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Abstract 

Islands are among the last regions on Earth settled and transformed by human activities, and they provide replicated model 
systems for analysis of how people affect ecological functions. By analyzing 27 representative fossil pollen sequences 
encompassing the past 5000 years from islands globally, we quantified the rates of vegetation compositional change before 
and after human arrival. After human arrival, rates of turnover accelerate by a median factor of 11, with faster rates on islands 
colonized in the past 1500 years than for those colonized earlier. This global anthropogenic acceleration in turnover suggests 
that islands are on trajectories of continuing change. Strategies for biodiversity conservation and ecosystem restoration must 
acknowledge the long duration of human impacts and the degree to which ecological changes today differ from prehuman 
dynamics. 

 

Globally, human activities dominate ecological systems (1, 2) and are considered the main drivers for 
accelerating contemporary ecosystem transformation (3–6). The pressing need to evaluate the extent and 
dimensions of human impacts and the desire to restore “wild” systems have sparked controversy concerning 
the value of establishing prehuman baselines (7–9) and about the nature and timing of the onset of the 
Anthropocene (10–12). Archaeological and other paleodata on human impacts in continental systems reveal an 
increasingly human-transformed planet intensifying around the end of the Pleistocene (2, 13, 14). The lengthy 
time frame of human modification of ecosystem dynamics in continental contexts, spanning periods of 
substantial postglacial climate change, complicates the definition of prehuman baselines and hinders the 
investigation of natural ecosystem processes (15, 16).  

In contrast to continents, most remote oceanic islands were colonized by people relatively recently, within the 
past 3000 years, when climates were similar to present conditions (17). The recent nature of human settlement 
means that the archaeological, paleoecological, and climate records are often more precisely resolved on well-
studied islands compared with continents and are potentially more relevant for understanding remnant 
ecosystems and informing conservation and ecosystem restoration agendas. Therefore, island ecosystems 
provide opportunities to quantify the critical ecological transition from prehuman to humandominated 
ecosystems (4, 15) and allow anthropogenic impacts on ecosystems to be placed within the context of long-
term prehuman ecological dynamics (16–20). Although numerous studies have documented the timing, waves, 
and processes of species extinctions that accompanied human arrival on islands (18–24), paleoecological data 
networks now allow systematic quantification of ecosystem transformations on islands globally. Here, we 
analyzed fossil pollen time series for multiple independent islands from all the major archipelagos and oceans 
and across latitudes using a breakpoint regression approach to test for altered rates and directionality of pollen, 
and thus vegetation compositional turnover, connected with human colonization (25) withinan overall time 
frame of the past 5000 years. These time series ofmillennial-scale dynamics allow the assessment of whether 
the rates of vegetation compositional change consistently accelerated acrossmultiple islands after initial human 
arrival. Our method uses ordination analyses to characterize the major gradient of compositional variation in 
the pollen data for each island, quantifying the mean rate of change through time before and after human 
arrival (Fig. 1), thereby allowing us to assess how human populations affected islands differently from natural 
perturbations (23). 

Our results show that human arrival systematically accelerated directional compositional change in island 
ecosystems (Figs. 1 and 2). Rates of pollen compositional turnover increased after human arrival by up to a 
factor of 11, with large differences among islands (i.e., a median of 10.7 times higher turnover after human 
arrival, with a mean of 20.8 ± 26.5 times higher turnover). This acceleration is a globally consistent pattern 
observed on 24 of 27 islands independently of current and past island area, latitude, isolation, and elevation of 
the sampling site [Fig. 3, B to G, and tables S3 and S4 (25)]. Islands that were settled more recently, such as the 
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Poor Knights archipelago in New Zealand (13th century) (19) and the Galápagos Islands (16th century) (26), 
show a steeper increase in the rate of turnover change (P = 0.008, R2 = 0.22; linear regression with 
logtransformed arrival time; Fig. 3A) than on islands where humans arrived >1500 years ago [e.g., New 
Caledonia (27) and Fiji (28)]. This indicates either that the islands settled earlier were more resilient to human 
arrival or, more likely, that the recent major compositional turnover observed is explained by introduced 
species, land use practices, and technology deployed by later settlers being more transformative than those of 
earlier settlers. In addition, those islands colonized >3000 years ago appear to show some declines in rates of 
compositional turnover toward the end of the sequence, although there are too few cases (n = 5) to draw firm 
conclusions. 

For many islands, the model implementing a prescribed breakpoint at the time of human arrival closely fits the 
observed patterns in compositional turnover (Fig. 1). Human arrival estimates fall within the 95% confidence intervals 
of the optimal breakpoints (representing the greatest change in turnover in each record) for 41% of islands. Human 
arrival times are within 500 years of the optimal breakpoint for 70% of islands and within 1000 years for 81% of 
islands (median 329 years compared with 953 for randomized data simulations; table S5 and Fig. 2). There is no 
tendency for optimized breakpoints to be systematically earlier or later than estimated human arrival time (t test 
with null model of mean difference being 0, P = 0.27). A systematic difference would haveeither indicated earlier 
human arrival or delayed human impact. On some islands, initial human arrival is not associated with a major shift 
in turnover [Fig. 1 and fig. S1 (25)]. These results might reflect the specific local characteristics of the study site. For 
example, on La Gomera (Canary Islands), the sedimentary sequence was collected at an elevation of 1250 m above 
sea level in one of the largest remnant areas of laurel forest, where paleoecological analyses showed no evidence of 
human impacts (29). On other islands, e.g., Hispaniola, shifts in vegetation turnover differed from the time of human 
arrival, as estimated based on 

archaeological or historical sources, suggesting a lag between colonization and onset of significant directional change 
(Fig. 1). 

Our analysis also shows that ecological change is an integral part of island systems, with changes observed both 
before recorded human arrival [directional change in composition measured in standard deviations of pollen taxon 
turnover (SDptt) per 100years: median turnover 1.7 × 10−2 SDptt/100 years and mean turnover 4.0 ± 6.8 × 10−2 
SDptt/100 years] and after human arrival (median turnover 14.7 × 10−2 SDptt/100 years and mean turnover 23.3 ± 
29.8 × 10−2 SDptt/100 years)] (Fig. 2). Results show that the rate of directional turnover before human arrival was 
slower, in contrast to human agencies of change. Natural drivers of ecosystemchange on islands, operating before 
and alongside humans, include volcanic activities, fire, climate change (episodes such as the “Little Ice Age”), 
earthquakes, extreme weather events (e.g., droughts and cyclones), and sea-level fluctuations (20, 30, 31). Although 
notmeasurable with the precision necessary to include formally within our analysis, volcanic activities and natural 
climate fluctuations have likely not increased over the analyzed time frame across the islands studied and thus 
cannot explain the systematic increase and varied timing of directional turnover observable across islands (25). 
Climate warming in the past 50 years, by contrast, is too recent to be detectable within our dataset. Over the time 
frame of the past 5000 years, direct human impacts greatly outweighed other processes that shaped island 
iodiversity and species interactions (32, 33). 

Moreover, ecological legacies of human arrival on islands may persist for centuries and are often irreversible. An 
example is Tawhiti Rahi in the Poor Knights archipelago, which is currently uninhabited (19). Immediately after initial 
arrival by Polynesians in the 13th century, the island’s forest cover was cleared by fire for human habitation and 
gardens. After a massacre of local Ngatiwai inhabitants on Tawhiti Rahi in1820, local kaitiaki (guardians) declared the 
islands wahi tapu (protected by a sacred covenant), after which time there was no subsequent settlement. Despite 
the island becoming totally reforested within 150 years, the current forest composition is completely different from 
that of the prehuman period. In contrast to the Poor Knights archipelago, most currently inhabited islands have 
experienced at least two distinct waves of settlement, each having distinctive signatures of change and leaving 
increasingly complex legacies (24, 30). 

Preparing and managing for ecosystemchange is one of the major challenges that island societies currently face as 
islands experience continued or accelerated threats from detrimental land use practices (12), new species invasions 
(24, 34), sea-level rise (35), and climate change (11, 17), in addition to naturally occurring disturbances. The 



challenges are made more difficult because these processes are affecting native ecosystems where vegetation 
communities have already been severely degraded or lost, species have gone extinct (15, 21), and important 
mutualistic plant–animal interactions have been disrupted (36).  

Our results show little indication that these human-affected ecosystems are either similar to or returning to the 
dynamic baselines observed before human arrival. Therefore, anthropogenic impacts on islands are lasting 
components of these systems typically involving initial clearance (e.g., using fire) and are compounded by the 
introduction of a range of introduced species and extinctions of endemic species and ongoing disturbances. This 
contrasts with turnover after natural disturbances in the prehuman period, when island ecosystems often recovered 
rapidly to predisturbance states [e.g, (20, 31)].Whereas formany islands, widescale return to precolonization 
ecosystems is an unrealistic goal, paleoecological data such as those analyzed here may serve to inform targeted 
ecosystem restoration efforts within islands, providing insights into previous system states and their responsiveness 
to global change processes (9, 37). 

 

 

Fig. 1. Human arrival accelerated compositional turnover on islands. Global analysis of rate of palynological and thus 
vegetation compositional turnover (slope of the line) for 27 representative fossil pollen records from sedimentary sequences 
on islands. The x-axes represent calibrated years before present (i.e., years before 1950) calculated using Bayesian age-depth 
models for each island (25). The y-axes represent the major gradient in pollen composition quantified by the ordination 



axis 1 scores of separate detrended correspondence analyses (DCAs) of each sequence. The units are measured in DCA axis 
scores, which approximate the SDptt, with an SD of 4 corresponding roughly to 100% compositional turnover. These plots 
show results of breakpoint analyses of the rate of compositional turnover with the date of recorded human arrival as the 
prescribed breakpoint. The recorded date of human arrival is indicated by the vertical orange lines (see table S3 for details). 
Scaling varies among panels. Shaded areas (blue) depict 95% confidence intervals of the models. A second continuous 
breakpoint analysis detecting the major statistical change point in turnover rate intrinsic was applied to the data. This 
“optimized breakpoint” is indicated by the vertical dashed black lines. 

 

 

Fig. 2. Rates of turnover before and after human arrival. Change in the rate of pollen compositional turnover before (left) and 
after recorded date of human settlement (purple) for the time series of fossil pollen records for each of 27 islands globally, where 
each island’s sequence has been subject to a separate ordination analysis using DCA. Rate of pollen taxon turnover is quantified 
as the absolute slope in the relationship between ordination scores of the first axis of each DCA with time. The units approximate 
SDptt/100 years. The presettlement rate of compositional turnover is represented on the left (median: 1.7 × 10−4; mean: 4.0 × 10−4) 
and the rate after human arrival is represented on the right (median: 14.7 × 10−4; mean: 23.3 × 10−4). The difference is highly 
significant (P < 0.004; paired t-test). See (21) for details. 

 

 



Fig. 3. Differences between the prehuman and human-dominated turnover scale with human arrival times. Relationships 
between the change in the rate of pollen compositional turnover before and after human arrival and several island features showing 
a curvilinear decrease in observed turnover as the time elapsed since the first colonization increases (A), but no relationship with 
turnover rate before human arrival (B), latitude (C), elevation of the coring site (D), island area (E), glacial-interglacial area (F), isolation 
(represented by distance to mainland) (G), or surrounding landmass (H). **P < 0.01 (A). 
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