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Abstract 

Accurate estimation of photosynthetic phenology is of great importance for understanding carbon cycles. Most 
vegetation indices (VIs) calculated from remotely sensed reflectances represent the canopy structure and have high 
uncertainty in detecting the real photosynthetic phenology. We compared the start/end of the photosynthetically 
active season (SOS/EOS) extracted from the normalized difference vegetation index (NDVI), the enhanced vegetation 
index (EVI), the near-infrared reflectance of vegetation (NIRv) and the product of NIRv and solar incident radiation 
(NIRvP) over northern deciduous broadleaf forests, using the metrics from solar-induced chlorophyll fluorescence 
(SIF), a proxy for photosynthesis, as reference. We found that the growing season extracted from the structural VIs 
was generally longer than the real duration of photosynthetic activity retrieved from SIF: the timing of SoS derived 
from NDVI < NIRvP < EVI ≈ NIRv ≈ SIF and the timing of EOS from NDVI > NIRv  ≈  EVI > NIRvP ≈ SIF. We accounted for 
the mechanism underlying these phenological discrepancies using the paradigm of light-use efficiency. The sensitivity 
of the Vis to the main factors limiting photosynthesis differed across VIs and the contribution of these factors to the 
phototsynthetic phenology also vary across growth stages: EVI and NIRv are sensitive to chlorophyll content and the 
fraction of absorbed photosynthetically active radiation absorbed by chlorophyll (FAPARchl) appears as the dominant 
factor of spring photosynthetic phenology, while NIRvP is a good proxy of the total amount of photosynthetically 
active radiation absorbed by chlorophyll (APARchl) which is is key in autumn when radiation determines 
photosynthetic phenology. We therefore suggest that VIs should be dedicatedly selected to improve the extraction 
of photosynthetic phenology: EVI and NIRv for accurate retrieval of the timing of SOS, and NIRvP for the EOS. 
 

Index Terms—Photosynthetic phenology, deciduous broadleaf forest, vegetation indices, light-use efficiency 
 
I. INTRODUCTION 
The annual growth and uptake of photosynthetic carbon by Northern deciduous broadleaf forests (DBFs) have 

strong seasonal cycles, which substantially influences the annual and interannual variation of atmospheric CO2 
concentrations [1]. Climatic warming has lengthened the growing season and increased the uptake of photosynthetic 
carbon by DBFs [2]. A better understanding of the photosynthetic phenology of DBFs is therefore necessary for more 
accurate predictions of future climate. 

Satellite observations can provide spatiotemporally continuous reflectances over terrestrial surfaces. Most 
vegetation indices (VIs) extracted from satellite reflectances contain information about biomass greenness and have 
therefore been widely used to monitor large-scale terrestrial-surface phenology, which has greatly improved our 
understanding of seasonal productivity in recent decades [3]. Greenness VIs are generally reliable proxies for tracking 
the dynamics of gross primary productivity (GPP) but by nature represent vegetation structure, i.e., potential GPP, 
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and cannot be directly converted to actual GPP, because plant photosynthesis is also constrained by environmental 
stress, as expressed by environmental scalars in models of light-use efficiency (LUE) [4]. 

The performances of VIs in identifying the interannual variation in photosynthetic phenology remain highly 
uncertain [3]. For example, the commonly used normalized difference vegetation index (NDVI) scales well with the 
fraction of absorbed photosynthetically active radiation (FAPAR) but substantially overestimates the length of 
photosynthetic phenology derived from tower-based measurements of GPP [5] indicating a systematic bias in 
seasonality between plant structure and function [3]. In comparison, the enhanced vegetation index (EVI) is more 
sensitive to FAPAR absorbed by chlorophyll (FAPARchl) [6], so EVI outperforms NDVI, because chlorophyll is a robust 
proxy for foliar photosynthetic capacity [7]. Another study, however, found that the length of the photosynthetically 
active season derived from EVI also overestimated the actual active season in deciduous broadleaf forests by two 
weeks [8]. The near-infrared reflectance of vegetation (NIRv) [9], another popular VI in the phenological community, 
performed comparably with EVI in extracting photosynthetic phenology [3]. NIRvP, expressed as the product of NIRv 
and solar incident radiation, is an improved version of NIRv and is a robust structural proxy of GPP [10]. Its 
performance in extracting photosynthetic phenology, however, remains unknown.  

Solar-induced chlorophyll fluorescence (SIF) is a small part of the 650-680 nm electromagnetic signal re-emitted by 
chlorophyll after absorbing sunlight during photosynthesis and can be directly detected by satellite sensors [11]. In 
contrast to information about green biomass identified by structural VIs, SIF is mechanistically linked with 
photosynthesis and therefore can respond quickly to nearly all factors regulating photosynthetic activity [11] [12]. SIF 
therefore has the promising potential to track the seasonal changes in plant photosynthesis. Many recent studies 
have demonstrated the rationality of using SIF in extracting photosynthetic phenology, and the results can be used 
as reference values to validate the performance of VIs [5] [12]. 

In summary, commonly used VIs were designed to represent plant structure rather than physiology, so the derived 
phenology characterized the seasonal variation in potential GPP, which systematically overestimates the actual GPP. 
Very few studies have been devoted to comparing the photosynthetic phenology extracted from structural VIs, 
especially from the newly developed VIs. We compared the start and end of the photosynthetically active season in 
northern DBFs using NDVI, EVI, NIRv and NIRvP, using the SIF results as reference. The specific scientific questions 
are twofold: (1) does the terrestrial-surface phenology derived from structural VIs exhibit a systematic bias compared 
with photosynthetic phenology of DBFs and (2) what is the underlying mechanism? 

 
II. MATERIALS AND METHODS 

A. Study Area 

This study focused on the northern (≥30°N) DBFs, which are generally in regions with moist, warm summers and 
frosty winters, in three main areas: (1) eastern North America, (2) western and central Europe and (3) eastern Asia. 
The leaves unfold in spring as temperatures increase, senesce and then fall in autumn with the shortening of the 
photoperiod and the declining of the tempreture [5].  

B. Data sets and Indices 

MODIS: The VIs were calculated using surface reflectance from the MCD43A4 Version 6 product, which is adjusted 
to nadir from multi-angular, cloud-free, atmospherically corrected measurements using a bidirectional reflectance 
distribution function (BRDF) for the solar angle at local noontime [13]. MCD43A4 is produced daily based on 16 d 
retrieval period of Terra and Aqua MODIS data at a resolution of 500 m. Low-quality (magnitude BRDF inversions) 
and snow-contaminated observations were removed before analysis based on the quality flag. 

GOSIF: GOSIF, with a spatial resolution of 0.05 × 0.05° and a revisit time of 8 d, was used as a reference to extract 
photosynthetic phenology. It was produced by a machine-learning method using discrete OCO-2 SIF, MCD43C4 
reflectance and MERRA-2 meteorological data as inputs. The strong correlation between GOSIF and GPP has been 
verified at 91 FLUXNET sites around the world (R2 = 0.73, p < 0.001) [14]. 

ERA5-Land: The solar incident radiation (also known as shortwave radiation) provided by ERA5-Land was used to 
represent the photosynthetically active radiation (PAR). ERA5-Land is the fifth generation of climate reanalysis 
dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), with a spatial resolution 
of 0.1° and a temporal resolution of 1 hour [15]. The daily maximum was selected to represent daily value. 
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CCI land cover: The land-cover products released by the Land Cover Climate Change Initiative (CCI) of the European 
Space Agency provides global land-cover maps at a spatial resolution of 300 m on an annual basis [16]. CCI divides 
the terrestrial surface into 22 classes, which have been defined using the United Nations Food and Agriculture 
Organization’s Land Cover Classification System. We delineated DBF whose land type has not changed from 2001 to 
2020.  

Selected indices: We selected four commonly used VIs for comparing their performances in extracting 
photosynthetic phenology. They were computed using MODIS reflectances and ERA5 data. The formulations of the 
VIs are presented in TABLE I. 

TABLE Ⅰ 
DEFINITION OF THE VEGETATION INDICES TESTED IN THIS STUDY 

Vegetation index Reference 

NIR R
NDVI

NIR R

−
=

+
 [17] 

2.5
6 7.5 1

NIR R
EVI

NIR R B

−
= 

+ − −
 [18] 

v
NIR R

NIR NIR
NIR R

−
= 

+
 [9] 

v
NIR R

NIR P NIR PAR
NIR R

−
=  

+
 [10] 

R, B and NIR are the MODIS reflectances at the red, blue and near-infrared bands, respectively. Photosynthetically 
active radiation (PAR) is represented by ERA5 shortwave radiation. 

C. Extraction of Phenology 

Our study period was from 2001 to 2020, representing maximum temporal overlaps of all data sets used. We first 
aggregated the VIs derived from MODIS and ERA5 data into a resolution of 0.05 × 0.05° and 8 d through an averaging 
method. The VIs values for different years were averaged every 8 d to obtain their annual climatologies. We then 
used three methods, Savitzky-Golay (SG), asymmetric Gaussian (AG) and double logistic (DL), to smooth the 
climatological data. SG filtering is a quadratic fitting method based on the local characteristics of a curve. We set the 
half-window to 32 d to ensure a high degree of smoothness. Both the AG and DL methods perform least-square fitting 
to the data with corresponding functions and use the fitted curve to replace the original time series. Detailed 
information about the three methods are provided by [19]. Smoothing was implemented using TIMESAT software 
[19]. 

The start of the photosynthetically active season (SOS) and the end of the photosynthetically active season (EOS) 
were then extracted using the dynamic-threshold method [19]. Specifically, we adopted the threshold of 50% of the 
annual amplitude. SOS occurs when the left side of the reconstructed time-series curve before the annual maximum 
has reached half the amplitude, counted from the base level. EOS is defined similarly, but for the right side of the 
curve after the annual maximum. The SOS and EOS values extracted from the reconstructed climatologies of VIs and 
SIFs with the three smoothing methods, i.e., SG, AG and DL, were averaged at pixel scale to obtain robust estimates 
of phenology metrics. 

D. Model of Light-Use Efficiency 

We interpreted the divergent performances of the VIs using the LUE paradigm. LUE assumes that plant 
photosynthesis is jointly controlled by changes in PAR, FAPAR absorbed by chlorophyll (FAPARchl) and LUE [4], i.e., 
GPP = PAR × FAPARchl × LUE = APARchl × LUE, where APARchl is the amount of PAR absorbed by chlorophyll, i.e., PAR × 
FAPARchl. 

At the seasonal scale, PAR is directly associated with the solar zenith angle and cloud cover, FAPARchl depends on 
canopy structure and amount of foliar chlorophyll and LUE denotes LUE under a specific environment at the canopy 
scale and may vary with factors such as the phenological period (LUE shows diurnal, seasonal and long term 
variations), physiological conditions (e.g., nutrient levels) and climatic conditions (temperature and water stress) [20]. 

III. Results 
The spatial distribution of the temporal mismatches among the phenological metrics of northern DBFs based on 

the VIs is shown in Fig. 1. SOS generally had smaller mismatches across all indices compared with EOS, with histograms 
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centered near zero (Fig. 2 (a)). NDVI- and NIRvP-derived estimates of SOS were an average of 11 d and 6 d earlier 
than the SIF-derived estimates, respectively. EVI- and NIRv-derived SOSs were very similar and were only 2 d earlier 
than the reference values. The differences in EOSs across all indices were very distinct, with histograms centered far 
from zero. NIRvP was the only exception (Fig. 2 (b)). NDVI-, EVI- and NIRv-derived estimates of EOS averaged 42, 14, 
13 d later than the SIF-derived estimates, whereas NIRvP performed very well in extracting EOSs, with a bias of only 
-2 d indicating earlier EOS for NIRvP than SIF. 

We further compared the timing of the phenological metrics by latitude (Fig. 3). We considered the range of 
latitudes 30-60º N where the most part of DBFs are located (Fig. 1). SOSs from all indicators had good consistency at 
mid-low latitudes (30-40°N) (Fig. 3 (a)). SOS from each index occurred later as latitude increased. Averaged SOSs 
derived from SIF, EVI, NIRv, NIRvP and NDVI at high latitudes (50-60°N) were about 40, 36, 34, 29 and 17 d later than 
those at mid-low latitudes, respectively. The divergence of VI-derived SOS, compared with the SIF-derived reference, 
correspondingly increased with latitude. NDVI- and NIRvP-derived SOSs at high latitudes had larger deviations from 
SIF-derived SOS, and their estimated SOSs were 24 and 13 d earlier than that estimated by SIF, respectively. EVI-
derived SOS nearly coincided with NIRv-derived SOS and occurred only about 4 d earlier than SIF-derived SOS at high 
latitudes. In contrast, EOS in autumn from all indicators advanced as the latitude increased (Fig. 3 (b)). NIRvP-derived 
EOS approximated the SIF-derived EOS very well, especially at high latitudes, with a bias of only 1 d. EVI- and NIRv-
derived EOSs were comparable, about 15 d later than SIF-derived EOS at high latitudes. As for NDVI-derived EOS, an 
averaged 41 d lag across all the latitude bands, compared with SIF-derived one, was observed. However, the 
latitudinal gradient of EOS was not detected from NDVI. 
 
 

 
Fig. 1. Spatial distribution of temporal mismatches between phenological metrics derived from the vegetation indices 
and those from sun-induced fluorescence (SIF). The normalized difference vegetation index (NDVI), enhanced 
vegetation index (EVI), near-infrared reflectance of vegetation (NIRv) and near-infrared reflectance of vegetation 
multiplied by incoming sunlight (NIRvP) were used to estimate the start and end of the growing season (SOS and EOS)
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Fig. 2. Frequency distribution of temporal mismatches between phenological metrics derived from the vegetation 
indices and those from sun-induced fluorescence (SIF). The normalized difference vegetation index (NDVI), enhanced 
vegetation index (EVI), near-infrared reflectance of vegetation (NIRv) and near-infrared reflectance of vegetation 
multiplied by incoming sunlight (NIRvP) were used to estimate the (a) start and (b) end of the growing season (SOS 
and EOS). 

 
Fig. 3. Latitudinal distribution of averaged (a) start and (b) end of the growing season derived from sun-induced 
fluorescence (SIF), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), near-infrared 
reflectance of vegetation (NIRv) and near-infrared reflectance of vegetation multiplied by incoming sunlight (NIRvP). 
Error bars indicate regional standard deviations. DOY: day of year. 

 
IV. Discussion 
VIs extracted from reflectances have been widely used to estimate photosynthetic phenology. We found deviations 

in the photosynthetic phenology extracted by different VIs over the northern DBFs (Figs. 1-3). The physical 
interpretation of VIs and their divergent performances in tracking photosynthetic phenology can be explained using 
the LUE paradigm. NDVI is widely used as a robust proxy of FAPAR [21], [22], but not all PAR absorbed by a canopy 
can be used for photosynthesis. PAR at the canopy scale will be absorbed by both chlorophyll and non-photosynthetic 
vegetation (e.g., stems, branches and senescent leaves) [6], [23]. Only the light absorbed by chlorophyll forces 
photosynthesis. EVI, the proxy of FAPARchl, was therefore preferred for estimating GPP in recent studies [6] [23]. EVI 
has been strongly correlated with FAPARchl (R2 = 0.97) [23]. EVI and NIRv in our study provided similar results in 
monitoring photosynthetic phenology (Figs. 1-3), consistent with [3] and [24]. NIRv can therefore also act as a proxy 
of FAPARchl. NIRvP, the product of NIRv and PAR, introduces the limitation of external radiation to NIRv, which can be 
regarded as a powerful proxy of APARchl, i.e., FAPARchl × PAR = APARchl. Another study also found that NIRvP was a 
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robust proxy for far-red SIF across a wide range of spatial and temporal scales [10]. We depicted the averaged 
seasonality of GPP (represented by SIF), FAPARchl (by EVI), APARchl (by EVI × PAR) and LUE (by SIF / (EVI × PAR)) over 
the northern DBF. The curves for both FAPARchl and LUE in spring were similar to the curve for GPP, whilst the curve 
for APARchl was very different. In contrast, the curves for APARchl and GPP in autumn generally overlapped each other, 
whilst deviations were larger for FAPARchl and for LUE, specially. These results highlighted that VIs performed 
differently in tracking GPP across different growth stages. 

 
Fig. 4. Seasonality of gross primary productivity (GPP), absorbed photosynthetic active radiation absorbed by 
chlorophyll (APARchl), fraction of absorbed photosynthetically active radiation absorbed by chlorophyll (FAPARchl) and 
light-use efficiency (LUE). All indicators were linearly normalized to [0, 1] for visualization. The background colors 
represent the change of surface radiation. DOY: day of year. 

Vegetation needs time to resume primary productivity in spring after leaf-budding by absorbing carbon [5]. The 
timing of the lag of carbon assimilation behind leaf emergence in spring [25] was thus consistent with the trends of 
lag of spring SIF behind VI-based spring phenology (Fig. 2 (a)). Vegetation photosynthesis increased with FAPARchl 
when available incoming solar radiation was sufficient and temperatures were favorable (Fig. 4), so the content of 
canopy chlorophyll may be the main factor affecting the phenology, as also reported by [7] that canopy chlorophyll 
content was strongly correlated with photosynthetic capacity. Photosynthesis always shuts down in autumn before 
leaf-drop [26], because plant photosynthesis in autumn is limited by the availability of light with the rapid decline of 
solar radiation.[27]. This shutdown is consistent with our finding that plant photosynthesis decreased as APARchl 
decreased (Fig. 4). Insufficient radiation inhibits the physiology of vegetation, i.e., the vegetation cannot use enough 
light for photosynthesis even though chlorophyll still remains, accounting for the deviation of FAPARchl from GPP. 

Different VIs generally contain different types of information about photosynthesis, so we suggest that VIs should 
be dedicatedly selected for improving the extraction of photosynthetic phenology. For example, chlorophyll content 
in spring dominates the rate of carbon sequestration, so VIs containing information about chlorophyll, e.g., EVI and 
NIRv, can reliably estimate SOS. Low radiation level in autumn and at high latitudes limits canopy photosynthesis. VIs 
containing information about radiation, e.g., NIRvP, may therefore be the best choice for extracting EOS. The 
combination of multiple VIs will help to improve our understanding of terrestrial ecosystems and the carbon cycle. 

 
V. Conclusions 
We compared the performances of four commonly used VIs, NDVI, EVI, NIRv and NIRvP, in the extraction of the 

start and end of the photosynthetically active season over northern DBF regions, using SIF results as reference. The 
LUE paradigm was used to identify the mechanism of the discrepancy in the extracted phenological metrics. For 
spring, EVI/NIRv-extracted SOS nearly coincided with the initiation of carbon assimilation, but SOS extracted from 
NIRvP/NDVI had larger deviations compared with that extracted from SIF (6 and 11 d earlier for NDVI and NIRvP, 
respectively). For autumn, NDVI-derived EOS lagged greatly (42 d) and EVI/NIRv-derived EOS lagged slightly (13/14 d) 
behind SIF-derived EOS. In comparison, NIRvP approximated SIF very well, with the bias decreasing to only 2 d. The 
divergent performances of the VIs in extracting photosynthetic phenology indicated that the main factors limiting 
photosynthesis differed among the stages of growth. VIs associated with FAPARchl, e.g., EVI and NIRv, and VIs 
associated with APARchl, e.g., NIRvP, are respectively recommended for extracting the timing of the start and end of 
the photosynthetically active season. Our study will contribute to a better understanding of the divergence in the 
phenological shifts in greenness and photosynthesis. 
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