant factor. Based on NDVI3g data, we found 169 

that, among climatic factors, preseason Pfreq dominated over 9.7% of the area, 170 

close to Tmean (10.8%), with a larger contribution than Ptotal and Ctotal (Fig. 3a,b), 171 

suggesting a vital role of Pfreq in explaining LOD variations. Sensitivity analyses 172 

indicate that Tmean had a negative-dominant effect on LOD, whereas Pfreq had overall 173 

positive effects, especially in the high latitudes (Fig. 3c,d). The mean value 174 

of sensitivities also indicates the direction and extent to which climatic 175 

factors influence LOD. Pfreq (0.13) had a stronger effect on LOD than Ptotal (0.02) 176 

and Ctotal (0.02) (Fig. 3d-f). Given the recent widespread decrease in Pfreq (Fig. 177 

1), these results also suggest a positive contribution of Pfreq change to the 178 

advance of LOD. Similar results were obtained for MODIS data (Supplementary Fig 179 

7). For in situ observations, we found similar results that preseason Pfreq showed 180 

a stronger influence than Ptotal and Ctotal for different species (Supplementary Fig. 181 



8a-f). Interestingly, unlike temperate tree species, Pfreq sensitivity of meadows 182 

was negative-dominated (Supplementary Fig. 8g), consistent with the sign of 183 

partial correlation between Pfreq and LOD (Fig. 2j). Furthermore, LOD in preseasons 184 

with lower Pfreq exhibits a stronger response to Ptotal than in preseasons with 185 

higher Pfreq for in situ and NDVI3g data (Supplementary Fig. 9), indicating a non-186 

linear response to precipitation controlled by Pfreq. 187 

 188 

Mechanisms of the effect of Pfreq 189 

Several mechanisms are likely underlying the response of LOD to changes in Pfreq. 190 

First, surface absorbed radiation could be directly influenced by Pfreq, supported 191 

by negative-dominant partial correlations between grided and flux-tower based 192 

Pfreq and radiation annual variations (Fig. 4a and Supplementary Fig. 10). Nearly 193 

75% of the area with a significant partial correlation between radiation and 194 

satellite-based LOD was negative (Fig. 4d), indicating that decreases in Pfreq, 195 

as a proxy of less cloudiness, enhance radiation and further lead to earlier LOD. 196 

Pfreq-induced changes in radiation could modulate the heat requirement for leaf 197 

unfolding15, especially when accumulated chilling is not fulfilled. Second, 198 

reduced rainfall events, accompanied with more clear-sky days and nights, 199 

increase the daytime surface solar heating and decrease nighttime downward 200 

longwave radiation, leading to higher daytime temperature (Tmax) and lower 201 

nighttime temperature (Tmin)29 (Fig. 4b,c). These contrasting effects contribute 202 

to earlier LOD with predominantly negative (Tmax versus LOD) and positive (Tmin 203 



versus LOD) partial correlations (Fig. 4e,f), suggesting that widespread 204 

decreases in Pfreq could concurrently accelerate heat accumulation (at days) and 205 

chilling accumulation (at night) prior to leaf onset. Climatic warming has dual 206 

effects on LOD. Specifically, warming could advance LOD, but this effect is 207 

counteracted by the reduced chilling during dormancy5,6. Our results not only 208 

support inconsistent responses of LOD to daytime and nighttime warming shown in 209 

ref. (8), but show a positive contribution of lower Pfreq on LOD advancement via 210 

synergetic effects on higher Tmax and lower Tmin. 211 

Notably, almost one-third of significant correlations (Pfreq versus LOD) for in 212 

situ and satellite data were negative (Fig. 2j-l), requiring alternative 213 

explanations. Grouping correlations into different species (biomes) indicates 214 

opposite effects of Pfreq on woody (positive-dominant) versus herbaceous plants 215 

(negative-dominant) (Fig. 2j and Supplementary Fig. 5c,d). Here we gave a 216 

potential mechanism of Pfreq effects for grasslands that are mainly located in 217 

semiarid regions. Using reanalysis-based soil moisture and a drought indicator 218 

(Standardized Precipitation Evapotranspiration Index), we found, after removing 219 

the effect of Ptotal, the decreases in Pfreq led to lower soil water availability 220 

(Supplementary Fig. 11a,c) and increased water losses from runoff25 (Supplementary 221 

Fig. 11b). This drought stress further delayed LOD as shown by predominantly 222 

negative correlations (Supplementary Fig. 11d), indicating that decreases in Pfreq 223 

could aggravate drought stress and delay LOD accordingly in grasslands. This 224 

tendency to postpone LOD and associated evapotranspiration could reflect a 225 



strategy for herbaceous species30 or some woody species31 to adapt to water 226 

depletion. Decreased soil moisture might partly reduce nutrient availability 227 

(for example, nitrogen) in arid and semiarid regions32,33 and further delay LOD14, 228 

requiring additional manipulation experiments. The above evidence overall 229 

supports our hypothesis that lower Pfreq contributes to the advance of LOD in 230 

northern ecosystems. 231 

 232 

Modeling and projections of LOD 233 

Most current spring phenological models based solely on daily Tmean, such as 234 

conventional threshold methods (CT) and growing degree days (GDD), ignore the 235 

predictive strength of precipitation in controlling vegetation seasonality8. 236 

Previous studies have illustrated the importance of precipitation variations in 237 

improving the estimation of satellite-based LOD34. Thus, we developed a new 238 

algorithm called GDDPREC (see Methods) for predicting LOD by incorporating 239 

information on precipitation (Ptotal and Pfreq) into GDD model, and we compared the 240 

performances of CT, GDD, and GDDPREC models using both in situ and satellite 241 

observations (Fig. 5a-d). The new model (GDDPREC) improved the prediction of 242 

frequency of sites/pixels with significant correlation (observational LOD versus 243 

predicted LOD, P < 0.05), the correlation coefficient (R), the root mean square 244 

error (RMSE), the corrected Akaike information criterion (AICc, see Methods), 245 

and also the simulation of temporal trends of LOD. A fraction of 82, 61, and 35% 246 

of the time series from modeled GDDPREC showed significant positive correlations 247 



with observed LOD using in situ, NDVI3g, and MODIS data, respectively. These 248 

percentages decreased to 37, 39, and 19% for CT and 66, 51, and 25% for the GDD 249 

only model, respectively (Fig. 5a). Average R indicated 132, 52, and 47% increases 250 

versus CT and 32, 23, and 31% increases versus GDD (Fig. 5b). Lower RMSE further 251 

confirmed the improvement of LOD modeling by the GDDPREC model (Fig. 5c). The 252 

GDDPREC model reduced AICc by 23, 19, and 16% versus CT and 10, 8, and 8% versus 253 

GDD using observed LOD from in situ, NDVI3g, and MODIS data, respectively (Fig. 254 

5d). In addition, we found a lower absolute difference of LOD regression slope 255 

between observed LOD and modeled value from GDDPREC compared to LOD modeled by CT 256 

and GDD (Supplementary Fig. 12), indicating the improvement of GDDPREC on 257 

predicting the temporal trends of LOD. 258 

Our new model improved the accuracy of LOD prediction, so we applied it to 259 

predict future LOD under the Representative Concentration Pathway (RCP) 4.5 and 260 

RCP 8.5 future scenarios using temperature and precipitation bias-corrected model 261 

(Supplementary Table 2) projections during 2019-2099 (Fig. 5e-j). Compared to 262 

the ensemble mean LOD derived from GDDPREC during 2080-2099, CT advanced LOD 263 

estimation in northern Canada and northeastern Asia, with spatially average 264 

differences of 0.6 and −0.3 d under RCP 4.5 and RCP 8.5, respectively (Fig. 265 

5e,g). Relative to the widely used GDD, the ensemble mean LOD from GDDPREC was 266 

predicted to be earlier than currently expected in 62.3% and 68.1% of the area 267 

under RCP 4.5 and RCP 8.5 for 2080-2099, respectively (Fig. 5f,h). Grouping the 268 

results into biomes yielded overall overestimation of LOD (Fig. 5i). Ensemble 269 



mean LOD derived from GDDPREC tended to significantly advance during 2019-2099, 270 

with slopes of −0.12 and −0.22 d y−1 under RCP 4.5 and RCP 8.5 (P < 0.001), 271 

respectively (Fig. 5j). Projections of LOD from individual bias-corrected models 272 

showed similar overestimation of LOD (Supplementary Fig. 13), contributing to a 273 

negative feedback to climate. 274 

 275 

Conclusion 276 

Our results generally indicate a new but significant role of Pfreq in controlling 277 

the effect of precipitation on LOD in northern ecosystems. The synthesis of 278 

carbon flux measurements, in situ records, and data from satellite greenness 279 

products suggests that the recent decreases in Pfreq partially explain the advance 280 

of LOD. The significant response of LOD to Ptotal, consistent with previous 281 

studies13,14, could be considerably negated by controlling the effect of Pfreq, 282 

indicating the importance of Pfreq in the relationship between precipitation and 283 

LOD. We further found predominantly positive (nearly two-thirds) partial 284 

correlations between Pfreq and LOD. We considered three mechanisms linking 285 

variations in Pfreq with changes in LOD: (1) lower Pfreq increases surface absorbed 286 

radiation, further advancing LOD; (2) decreases in Pfreq, accompanied with more 287 

clear-sky days and nights, result in lower nighttime temperature and higher 288 

daytime temperature. Divergent temperature responses concurrently contribute to 289 

the advance of LOD, associated with better fulfillments of both chilling and 290 

heat requirements; (3) For herbaceous plants mainly located in semiarid regions, 291 



lower Pfreq could aggravate drought stress and delay LOD accordingly. Our improved 292 

model generally projected an earlier LOD than currently expected, advancing 293 

nearly twice as fast under RCP8.5 than under RCP4.5. The length of future growing 294 

seasons and the amount of carbon uptake might be consequently underestimated. 295 

  296 
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Figure legends 393 



 394 

Fig. 1| Temporal trends of precipitation frequency (Pfreq) in northern ecosystems 395 

(>30°N). a, c, Trends of winter (December-February) (a) and spring (March-May) 396 

(c) Pfreq anomalies for Climatic Research Unit (CRU), the fifth generation ECMWF 397 

re-analysis for agriculture and agro-ecological studies (AgERA5) (1982-2018, see 398 

Methods) and FLUXNET data (1989-2014). Spatial distribution of winter (b) and 399 

spring (d) Pfreq trends for average (CRU and AgERA5) data during 1982-2018. P, N, 400 

and NS indicate the percentages of significantly positive, negative, and non-401 

significant trends, respectively (P < 0.05). Gray represents non-significant and 402 

none/sparsely vegetated areas. 403 



 404 

Fig. 2| Impact of precipitation on leaf onset date (LOD) in northern ecosystems 405 

(>30°N). Partial correlations (PARCORs) between LOD and precipitation under 406 

three scenarios: a-d, PARCOR1: LOD versus total precipitation amount (Ptotal) 407 

controlling mean temperature (Tmean) and total cloudiness (Ctotal); e-h, PARCOR2: 408 

LOD versus Ptotal controlling Tmean, Ctotal, and precipitation frequency (Pfreq). i-l, 409 

PARCOR3: LOD versus Pfreq controlling Tmean, Ctotal, and Ptotal for FLUXNET data (a, e, 410 

i), in situ data (b, f, j), NDVI3g data (1982-2015, c, g, k), and MODIS data 411 

(2001-2018, d, h, l), respectively. P and N indicate the percentage of 412 

significantly positive and negative partial correlations, respectively (P < 0.05). 413 

Gray represents non-significant and none/sparsely vegetated areas. 414 



 415 

Fig. 3| Climatic response to leaf onset date (LOD). a, Dominant climatic factors 416 

for the NDVI3g data (see Methods). b, Average climate signal, defined as the 417 

absolute value of sensitivity (SV). c-f, The SVs derived from ridge regression 418 

for mean temperature (Tmean) (c), precipitation frequency (Pfreq) (d), total 419 

precipitation amount (Ptotal) (e), and total cloudiness (Ctotal) (f). ND and NS 420 

indicate no-dominant factor and non-significant regression (P < 0.05), 421 



respectively. Mean indicates the mean value of SV for all significant areas. 422 

Positive and negative SV indicate delaying and advancing effects on LOD, 423 

respectively. Gray represents non-significant and none/sparsely vegetated areas. 424 

The MODIS and in situ results are detailed in Supplementary Fig. 7 and Fig. 8, 425 

respectively. 426 

 427 

Fig. 4| Mechanisms of the effect of precipitation frequency (Pfreq) on leaf onset 428 

date (LOD). Spatial patterns of partial correlations, a,b,c, Pfreq versus incoming 429 

solar radiation (Rsolar) (a), daytime temperature (Tmax) (b), nighttime temperature 430 

(Tmin) (c). d,e,f, Rsolar versus LOD (d), Tmax versus LOD (e), Tmin versus LOD (f). 431 

LOD is derived from NDVI3g data (1982-2015). P and N indicate the percentages of 432 

significantly positive and negative partial correlations, respectively (P < 0.05). 433 

Gray represents non-significant and none/sparsely vegetated areas. 434 



 435 

Fig. 5| Comparison of the three predictive algorithms for modeling and 436 

projections of leaf onset date (LOD). The three predictive algorithms are the 437 

conventional threshold method (CT), growing degree days (GDD), and precipitation-438 

incorporated growing-degree days (GDDPREC, see Methods). a-d, The criteria for 439 

evaluating the algorithms include the frequency of sites/areas with significant 440 

correlation (P < 0.05) (a), the correlation coefficient (R, b), the root mean 441 

square error (RMSE, c), and the corrected Akaike information criterion (AICc, 442 

d). The legend in (a) applies to all panels. e-h, Spatial pattern of LOD 443 

differences, GDDPREC − CT (RCP 4.5 e, RCP 8.5 g) GDDPREC − GDD (RCP4.5 f, RCP8.5 h) 444 

using bias-corrected multi-model (Supplementary Table 2) projections during 2080-445 

2099. P, N, and Mean indicate the percentages of positive and negative differences, 446 

and spatially average differences, respectively. i, Average differences in LOD 447 

(2080-2099) for vegetation types (Supplementary Fig. 1). j, Temporal trends of 448 



predicted LOD (2019-2099) using three algorithms. Shaded areas show the standard 449 

deviation of LOD.  450 



Methods 451 

In situ observations. We applied three independent in situ data sets for ground-452 

based LOD (leaf unfolding date, LUD) (>30°N). 453 

1) The Pan European Phenology Project35 (PEP725, http://www.pep725.eu/), which 454 

provides an open-access and long-term (since 1868) phenological database for 19 455 

608 sites and 78 species across 25 European countries. 456 

2) The Chinese Phenological Observation Network36 (CPON), which has compiled 457 

phenological observations since 1963 for 112 species and 145 sites across China. 458 

3) The USA National Phenology Network37 (NPN, https://www.usanpn.org/), which has 459 

received contributions from many citizen scientists using a standardized protocol 460 

for observing plant phenology across the USA.  461 

The definition of spring LUD differs among the three data sets. PEP725, CPON, 462 

and NPN define LUD as the date of the first visible foliar stalk for tree species 463 

(BBCH code 11) and 25% green in spring for meadow (BBCH code 101), 50% full 464 

foliar expansion, and the timing of the first bud break, respectively. To identify 465 

and remove potential outliers, we applied the median absolute deviation (MAD) 466 

method, which is more resilient to outliers in a data set than the standard 467 

deviation. In our case, MAD can be expressed as: 468 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝐿𝑈𝐷𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝐿𝑈𝐷)|)                                        (1) 469 

For each site, any data record with more than 2.5 times MAD is considered as an 470 

outlier. We also excluded all LUD records that were shorter than 15 years. In 471 

this way, we used a total of 30,369 time series from 4,329 sites and 28 species 472 



for 1951-2018. The distribution and descriptions of the in situ sites are detailed 473 

in Supplementary Fig. 1 and Table 3. 474 

 475 

Carbon-flux phenology. We used eddy-covariance flux measurements to determine 476 

the GPP-based LOD (the start of growing season, SOS). After removing sites with 477 

insufficient observations (<5 y), we applied all 66 available flux sites 478 

(Supplementary Fig. 1 and Table 4) with a total of 745 year-site records of daily 479 

GPP from the FLUXNET database (www. fluxnet.fluxdata.org). We applied a site-480 

based relative threshold of 10% of the annual maximum GPP to determine SOS38. The 481 

choice of relative threshold does not affect the interannual variability of SOS, 482 

but higher or lower thresholds will lead to later or earlier mean SOS, 483 

respectively1. We thus utilized yearly anomalies of SOS from all sites for the 484 

same plant function type to analyze the responses of SOS to precipitation at the 485 

plant-type level. 486 

 487 

Satellite-based phenology. Two independent satellite greenness products were 488 

applied to determine the satellite-based LOD (vegetation green-up date, VGD). 489 

GIMMS NDVI3g version1 data (1982-2015) was derived from the measurements of 490 

Advanced Very High Resolution Radiometer (AVHRR), having a spatial resolution of 491 

1/12° and a temporal resolution of 15 days. Terra MODIS NDVI data (2001-2018) 492 

was derived from the 16-day MOD13C1 composite product39 (collection 6) with a 493 

spatial resolution of 0.05°. 494 



To exclude snow effects, we substituted all contaminated NDVI by the mean of 495 

snow-free NDVI values in winter (December–February) of all years40. A modified 496 

Savitzky–Golay filter was then applied to remove the abnormal values and 497 

reconstruct NDVI time series41. Also, we eliminated areas with sparse vegetation 498 

by removing areas with a mean annual NDVI < 0.142. We applied two methods to 499 

calculate VGD to minimize the uncertainty from a single method, the dynamic-500 

threshold approach and the double-logistic function43. 501 

We calculated NDVI ratios annually for each pixel as: 502 

NDVIratio =
NDVI−NDVImin

NDVImax−NDVImin
                                                     (2) 503 

where NDVI, NDVImin, and NDVImax are the daily NDVI and the annual minimum and 504 

maximum of the NDVI curve, respectively. Spring VGD was defined as the day of 505 

the year when the NDVIratio increased to 0.5
34. 506 

We divided the annual NDVI curve into two sections using the maximum NDVI and 507 

applied a piecewise logistic function to fit each section for each area44. 508 

 𝑦(𝑡) = 𝑎1 + (𝑎2 − 𝑎7𝑡) [
1

1+𝑒(𝑎3−𝑡)/𝑎4
− 

1

1+𝑒(𝑎5−𝑡)/𝑎6
]                                  (3) 509 

where 𝑡 is time in days, 𝑦(𝑡) is the NDVI at time 𝑡, and 𝑎1 − 𝑎7 are fitting 510 

parameters. 𝑎1  is the background NDVI, 𝑎2  is the difference between the 511 

background and the amplitude of the late summer and autumn plateau, both in NDVI 512 

units, 𝑎3 and 𝑎5 are the midpoints in the days of the year of the transitions 513 

for green‐ up and senescence/abscission, respectively, 𝑎4  and 𝑎6  are the 514 

transition curvature parameters (normalized slope coefficients), and 𝑎7 is the 515 

summer green-down parameter. Spring VGD was defined as the time when the rate of 516 



change in curvature reached its first local maximum in spring.  517 

These two methods produce similar results43, so we determined average VGD from 518 

the dynamic-threshold approach and double-logistic function as the final 519 

satellite-based LOD. To exclude the impact of human activity on agricultural 520 

ecosystems, we removed all cropland areas using the MCD12Q1 MODIS land-cover 521 

product (collection 6). We then utilized the borders of the biomes45 to conduct 522 

the analyses for different vegetation types (Supplementary Fig. 1). Some caution 523 

is needed when interpreting the results for heterogeneous pixels within different 524 

biomes. It also should be noted that there could be some biases between ground-, 525 

GPP-, and satellite-based LOD, especially regarding the photosynthesis processes 526 

and greenness changes. To minimize this effect, we conducted independent analyses 527 

for different data sets (carbon flux measurements, in situ records, and data 528 

from two satellite greenness products), instead of directly integrating or 529 

comparing these data sets. 530 

 531 

Climatic data. We derived two independent data sets of precipitation frequency 532 

(Pfreq, number of rainy days per month) from 1) the Climatic Research Unit Time 533 

Series46 (CRU-TS 4.03) at a spatial resolution of 0.5 ° 534 

(https://sites.uea.ac.uk/), which is interpolated by massive climatic stations, 535 

and 2) the fifth generation ECMWF re-analysis for agriculture and agro-ecological 536 

studies (AgERA5) at a spatial resolution of 0.1 ° 537 

(https://cds.climate.copernicus.eu). CRU provides a monthly climatological 538 



variable of the number of rainy days, defined as the number of rainy days with 539 

≥ 0.1 mm of precipitation22,23,47. We extracted AgERA5-based monthly numbers of 540 

rainy days using daily AgERA5 precipitation (≥ 0.1 mm). We noticed that multiyear 541 

averages and trends of Pfreq from CRU and AgERA5 were very similar (Supplementary 542 

Fig. 2), so we calculated the average Pfreq and total precipitation (Ptotal, mm per 543 

month) data sets for CRU and AgERA5 as final Pfreq and Ptotal for 1982-2018 to 544 

reduce the uncertainty from a single data set. Monthly Pfreq and Ptotal during 1950-545 

1982, monthly surface mean temperature (Tmean, °C) and total cloudiness (Ctotal, %, 546 

a proxy of solar radiation) for 1951-2018, and monthly maximum (Tmax, °C) and 547 

minimum temperature (Tmin, °C) for 1982-2015 at a spatial resolution of 0.5° 548 

were obtained from CRU. For the flux sites, we directly utilized monthly Tmean, 549 

incoming shortwave radiation (W m−2), Ptotal, and Pfreq (number of rainy days with 550 

≥ 0.1 mm of precipitation) measured by flux towers. For the LOD models, we used 551 

daily Tmean (the average of Tmax and Tmin) and Ptotal at spatial resolutions of 0.5° 552 

from the Climate Prediction Center (CPC), provided by the NOAA/OAR/ESRL PSL, 553 

Boulder, USA (https://psl.noaa.gov/). For projections of future LOD under two 554 

climatic scenarios (RCP 4.5 and RCP 8.5), we used daily Tmean and Ptotal (with a 555 

spatial resolution of 0.5 × 0.5°) simulated by four bias-corrected models from 556 

the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)48 (Supplementary 557 

Table 2). 558 

Monthly runoff data for 1982-2015 was derived from TerraClimate49, a data set of 559 

monthly climate for global terrestrial surfaces at a spatial resolution of 1/24°. 560 



We utilized the monthly Standardized Precipitation Evapotranspiration Index (SPEI, 561 

3-month scalar) for 1982-2015 at a spatial resolution of 0.5°, calculated by 562 

the difference between precipitation and potential evapotranspiration from the 563 

SPEI base v.2.5 at Consejo Superior de Investigaciones Científicas (CSIC)50. 564 

Volumetric soil water (a proxy for soil moisture, m3 m−3) was derived from ERA5-565 

Land monthly average data. We calculated the average volumetric soil water of 566 

the top two layers (0-7 cm, 9-28 cm) as the final monthly soil moisture for 567 

mechanistic analyses of herbaceous plants. 568 

 569 

Analyses. We applied the Theil-Sen slope estimator, a non-parametric and median-570 

based slope estimator, to analyze the past and projected temporal trends of LOD 571 

for the ground and satellite observations. The trends were evaluated using the 572 

Mann-Kendall trend test at a significance level of 0.05.  573 

Tmean, Ptotal, and Ctotal jointly control LOD so that a simple linear-correlation 574 

analysis would have uncertainties of factor-combined effect. For example, Tmean 575 

is numerically related to both LOD and Ptotal, violating the independence of 576 

variables in correlation analyses. We thus applied partial-correlation analysis 577 

to explore and explain the impact of Pfreq on LOD. The partial-correlation analysis 578 

was categorized into three scenarios: 1) partial correlation between LOD and 579 

Ptotal, removing the effects of Tmean and Ctotal (PARCOR1), (2) partial correlation 580 

between LOD and Ptotal, removing the effects of Tmean, Ctotal, and Pfreq (PARCOR2), and 581 

(3) partial correlation between LOD and Pfreq, removing the effects of Tmean, Ctotal, 582 



and Ptotal (PARCOR3) (Supplementary Table1). Significance was set at P < 0.05, 583 

with an R threshold of ±0.355 for a 34-y analysis (NDVI3g, 1982-2015) and ±584 

0.514 for an 18-y analysis (MODIS, 2001-2018). Preseason forcings predicted LOD 585 

better than winter or spring climatic forcing alone; the optimal preseason length 586 

differs among species and locations. The preseason period was defined as the 587 

period with one-month steps until December of the previous year before the month 588 

of multiyear mean LOD. During preseason, the absolute partial-correlation 589 

coefficient between LOD and climatic factor (for example, Pfreq) should be the 590 

highest compared to other periods42. 591 

To avoid potential multicollinearity between climatic factors, we applied ridge 592 

regression that adds a penalty parameter to reduce the variance of the regression 593 

coefficient to determine climatic sensitivities. The response variable was LOD, 594 

and the predictors were preseason climatic factors. We used normalized anomalies 595 

of climatic factors and LOD as regression inputs, and regression coefficients 596 

were determined as climatic sensitivities (SVs), including SV-Tmean, SV-Pfreq, SV-597 

Ptotal, and SV-Ctotal. To directly compare the effect of different climatic factors 598 

on LOD, we calculated the absolute value of regression coefficients as climatic 599 

signals28, indicating the extent to which climatic factors influence leaf 600 

unfolding without considering the direction of the effect (delay, advance). For 601 

each pixel, we defined the dominant factor as the factor with the highest climatic 602 

signal that is greater than the sum of climatic signals of the other three 603 

factors. 604 



To evaluate the LOD models, we calculated the frequency of sites/pixels with 605 

significant correlations, the correlation coefficient (R), the root mean square 606 

error (RMSE), the corrected Akaike information criterion (AICc), and temporal 607 

trends of LOD for CT, GDD, and GDDPREC, respectively. In our case, the sample size 608 

(time series for a site or pixel) was small, so we used AICc to address the 609 

potential overfitting of AIC. AICc of the model is: 610 

AIC =
 2𝑘 −2𝐿̂ 

𝑛
                                                                 (4) 611 

where 𝐿̂  =  −
𝑛

2
(1 + ln(2π) + ln(

∑ (𝑦𝑖−𝑦̂𝑖)2𝑛
𝑖=1

𝑛
),                                     (5) 612 

so AICc =  AIC + 
2𝑘2+2𝑘

𝑛−𝑘−1
                                                      (6) 613 

where k is the number of parameters in the model, n is the sample size, 𝐿̂ is the 614 

log of the maximized value of the likelihood function for the model, 𝑦𝑖 is the 615 

LOD predicted by the model for year i, and 𝑦̂𝑖 is the estimated LOD based on 𝑦𝑖. 616 

 617 

Models for predicting LOD. Most phenological modules in current ecosystem models 618 

are based solely on Tmean. Previous studies have applied temperature-threshold 619 

models (for example, Tmean > 5 °C for five consecutive days51,52) to estimate plant 620 

spring phenology. GDD models are widely used to estimate past and future spring 621 

phenology53. Considering the potential impacts of precipitation on LOD, we 622 

incorporated precipitation (Ptotal and Pfreq) into one of GDD models (GDDPREC) and 623 

compared GDDPREC with the currently applied conventional-threshold (CT) method and 624 

GDD model. 625 

We compared the three algorithms (CT, GDD, and GDDPREC) for LOD estimation using 626 



in situ and satellite observations. We calculated the average daily mean 627 

temperature (Tmean) of five consecutive days before LOD each year. We then set the 628 

multiyear mean as the threshold temperature (TTHOLD) to predict CT-based LOD. If 629 

Tmean was higher than TTHOLD for five consecutive days from 1 December of the 630 

previous year, the first date was determined as CT-based LOD.  631 

The GDD model was calculated as: 632 

GDD(𝑑) = max(𝑇mean(𝑑) − 𝑇b, 0)                                               (7) 633 

GDDthreshold = ∑ GDD(𝑑)LOD
𝑑=𝑑0

                                                  (8) 634 

where GDD(d) is the growing degree on date d, Tb is the base temperature, set as 635 

0 °C (5 and 10 °C provided similar results in this study), Tmean(d) is the daily 636 

mean temperature on date d, GDDthreshold is the accumulated growing degree from d0 637 

to LOD required for leaf unfolding, and d0 is the first day of accumulation, set 638 

as 1 December of the previous year. GDD-based LOD was defined as the date that 639 

GDD(d) first exceeded the multiyear mean GDDthreshold. 640 

We incorporated Ptotal and Pfreq into the GDD model to predict LOD. We first 641 

calculated the multiyear average intensity of precipitation as: 642 

AIP = mean(
∑ 𝑃total(𝑑)LOD

𝑑=𝑑0

∑ 𝑃freq(𝑑)LOD
𝑑=𝑑0

)                                                      (9) 643 

GDDpr(𝑑) = max (𝑇mean(𝑑) + 𝑘 ×
𝑃total(𝑑)

AIP
− 𝑇b, 0)                                 (10) 644 

where AIP represents the multiyear average intensity of precipitation (mm d−1), 645 

d0 is set as 1 December of the previous year, and k is a weighted factor ranging 646 

from −15 to 15 with steps of 0.1. The effect of precipitation on LOD prediction 647 

is jointly controlled by k, Ptotal, and Pfreq. Intensive precipitation strongly 648 



affected GDDPREC (
𝑃total(𝑑)

AIP
> 1). If 𝑃total on date d was 0 or k was 0, the accumulated 649 

growing degree was solely dependent on Tmean. 650 

We selected the optimal parameters for GDDPREC by comparing the RMSEs between the 651 

modeled and observed LOD. k with the lowest RMSE was determined as the final 652 

weighted factor. We used the map of k and GDDthreshold based on GDDPREC for 1982-2015 653 

as empirical input data to predict LOD for 2019-2099 (Supplementary Fig. 14). 654 

  655 



Data availability 656 

The in situ phenological data can be accessed from http://www.pep725.eu/ and 657 

https://www.usanpn.org/. The flux data sets can be accessed from 658 

https://fluxnet.org/. The data from GIMMS NDVI3g version1 can be accessed from 659 

https://ecocast.arc.nasa.gov/data/pub/gimms/. The MODIS NDVI data sets can be 660 

accessed from https://modis.gsfc.nasa.gov/data/dataprod/mod13.php. The CRU 661 

TS4.00 data sets can be accessed from https://sites.uea.ac.uk/. The AgERA5 data 662 

can be accessed from https://cds.climate.copernicus.eu. The TerraClimate data 663 

can be accessed from http://www.climatologylab.org/terraclimate.html. The CPC 664 

data sets can be accessed from https://psl.noaa.gov/. The data for future 665 

climates (2019-2099) is available at https://esg.pik-potsdam.de/search/isimip/. 666 

 667 

Code availability 668 

The codes used for data analysis in this study are available on Zenodo at 669 

https://doi.org/10.5281/zenodo.5801049. 670 
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