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Abstract: Deadwood is a large global carbon store with its store size partially determined by 

biotic decay. Microbial wood decay rates are known to respond to changing temperature and 

precipitation. Termites are also important decomposers in the tropics but are less well studied. 

An understanding of their climate sensitivities is needed to estimate climate change effects on 

wood carbon pools. Using data from 133 sites spanning six continents, we found that termite 

wood discovery and consumption were highly sensitive to temperature (with decay increasing 

>6.8 times per 10°C increase in temperature)—even more so than microbes. Termite decay 

effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. 

With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely 

increase as termites access more of Earth’s surface. 

One-Sentence Summary: Termites respond to temperature much more strongly than 

microbes, changing our view of wood decay and the carbon cycle. 
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Main Text: 

 

Forests contain ~676 Gt of biomass (1), with a large fraction of their carbon immobilized for 

centuries in living and deadwood (2, 3). Carbon storage depends partly on decay rates of 

deadwood pools by organisms, which vary across climatic gradients (4, 5). Regional studies 

suggest wood decay by microbes approximately doubles with a 10°C temperature increase 

(decay effective Q10 = ~2) (2, 6) driven, in part, by enzyme kinetics. Further, microbial decay 

occurs via extracellular enzymes whose delivery is dependent on moisture (7, 8), meaning 

microbial decay should increase with humidity. Less is known about the climate sensitivities of 

important animal decayers, which also influence how climate change affects deadwood carbon 

stores. 

Increasing evidence shows that termites are important decayers at local to regional scales 

(7, 9, 10). The abundance of wood-feeding termites across biomes is poorly understood (11), but 

decay by termites should be temperature sensitive. First, termites increasingly contribute to wood 

decay in warm locations (12–14), with distributions set in part by ectothermic temperature 

tolerances (15). Termite wood decay depends on both discovery and consumption of wood by 

searching animals, followed by chemical decay via a cultivated set of microbial symbionts. 

Therefore, second, this symbiont chemical decay will also be shaped by temperature-dependent 

enzyme kinetics. For moisture, in contrast to microbes, termites have a diversity of adaptations to 

conserve it that presumably buffer their sensitivities to low precipitation (16–18), meaning 

termite discovery and decay likely continues with increasing aridity. 

To test climate sensitivities of termite and microbial decay, we conducted a replicated 

wood decay experiment at 133 sites across extensive temperature and precipitation gradients 

representing most of the global bioregions (Fig. 1). At each site, researchers monitored decay of 
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wood blocks for a common substrate, Pinus radiata (or in a few cases closely related Pinus 

species; see (19)), for up to 48 months. All sites had harvests at ~12 months and most at ~24 

months with some sites including ~6 month, ~36 month and/or ~48 month harvests. We allowed 

microbial access to all samples and manipulated termite access (“microbes” versus 

“microbes+termites” treatments); wood blocks were wrapped in fine mesh with or without larger 

holes to allow or exclude termites. At each site, researchers placed pairs of treatment blocks with 

number of pairs equal to number of harvests planned at each of 20 stations (a few sites placed 

fewer stations), meaning each harvest from a site had 40 wood blocks (mean = 33.6 + 14.2 

(1SD)) harvested at a given time point across both treatments; stations were spaced at least 5 m 

apart (see (19), table S11). A total of 8,922 blocks were collected across all sites. Our focal 

species, P. radiata, was non-native at all locations, meaning no site decay agents evolved with it 

as a substrate. 

Termite discovery, estimated percentage of wood blocks with evidence of termites per 

year at a site, was greatest, but also highly variable, at low latitudes and elevations and where 

temperature and precipitation were high (Fig. 1A, B, fig. S1; table S1). High wood block 

discovery (>50%) occurred at temperatures above 21.3°C. In multivariate models, wood block 

discovery by termites rapidly increased with increasing temperatures (Fig. 2A, table S3) and 

temperature and precipitation significantly interacted (Figs 1B, 2A, table S3). Termite discovery 

was higher in warm tropical biomes in arid and semi-arid sites (despite small sample sizes) than 

in mesic and humid sites (at 25°C, discovery estimates at 250 mm were 1.4× higher than at 2000 

mm and 1.9× higher than at 2700 mm), while in cool temperate biomes the reverse patterns were 

observed (at 7°C, discovery estimates at 2700 mm were 4× higher than at 2000 mm and 150× 

higher than at 250 mm). 
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Microbial decay was fastest at low latitudes and elevations and where temperature and 

precipitation were high, although latitude and precipitation were weaker predictors than elevation 

and temperature (Fig. 1C, fig. S2; table S2). Microbial temperature sensitivity was similar to 

regional studies (decay effective Q10 of 1.73; 95% CI: 1.45-2.09) (2, 6). In multivariate models, 

precipitation was not a significant predictor of microbial decay (Fig. 2B, table S4). When 

termites discovered wood, decay rates were higher at low elevations and where temperature was 

high (Fig. 1C, fig. S2; table S2). Further, decay rates in termite discovered wood were more 

sensitive to changes in temperature (decay effective Q10 of 6.85; 95% CI: 4.73-9.92) than decay 

rates in undiscovered wood where microbes dominated decay. In multivariate models, 

precipitation was not a significant predictor of decay for termite discovered wood (Fig. 2C, table 

S5). 

The termite-discovered wood decay effective Q10 is much steeper than any previously 

recorded for microbes (2, 6), suggesting that a different mechanism determines termite versus 

microbial decay. The observed high consumption rate by termites at warm sites may be related to 

termite assemblage composition, large population numbers, high activity or some combination of 

these mechanisms and implies that residence times of wood may be much shorter than expected 

due to termites in warm locations. Consequently, subtropical, tropical or global models using a 

single microbial-derived decay effective Q10 are likely to: (1) underpredict wood decay; (2) 

overpredict terrestrial carbon storage (all else being equal, e.g., inputs into deadwood pools); and 

(3) underpredict temperature sensitivity of decay. Use of termite-corrected decay effective Q10s, 

which may vary based on termite assemblage composition, location and/or wood substrate, 

should improve accuracy of modeled wood decay under current and future climate predictions. 

Such model modifications can capitalize on empirical measures in the literature such as ours for 
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termites and (20) for insects more broadly. Our results suggest precipitation variation influences 

the discovery, but not decay phase, of termite wood decay. However, strong temperature and 

precipitation interaction influences on discovery mean that termites increased overall decay most 

in subtropical deserts and tropical seasonal forests and savannas(Fig. 1C). Further, even though 

microbial abundance is sensitive to precipitation (4, 5), temperature was a stronger driver than 

precipitation for microbial-driven decay, perhaps mediated through effects on enzyme kinetics 

(21). Differences in decay sensitivity to precipitation were small with only microbial-mediated 

wood decay weakly sensitive to precipitation; microbial decay largely occurs via release of 

moisture-sensitive extracellular enzymes (7, 8), while termites can conserve moisture, buffering 

aridity effects (16–18). While low termite discovery in warm humid locations remains surprising, 

competitive interactions between decayers (11, 13), biome-specific adaptations to moisture, 

variation in resource availability affecting foraging behavior, etc., may reduce discovery. 

Given extreme sensitivities of both termite wood discovery and decay to temperature, 

termites will likely expand their range in a warming world with important consequences for 

carbon cycling. Using data-driven estimates of temperature and precipitation effects on termite 

discovery (Table S3), we estimated discovery rates across the globe, restricting predictions to the 

range in MAP covered by our sites +10%. Termites today have potential to discover large 

amounts of deadwood (>50%) at sites across 30.2% of the land surface (assuming our estimated 

discovery rates apply across wood and termite species; Fig. 3). To bracket potential climate 

change effects on discovery, we used our estimated climate relationships with all available 

midcentury CMIP6 climate models for SSP 1-2.6 and 5-8.5 (22). All scenarios predicted an 

expansion of termite discovery in tropical and subtropical regions with the degree of expansion 

depending strongly on extent of global warming (Fig. 3). Warming shifts to more tropical 



12  

climates are occurring in many ecosystems globally (23), and temperature sensitivities 

demonstrated in this study suggest termite contributions to wood decay will expand both within 

and beyond the tropics with such tropicalization. Our estimates may even underpredict termite 

effects in areas where fungus-growing termites occur (i.e., Africa and Asia) (12, 16), meriting 

future focus. The impact of termites on wood decay is both large and expected to increase (Fig. 

3); it also has a different functional form than microbial decay with a clear two-step process: 

discovery and decay. 
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Figure Legends: 

Fig. 1. Geographic, biome and climatic distribution of experimental sites. (A) Dots denote 

the 133 study site locations. (B) Study site distribution across mean annual temperatures (MAT), 

mean annual precipitations (MAP) and Whittaker biomes. In (A) and (B), color of the dots 

represents termite discovery rate (i.e., estimated percentage of wood blocks with evidence of 
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termites per year at a site). (C) Decay rate (k) estimates across Whittaker (24) biomes (shown by 

arrows and colors matching legend in (B), with boxplots for each biome representing blocks 

discovered by termites (dashed boxplots on right of pair) and blocks undiscovered by termites 

(solid boxplots on left of pair; examples of discovered blocks in fig. S3). Note that the y-axis is 

ln-transformed but tick labels represent untransformed values for decay. For boxplots, center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, 

outliers. Numbers on top of solid boxplots on left of pair indicate total number of sites per 

biome; numbers on top of dashed box plots on right of pair indicate number of sites where 

termite discovery occurred. 

 
 

Fig. 2. Discovery and decay of wood based on significant (tables S3-5) climatic predictors. 

 

(A) Termite discovery rate, the estimated percentage of wood blocks in the microbes+termites 

treatment across all sites with evidence of termites per year across mean annual temperature 

(MAT) and mean annual precipitation (MAP), (B) Decay rates (k) of termite undiscovered wood 

across MAT, and (C) Decay rates (k) of termite discovered wood across MAT (Note: MAP was 

not a significant predictor of termite undiscovered or discovered wood). Symbols in figures 

denote role of wood-feeding termites and/or wood-dwelling microbes . Solid lines 

represent logistic (for A) or linear (for B and C) regression predictions at 250 mm MAP (orange; 

representative of mean desert/savanna biomes), 2000 mm MAP (cream; representative of mean 

temperate biomes) and 2700 mm MAP (blue; representative of mean tropical/temperate humid 

biomes). Dashed lines represent 95% confidence intervals around predictions. The y-axes for B 

and C are ln-transformed but tick labels represent untransformed values for decay. 
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Fig. 3. Predicted termite discovery by mid-century under different tropicalization 

scenarios. Global maps showing minimum and maximum termite expansions scenarios based on 

the model in Table S3 and CMIP6 forecasts for 2041-2060. (A) Stronger climate change 

scenarios (SSP 5-8.5 UKESM1-0-LL) had the largest expansion in discovery rates and (B) 

weaker climate change scenarios (SSP 1-2.6 MPI-ESM1-2-HR) had the smallest. For (A) and 

(B), termite discovery categories were rare (<5% = grey), continuing low (<50% = bright green), 

current high (>50% = olive green), midcentury expansion to high (>50% = yellow) and unable to 

predict, restricting predictions to the range in MAP covered by our sites (± 10%). We did not 

model the transitions from rare (<5%; grey) to continuing low (>5% & <50%; bright green) 

discovery. Panel (C) shows forecast increases in terrestrial area (km2) with discovery >50% by 

midcentury versus forecast mean terrestrial warming relative to a historical baseline. Each point 

denotes a forecast based on one individual CMIP6 SSP 5-8.5 or SSP 1-2.6 climate model. The x- 

axis of panel (C) is the mean forecast 2041-2060 warming above the 1970-2000 baseline for 

terrestrial areas only. 
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Materials and Methods 

In this study, 8,922 wood blocks were deployed across 133 sites in 20 countries and on all 

continents except Antarctica (Figure 1A, table S11). The majority of sites were established in 

2017, with 6 sites established in 2018 in Puerto Rico with the delay due to Hurricane Maria. 

Untreated wood was sourced from locations within countries or regions (i.e., Europe) and 

followed protocols established in Cheesman et al. (18). Field sites were all part of individual PI's 

local projects, meaning they were under the umbrella of ongoing projects, not needing specific 

permits. Most locations used Pinus radiata, but a few study sites were unable to access P. 

radiata; they instead used P. taeda (Brazil), P. elliotti (French Guiana), or southern yellow pine 

(likely P. echinata) (Panama). We accounted for these differences based on wood chemistry (see 

below). We targeted wood-dwelling microbes and wood-feeding termites in this study as these 

are the two primary biotic wood decay agents globally (7). We note that this study uses a 

common substrate, allowing us to leverage a network of climatically diverse sites to directly 

compare differences in decay agents and environmental gradients. This is a logical first step to 

address such questions; however, using targeted pine wood from sawn lumber has limitations. It 

lacks bark and may interact with local decay agents differently to native species that vary in 

wood construction to pine. 

Wood was cut into blocks at volume of ~403 cm3 and blocks were dried at 120°C to 

constant mass and weighed for initial dry mass. Wood blocks were haphazardly divided into two 

treatments; all treatments allowed wood-dwelling microbe access with half the blocks excluding 

(=microbes) and the other half including (=microbes+termites) wood-feeding termites. Wood 

blocks in all treatments were wrapped with 300 𝝻m nylon or polyester mesh bags sealed with 

stainless-steel staples. Bags in the microbes+termites treatment had 10 holes (~5 mm diameter) 

punched into the mesh on the underside of the mesh bag to allow termite access. In our statistical 

analyses (see below), holes did not alter wood decay rates e.g., through altered microclimate. 

Sites deployed 20 stations (with a few deploying less); each station had treatment pairs of 

wood blocks, one for microbes and one for microbes+termites. Treatment pairs were replicated 

at each station for all planned harvest time points (table S11), and one treatment pair was 

removed from each station at a given harvest time point. All sites had harvests at ~12 months and 

most sites had harvests at ~24 months with some sites including ~6 month, ~36 month and/or 

~48 month harvests (table S11). Stations were spaced >5 m apart from one another and >0.5m 

away from existing large deadwood, termite mounds, exposed rocks or substantial water flow 

paths. All wood blocks were covered with 70% green shade cloth to reduce solar radiation 

degradation of mesh bags. 

For initial wood samples from each source location, 3-5 blocks were sent to University of 

Illinois for analysis. Sawdust samples from individual blocks were ground and analyzed for % 

nitrogen and % carbon content using an elemental analyzer (Costech, Valencia, CA, USA) (table 

S11). Average elemental % nitrogen and % carbon per source location were used to represent 

variation within and across wood species as wood chemistry typically is a strong predictor of 

decay rates (25, 26) (tables S6-10). 

Wood blocks were randomly selected from each treatment at each station for harvest at 

~6 months (n = 777, sites = 22), ~12 months (n = 4479, sites = 120), ~24 months (n = 3487, sites 

= 96), ~36 months (n = 125, sites = 10) and ~48 months (n = 54, sites = 10) after deployment. 

Once collected, wood blocks were assessed for termites. We determined termite discovery and 

decay following a two-step method. First, we filtered to those sites where site researchers 

recorded termite presence. Second, for those sites with termites, we recorded blocks as 
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discovered when they were noted as having termites, mudding (i.e., imported soil), and/or 

damage (e.g., internal chambering, external surface scoring, or removal) in wood blocks (fig. 

S3). When wood blocks were observed to be damaged, but this damage was not attributable to 

termites (e.g., small holes, non-termite larvae, etc.), these blocks were recorded as undiscovered 

by termites. Few blocks had macrofauna damage not attributable to termites (termite discovery 

was 2.3× higher than discovery by other macrofauna). One block was dropped from the study as 

we were unable to determine its termite discovery status. After termite discovery assessment, 

wood blocks were cleaned, separating out deadwood from imported soil, termites, fungal fruiting 

bodies, roots, etc. and dried at 100°C for 72 hrs before reweighing for final mass. 

Using site latitude and longitude, we obtained elevation (m) and climate variables from 

Fick and Hijmans (27), including both mean annual temperature (MAT; °C) and mean annual 

precipitation (MAP; mm) at 0.5° resolution; climate data were summarized over the window 

over which the blocks were deployed at field sites. We selected MAT and MAP to capture the 

broad climate envelope at our sites (as opposed limits such as minimum or maximum) as our 

goals were to examine climate sensitivities of wood-dwelling microbes and wood-feeding 

termites, which are typically compared under climate averages (e.g., Q10). Whittaker’s biomes 

were obtained from Ricklefs (24). We used “raster” (28) and “plotbiomes” (29) packages in R 

(v4.04) (30). 

Analyses Discovery - Termite discovery was calculated as the estimated percentage of wood 

blocks at all sites per year in the microbes+termites treatment that were noted as having termites. 

We ran two sets of two-tailed analyses to understand how wood block discovery by termites 

varied across geographic and climatic space. First, we ran a series of bivariate logistic 

regressions (using the glm function in R (30)), examining how individual spatial (Absolute 

(Latitude) and elevation) and climatic (MAT and MAP) predictors estimated discovery. Second, 

we ran a multivariate logistic regression (using the glm function in R (30)) including MAT, MAP 

and their interaction to estimate discovery. In both models, we estimated termite discovery at the 

block level using all wood blocks in the microbe+termite treatment (discovered or undiscovered) 

per site and used an offset for time since deployment to account for variation in deployment 

length. While no site occurred where P. radiata is native, 43 of the sites occurred where other 

Pinus spp. were native. To check that exposure to native species within the Pinus genus did not 

lead to increased decay rates, we included Pinus presence as a term in the multivariate models. 

Pinus presence was not a significant term in either model and we excluded it from further 

analyses. 

Decay - We calculated proportion mass loss (ML) for a given time window = 1 - (Initial 

mass - Final mass/ (Initial mass * Time)). Microbial-driven (M) wood ML was calculated for 

blocks undiscovered by termites, while microbial and termite-driven (M+T) wood ML was 

calculated for blocks discovered by termites. Additionally, decay was calculated as average 

decay per discovery category at a site assuming an exponential steady-state of decay using 

percentage mass loss and time since deployment (i.e., k = -log (Final mass/Initial mass)/time). 

We averaged decay by discovery category and site and applied a natural-log transformation prior 

to analyses. Data were weighted such that those decay per discovery categories and sites with 

higher sample sizes (i.e., number of wood blocks) were given greater weight in the regression. 

Similar to the discovery models, we ran two sets of two-tailed analyses to understand how both 

termite undiscovered and discovered decay rates (ln(k)) varied across geographic and climatic 

space. First, we ran a series of bivariate regressions (using the lm function in R (30)), examining 

how individual spatial (Absolute (Latitude) and elevation) and climatic (MAT and MAP) 

predictors estimated k for discovered and undiscovered wood categories. Second, we ran a 

multivariate regression including MAT, MAP and their interaction (using the lm function in R 
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(30)) to estimate decay for each discovered and undiscovered wood category. We also ran a third 

analysis to confirm the relationship between the magnitude of discovery and decay. For this 

analysis, we confirmed that decay rates increased with more frequent discovery by termites in a 

biome-specific fashion (Fig. S4) by regressing decay rates against the percentage of wood blocks 

discovered at each site, the biome associated with each site and the interaction between 

discovery and biome (using the lm and Anova functions in R (30)). In discovery and decay 

models, when we included initial wood % nitrogen and % carbon to account for pine species, 

both variables were significant but otherwise had little effect on models (tables S6-10); weak 

effects of latitude and precipitation became not significant in M (termite undiscovered) decay 

models (tables S2, 7). Holes in the mesh did not alter decay rates (e.g., due to altered 

microclimate) when we analyzed the effect of hole treatment (holes/no holes) using a two-tailed 

test for all blocks undiscovered by termites (main effect and all interactions involving that 

treatment P > 0.4). For analyses, we used the "lubridate" (31), "boot" (32), "report" (33), "see" 

(34), "correlation" (35), "modelbased" (36), "effectsize" (37), "parameters" (38), "performance" 

(39), "bayestestR" (40), "datawizard" (41), "insight" (42), "easystats" (43), "lme4" (44), 

"patchwork" (45), "ggeffects" (46), "forcats" (47), "stringr" (48), "dplyr" (49), "purrr" (50), 

"readr" (51), "tidyr" (52), "tibble" (53), "ggplot2" (54), "tidyverse" (55), “khroma” (56) and 

“car” (57) packages in R (v4.04) (30). 

Fixed- versus mixed-effects models - We assumed that geographic signatures in spatial 

and climate variables would already account for variation associated with “site”. Further, 

including “site” in models would make it difficult to estimate coefficients associated with 

climate variables; we modeled discovery and decay without explicitly accounting for multiple 

wood blocks and harvests associated with each “site”. To confirm that outcomes of statistical 

hypothesis tests were robust to this decision, we also fit mixed effects models (using lmer and 

glmer functions from "lme4" (44)) including each “site” as a random effect (Table S12). 

Termite discovery land surface area estimations - To explore amount of land surface area 

potentially impacted by high termite discovery (assuming all else as equal, e.g., we did not 

model how climate change alters vegetation distributions, land surface area due to sea level rise, 

or termite or microbial decay rates), we first estimated from our model where high termite 

discovery (>50%) should be expected based on MAT and MAP macroclimate relationships from 

our data (Table S3). To bracket how climate change may lead to spatial shifts in termite 

discovery by mid-century, we estimated land area predicted to have high discovery by 2041- 

2060 based on all available mid-century CMIP6 climate models for scenarios SSP 5-8.5 or SSP 

1-2.6 downscaled to 2.5 minute resolution and bias corrected using WorldClim v2.1 (27). 

Finally, we estimated percentage land area that has only rare termite discovery (<5%), currently 

has low and is not expected to have high discovery (>5% & <50%) and are warm sites (either 

now or in mid-century) that are drier or wetter than any sites in the current study by + 10%, 

meaning we were unable to predict termite discovery rates. Here, we focus on areas that 

currently have <50% discovery but are expected to expand to >50% discovery by mid-century. 

The 50% discovery threshold is arbitrary, but we selected it as it is both a biologically useful part 

of climate-termite discovery relationships and statistically robust. Focusing on a 50% threshold 

is analogous to common approaches in many other fields (e.g., median lethal dose, LD50). 
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Fig. S1. 

Termite discovery versus key spatial and climatic variables: (A) Elevation, (B) Absolute 

(Latitude), (C) Mean annual temperature (MAT), and (D) and Mean annual precipitation (MAP). 

We ran logistic regressions with individual spatial and climatic variables as predictors of 

probability of wood block discovery with an offset for time since deployment. The solid black 

line is the model best fit and dashed line is the 95% CI (table S1). Termite discovery was 

estimated at the block level using all wood blocks in the microbe+termite treatment (discovered 

or undiscovered) per site. Each circle represents the estimated percentage of wood blocks with 

evidence of termites per year at a site. Median termite discovery = 10%; 95th percentile = 82%. 
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Fig. S2. 

Microbe (termite undiscovered) and microbe + termite (termite discovered) decay (k) 

versus key spatial and climatic variables: (A) Elevation, (B) (Absolute) Latitude, (C) Mean 

annual temperature (MAT), and (D) and Mean annual precipitation (MAP). Note that the y-axis 

is ln-transformed but tick labels represent untransformed values for decay. We ran linear 

regressions with individual spatial and climatic variables as predictors of decay rates (k) 

separately for termite discovered and undiscovered wood categories. Blue lines denote termite 

undiscovered wood blocks and orange lines denote termite discovered wood blocks. The solid 

lines are the model best fit and dashed lines are the 95% CI (tables S2-3). There were no 

significant relationships between termite discovered decay and either (Absolute) Latitude (B) or 

MAP (D). Median termite undiscovered wood mass loss in two years = 11% (95th percentile = 

43%), and median estimated termite discovered wood mass loss in two years = 23% (95th 

percentile = 92%). 
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Fig. S3. 

Examples of decayed wood blocks. (A) Termite discovered wood from ‘Gingin’ (Western 

Australia) after 488 days of exposure. (B) Microbes wood undiscovered by termites from the 

same harvest as the pair of blocks shown in (A) for comparison. (C) Termite discovered wood 

from Australia savanna from the pilot study after 339 days of exposure. (D) The same block 

shown in C with wood (upper left) and imported soil (right). 
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Fig. S4. 

Relationship between discovery and decay (k) of wood blocks. Note that the y-axis is ln- 

transformed but tick labels represent untransformed values for decay. Decay increased 

exponentially at sites as the percentage of wood blocks discovered by termites increased 

(ANOVAdiscovery: F1,119 = 77.1, P < 0.001), as shown by the black line (+/- 95% CI). The rate of 

increase differed among biomes (ANOVAdiscovery:biome: F5,119 = 3.5, P = 0.005), with the steepest 

slope for subtropical deserts and the shallowest slope for temperate rain forest. The analysis is 

limited to biomes for which there were at least six sites with termite discovery. 
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Table S1. 

Best fit bivariate models for termite discovery versus key spatial and climatic variables: 

Elevation, Absolute (Latitude), Mean annual temperature (MAT), and Mean annual precipitation 

(MAP), including Parameter (Par), Odds Ratio, SE, 95% CI, z-scores, P values and McFadden’s 

pseudo-R2, (DF = 4465, N = 4466). We ran logistic regressions with individual spatial and 

climatic variables as predictors of probability of wood block discovery with an offset for time 

since deployment. Termite discovery was estimated at the block level using all wood blocks in 

the microbe+termite treatment (discovered or undiscovered) per site. Significant parameters are 

in bold. 
 

 

 

Par Odds Ratio SE 95% CI z P pseudo-R2 

Model 
     

0.229 

Intercept 0.62 0.05 (0.53, 0.72) -6.34 < 0.001 
 

Absolute 

Latitude 

 
0.91 

 
2.82E-03 

 
(0.90, 0.92) 

 
-30.32 

 
< 0.001 

 

Model 
     

0.007 

Intercept 0.08 4.10E-03 (0.07, 0.09) -48.02 < 0.001 
 

Elevation 1 5.11E-05 (1.00, 1.00) -5.99 < 0.001 
 

Model 
     

0.290 

Intercept 5.48E-04 9.38E-05 (0, 0) -43.88 < 0.001 
 

MAT 1.31 0.01 (1.29, 1.34) 31.64 < 0.001 
 

Model 
     

0.063 

Intercept 0.02 1.43E-03 (0.01, 0.02) -48.18 < 0.001 
 

MAP 1 5.04E-05 (1.00, 1.00) 18.06 < 0.001 
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Table S2. 

Best fit bivariate models for decay (ln(k)) versus key spatial and climatic variables: 

Elevation, Absolute (Latitude), Mean annual temperature (MAT), and Mean annual precipitation 

(MAP), including Termite discovery (Dis; Termite undiscovered wood blocks (M), Termite 

discovered wood blocks (M+T)), Parameter (Par), Coefficient (Coef), SE, 95% CI, z-score, P 

values and Adjusted-R2 (DF = 221, N = 225). We ran linear regressions with individual spatial 

and climatic variables as predictors of decay rates (k) separately for termite discovered and 

undiscovered wood categories. Decay was estimated as the exponential rate of decay per year 

and was averaged by site and natural-log transformed prior to analysis. Significant parameters 

are in bold. 
 

 

Dis Par Coef SE 95% CI t df P R2 (Adj) 

Model 
       

0.021 

M+T Intercept -1.51 0.25 (-1.99, -1.02) -6.12 91 < 0.001 
 

 
Latitude -0.02 9.87E-03 (-0.04, 0) -1.73 91 0.087 

 

Model 
       

0.060 

M Intercept -2.38 0.14 (-2.64, -2.11) -17.48 130 < 0.001 
 

 
Latitude -0.01 4.54E-03 (-0.02, 0) -3.07 130 0.003 

 

Model 
       

0.253 

M+T Intercept -1.19 0.17 (-1.53, -0.85) -7.01 91 < 0.001 
 

 
Elevation -6.99E-04 1.23E-04 (0, 0) -5.67 91 < 0.001 

 

Model 
       

0.128 

M Intercept -2.43 0.1 (-2.62, -2.24) -25.38 130 < 0.001 
 

 
Elevation -3.35E-04 7.46E-05 (0, 0) -4.49 130 < 0.001 

 

Model 
       

0.521 

M+T Intercept -4.7 0.3 (-5.29, -4.10) -15.7 91 < 0.001 
 

 
MAT 0.16 0.02 (0.13, 0.20) 10.06 91 < 0.001 

 

Model 
       

0.310 
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M Intercept -3.84 0.16 (-4.15, -3.53) -24.72 130 < 0.001  

 
MAT 0.07 9.18E-03 (0.05, 0.09) 7.75 130 < 0.001 

 

Model 
       

-0.010 

M+T Intercept -1.93 0.33 (-2.58, -1.28) -5.86 91 < 0.001 
 

 
MAP 5.07E-05 2.01E-04 (0, 0) 0.25 91 0.801 

 

Model 
       

0.045 

M Intercept -3.1 0.16 (-3.41, -2.80) -19.95 130 < 0.001 
 

  
MAP 

 
2.72E-04 

 
1.01E-04 

(<-0.0001, 

<0.0001) 

 
2.69 

 
130 

 
0.008 
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Table S3. 

Best fit multivariate model for probably of termite discovery versus climatic sensitivities: 

Mean annual temperature (MAT) and Mean annual precipitation (MAP), including Parameter 

(Par), Odds Ratio, SE, 95% CI, z-scores, P values (McFadden’s pseudo-R2 = 0.31, DF = 4462, N 

= 4466). We ran a multivariate logistic binomial regression including MAT, MAP and their 

interaction as predictors of probability of wood block discovery with an offset for time since 

deployment. Termite discovery was estimated at the block level using all wood blocks in the 

microbe+termite treatment (discovered or undiscovered) per site. Significant parameters are in 

bold. 
 

 
 

Par 
Odds 
Ratio 

 

SE 
 

95% CI 
 

z 
 

P 

Intercept 6.32E-06 2.94E-06 (2.52E-06, 1.56E-05) -25.76 < 0.001 

MAP 1 3.13E-04 (1.00, 1.00) 10.73 < 0.001 

MAT 1.67 0.04 (1.59, 1.75) 21.21 < 0.001 

MAP × MAT 1 1.52E-05 (1.00, 1.00) -11.17 < 0.001 
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Table S4. 

Best fit multivariate model for microbe (termite undiscovered) wood decay (ln(k)) versus 

climatic sensitivities: Mean annual temperature (MAT) and Mean annual precipitation (MAP), 

including Parameter (Par), Coefficient (Coef), SE, t-values and P values (R2 = 0.214, DF = 128, 

N = 132). We ran a multivariate linear regression including MAT, MAP and their interaction for 

the undiscovered wood category. Significant parameters are in bold. Decay was estimated as the 

exponential rate of decay per year and was averaged by site and natural-log transformed prior to 

analysis. 
 

 

 
 

Par Coef SE t P 

Intercept -4.38 0.48 -9.12 < 0.001 

MAT 0.09 0.03 3.18 0.002 

MAP 0.73 0.40 1.82 0.072 

 
MAT × MAP 

 
-0.03 

 
0.02 

 
-1.55 

 
0.124 
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Table S5. 

Best fit multivariate model for microbe + termite (termite discovered) wood decay (ln(k)) 

versus climatic sensitivities: Mean annual temperature (MAT) and Mean annual precipitation 

(MAP), including Parameter (Par), Coefficient (Coef), SE, t-values and P values (R2 = 0.69, DF 

= 89, N = 93) We ran a multivariate linear regression including MAT, MAP and their interaction 

for the discovered wood category. Significant parameters are in bold. Decay was estimated per 

year, averaged by site and natural-log transformed prior to analyses. 
 

 

 
 

Par Coef SE t P 

Intercept -4.97 0.78 -6.35 < 0.001 

MAT 0.24 0.04 6.12 < 0.001 

MAP -0.55 0.49 -1.13 0.260 

 
MAT × MAP 

 
-0.007 

 
0.02 

 
-0.31 

 
0.755 
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Table S6. 

Best fit bivariate models for termite discovery versus key spatial and climatic variables and 

wood chemistry: Mean annual temperature (MAT), Mean annual precipitation (MAP), % 

nitrogen (%N) and % carbon (%C), including Parameter (Par), Odds Ratio, SE, 95% CI, z- 

scores, P values and McFadden’s pseudo-R2, (DF = 4465, N = 4466). We ran logistic regressions 

with individual spatial and climatic variables, as well as %N and %C, as predictors of probability 

of block discovery with an offset for time since deployment. Termite discovery was estimated at 

the block level using all wood blocks in the microbe+termite treatment (discovered or 

undiscovered) per site. Significant parameters are in bold. 
 

pseudo- 

Par Odds Ratio SE 95% CI z P R2 

Model 
      

Intercept 7.00E-28 2.26E-27 (0, 0) -19.39 < 0.001 0.311 

Absolute 

Latitude 

 
0.93 

 
3.13E-03 

 
(0.92, 0.94) 

 
-21.62 

 
< 0.001 

 

%N 1.77E+09 2.46E+09 (1.18E+08, 2.76E+10) 15.31 < 0.001 
 

%C 3.28 0.20 (2.91, 3.71) 19.09 < 0.001 
 

Model 
      

Intercept 4.18E-42 1.35E-41 (0, 0) -29.45 < 0.001 0.215 

Elevation 1 5.86E-05 (1.00, 1.00) 4.08 < 0.001 
 

%N 2.73E+14 3.98E+14 (1.61E+13, 4.86E+15) 22.82 < 0.001 
 

%C 5.91 0.37 (5.24, 6.69) 28.52 < 0.001 
 

Model 
      

Intercept 1.20E-20 4.08E-20 (0, 0) -13.43 < 0.001 0.318 

MAT 1.23 0.01 (1.21, 1.26) 21.32 < 0.001 
 

 
%N 

 
1.91E+06 

 
2.93E+06 

(9.754E+04, 

3.96E+07) 

 
9.44 

 
< 0.001 

 

%C 2.14 0.14 (1.87, 2.44) 11.20 < 0.001 
 

Model 
      

Intercept 2.08E-38 6.37E-38 (0, 0) -28.29 < 0.001 0.223 
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MAP 1 6.44E-05 (1.00, 1.00) 7.57 < 0.001 

%N 1.80E+12 2.75E+12 (9.29E+10, 3.71E+13) 18.47 < 0.001 

%C 5.01 0.30 (4.46, 5.63) 27.21 < 0.001 
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Table S7. 

Best fit bivariate models for decay (ln(k)) versus key spatial versus climatic variables and 

wood chemistry: Elevation, Absolute (Latitude), Mean annual temperature (MAT), Mean 

annual precipitation (MAP), % nitrogen (%N) and % carbon (%C), including Termite discovery 

(Dis; Termite undiscovered wood blocks (M), Termite discovered wood blocks (M+T)), 

Parameter (Par), Coefficient (Coef), SE, 95% CI, z-score, P values and Adjusted-R2 (DF = 217, 

N = 225). We ran linear regressions with individual spatial and climatic variables, as well as %N 

and %C, as predictors of decay rates (k) separately for termite discovered and undiscovered 

wood categories. Decay was estimated as the exponential rate of decay per year and was 

averaged by site and natural-log transformed prior to analysis. Significant parameters are in bold. 
 

 

 

Dis Par Coef SE 95% CI t df P R2 (Adj) 

Model 
     

M+T Intercept -52.33 7.11 (-66.45, -38.21) -7.36 89 < 0.001 0.368 

  

Absolute Latitude 
 

3.03E-03 
 

8.46E-03 
 

(-0.01, 0.02) 
 

0.36 
 

89 
 

0.721 

 

 
%N 13.51 2.93 (7.68, 19.34) 4.6 89 < 0.001 

 

 
%C 0.99 0.14 (0.71, 1.26) 7.08 89 < 0.001 

 

Model 
        

M Intercept -28.51 4.51 (-37.43, -19.59) -6.32 128 < 0.001 0.251 

 
Absolute Latitude -3.17E-03 4.45E-03 (-0.01, 0.01) -0.71 128 0.478 

 

 
%N 9.19 1.87 (5.48, 12.89) 4.9 128 < 0.001 

 

 
%C 0.5 0.09 (0.33, 0.67) 5.71 128 < 0.001 

 

Model 
        

M+T Intercept -40.67 7.13 (-54.83, -26.50) -5.7 89 < 0.001 0.435 

 
Elevation -3.94E-04 1.20E-04 (0, 0) -3.28 89 0.001 

 

 
%N 10.47 2.78 (4.95, 15.99) 3.77 89 < 0.001 

 

 
%C 0.77 0.14 (0.49, 1.04) 5.47 89 < 0.001 

 

Model 
        

M Intercept -25.71 4.24 (-34.09, -17.33) -6.07 128 < 0.001 0.291 
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 Elevation -1.99E-04 7.16E-05 (0, 0) -2.78 128 0.006  

%N 8.38 1.79 (4.85, 11.92) 4.69 128 < 0.001 

%C 0.45 0.08 (0.28, 0.61) 5.4 128 < 0.001 

Model 
       

M+T Intercept -24.08 7.18 (-38.35, -9.82) -3.35 89 0.001 0.555 

 
MAT 0.13 0.02 (0.09, 0.17) 6.12 89 < 0.001 

 

 
%N 2.76 2.91 (-3.01, 8.54) 0.95 89 0.344 

 

 
%C 0.4 0.15 (0.11, 0.69) 2.76 89 0.007 

 

Model 
       

M Intercept -17.93 4.66 (-27.15, -8.71) -3.85 128 < 0.001 0.348 

 
MAT 0.05 0.01 (0.03, 0.07) 4.43 128 < 0.001 

 

 
%N 5.16 1.94 (1.32, 9.00) 2.66 128 0.009 

 

 
%C 0.28 0.09 (0.09, 0.46) 2.99 128 0.003 

 

Model 
       

M+T Intercept -52.64 6.62 (-65.80, -39.48) -7.95 89 < 0.001 0.387 

 
MAP -3.52E-04 2.06E-04 (0, 0) -1.71 89 0.091 

 

 
%N 17 3.55 (9.96, 24.05) 4.79 89 < 0.001 

 

 
%C 0.99 0.13 (0.73, 1.25) 7.55 89 < 0.001 

 

Model 
       

M Intercept -28.92 4.18 (-37.19, -20.64) -6.92 128 < 0.001 0.254 

 
MAP 9.76E-05 9.87E-05 (0, 0) 0.99 128 0.325 

 

 
%N 8.79 1.96 (4.92, 12.66) 4.49 128 < 0.001 

 

 
%C 0.5 0.08 (0.34, 0.67) 6.14 128 < 0.001 
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Table S8. 

Best fit multivariate model for probably of termite discovery versus climatic sensitivities 

and wood chemistry: Mean annual temperature (MAT), Mean annual precipitation (MAP), % 

nitrogen (%N) and % carbon (%C) including Parameter (Par), Odds Ratio, SE, 95% CI, z-scores, 

P values (McFadden’s pseudo-R2 = 0.34, DF = 4460, N = 4466). We ran a multivariate logistic 

binomial regression including MAT, MAP and their interaction, as well as %N and %C, as 

predictors of probability of block discovery with an offset for time since deployment. Termite 

discovery was estimated at the block level using all wood blocks in the microbe+termite 

treatment (discovered or undiscovered) per site. Significant parameters are in bold. 
 

 

 

Par Odds Ratio SE 95% CI z P 

Intercept 9.25E-21 2.93E-20 (1.77E-23, 4.35E-18) -14.57 < 0.001 

MAP 1 3.14E-04 (1.00, 1.00) 10.95 < 0.001 

MAT 1.59 0.04 (1.51, 1.67) 18.26 < 0.001 

%N 1.20E+06 1.68E+06 (7.89E+04, 1.93E+07) 9.98 < 0.001 

%C 1.95 0.12 (1.73, 2.21) 10.58 < 0.001 

MAP × 
MAT 

 
1 

 
1.55E-05 

 
(1.00, 1.00) 

 
-11.4 

 
< 0.001 
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Table S9. 

Best fit multivariate model for microbe (termite undiscovered) wood decay (ln(k)) versus 

climatic sensitivities and wood chemistry: Mean annual temperature (MAT), Mean annual 

precipitation (MAP), % nitrogen (%N) and % carbon (%C), including Parameter (Par), 

Coefficient (Coef), SE, t-values and P values (R2 = 0.245, DF = 126, N = 132). We ran a 

multivariate linear regression including MAT, MAP and their interaction, as well as %N and 

%C, for the undiscovered wood category. Decay was estimated as the exponential rate of decay 

per year and was averaged by site and natural-log transformed prior to analysis. Significant 

parameters are in bold. 
 

 

Par Coef SE t P 

Intercept -17.08 5.26 -3.25 0.002 

MAT 0.07 0.03 2.58 0.011 

MAP 0.68 0.4 1.71 0.09 

%N 5.84 2.2 2.65 0.009 

%C 0.25 0.1 2.35 0.021 

MAT × MAP -0.03 0.02 -1.5 0.136 
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Table S10. 

Best fit multivariate model for microbe + termite (termite discovered) wood decay (ln(k)) 

versus climatic sensitivities and wood chemistry: Mean annual temperature (MAT), Mean 

annual precipitation (MAP), % nitrogen (%N) and % carbon (%C), including Parameter (Par), 

Coefficient (Coef), SE, t-values and P values (R2 = 0.70, DF = 87, N = 93). We ran a multivariate 

linear regression including MAT, MAP and their interaction, as well as %N and %C, for the 

discovered wood category. Decay was estimated as the exponential rate of decay per year and 

was averaged by site and natural-log transformed prior to analysis. Significant parameters are in 

bold. 
 

 

 
Par Coef SE t P 

Intercept -14.42 5.03 -2.87 0.005 

MAT 0.24 0.04 6.23 < 0.001 

MAP -0.43 0.51 -0.84 0.405 

%N 5.17 2.31 2.24 0.028 

%C 0.18 0.1 1.8 0.075 

MAT × MAP -0.02 0.02 -0.85 0.400 
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Table S11. 

Description of study sites. Information on each site is provided including location (country, 

subregion, biome, latitude, longitude), attributes of deployed blocks (date of deployment, type of 

wood used, initial nitrogen and carbon concentrations) and attributes of harvested blocks 

(number of days exposed, number of blocks harvested, percent discovered by termites, average 

and standard deviation [SD] for the decay constant [k] associated with microbial decay or 

combined termite + microbial decay [NA values indicate that decay class was not observed for 

that harvest]). 

 

(see separate .csv file) 
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Table S12. 

Comparison of fixed-effects and mixed-effects models. Summary of differing statistical 

hypothesis test outcomes, where present, of models that include only fixed-effects parameters 

and those that also include site-level random effects. Parameter estimates of all fixed-effects 

models are presented in Tables S1-S10. To compare parameter estimates across each pair of 

models, see “MEmodelcomp.html” at the project repository 

(https://doi.org/10.5281/zenodo.6804781). 

 

Location of table where 

model(s) presented 

Differences observed between fixed- and mixed-effects 

models, where present 

 
 

Table S1 Elevation is nonsignificant in the mixed-effects model. 

Consistent outcomes observed for all of the other three 

models. 

Table S2 Consistent outcomes observed for all eight models. 
 

Table S3 Consistent outcomes observed. 

Table S4 Consistent outcomes observed. 
 

Table S5 Consistent outcomes observed. 

Table S6 Consistent outcomes observed for all four models. 
 

Table S7 Consistent outcomes observed for all eight models. 

Table S8 Consistent outcomes observed. 
 

Table S9 Consistent outcomes observed. 

Table S10 %C is marginally significant in the mixed-effects model. 

Consistent outcomes observed for all other parameters. 
 


