
Article https://doi.org/10.1038/s41467-025-59000-0

Nitrogen deposition favors later leaf
senescence in woody species

Jian Wang 1,2,5, Xiaoyue Wang 1,2,5, Josep Peñuelas 3,4, Hao Hua 1,2 &
Chaoyang Wu 1,2

China has experienced an unprecedented increase in nitrogen deposition over
recent decades, threatening ecosystem structure, functioning, and resilience.
However, the impact of elevated nitrogen deposition on the date of foliar
senescence remains widely unexplored. Using 22,780 in situ observations and
long-term satellite-based date of foliar senescence measures for woody spe-
cies across China, we find that increased nitrogen deposition generally delays
date of foliar senescence, with strong causal evidence observed at site-to-
region scales. Changes in climate conditions and nitrogen deposition levels
jointly controlled the direction of date of foliar senescence trends (advance or
delay). The spatial variability of nitrogen deposition effects can be related to
plant traits (e.g., nitrogen resorption and use efficiencies), climatic conditions,
and soil properties. Moreover, elevated nitrogen deposition delays date of
foliar senescence by promoting foliar expansion and enhancing plant pro-
ductivity during the growing season, while its influence on evapotranspiration
may either accelerate or delay date of foliar senescence depending on local
water availability. This study highlights the critical role of nitrogen deposition
in regulating date of foliar senescence trends, revealing a key uncertainty in
modeling date of foliar senescence driven solely by climate change and its far-
reaching implications for ecosystem-climate feedbacks.

In recent decades, China has witnessed an unprecedented surge in
nitrogen (N) deposition (Ndeposition), primarily due to anthropogenic
activities like agricultural fertilization and industrial and automotive
combustion1–3. Elevated Ndeposition could induce a nutrient imbalance
by suppressing other essential nutrients like phosphorus, accelerate
biodiversity loss, and impair soil health and fertility, cumulatively
influencing ecosystem carbon (C) cycling and resilience4–7. IncreasedN
availability prompts plants to remobilize nutrients across different
tissues to optimize growth and metabolic processes, as N is a key
component of proteins, nucleic acids, and other essential molecules
involved in plant development8–10. Onemajor consequence of nutrient
remobilization is initiating the process of foliar senescence11, however,

the degree to which variations in Ndeposition influence date of foliar
senescence (DFS) trends may vary across space and time12,13, necessi-
tating a thorough comprehension of Ndeposition-DFS relationship.

Plant autumn phenology, particularly DFS, plays a critical role in
regulating the length of the growing season and influencing nutrient
and C cycles in ecosystems14–17. As such, DFS has been widely incor-
porated into ecosystem models to reconstruct historical C uptake
patterns and predict future variations17,18. The gradually shortening
photoperiod during autumn has been considered the primary trigger
for DFS, enabling trees to reallocate nutrients from leaves before frost
damage occurs19,20. Additionally, rising temperature, increased pre-
cipitation, and reduced wind speed have been shown to contribute to
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delayed DFS to varying extents21–23. Although studies have also high-
lighted the regulatory effects of Ndeposition on DFS trends, findings
remain inconsistent24–27. In N-poor habitats, increased Ndeposition can
alleviate nutrient limitations, sustain photosynthetic capacity, and
slow chlorophyll degradation, thereby delaying DFS12,24. However, the
impact of Ndeposition on DFS varies across species due to differences in
species-specific N resorption efficiency, growth strategies, and envir-
onmental conditions28,29. In some cases, excessive Ndeposition may dis-
rupt plant nutrient absorption, leading to “luxury consumption” of N
and reduced N use efficiency6. These nutrient imbalances and meta-
bolic disruptions can potentially accelerate DFS, as plants prioritize
survival by reallocating resources from older leaves30. In addition to
nutrient availability and limitation, elevated Ndeposition may influence
DFS indirectly through biophysical processes, such as regulation of
foliar area24, evapotranspiration22, and C sink capacity31. Most previous
studies have relied on short-term fertilization experiments focusing on
one or a few species, creating substantial uncertainty in assessing
Ndeposition effects on DFS. This highlights the need for a comprehen-
sive, multi-scale investigation into how Ndeposition influences DFS in
natural ecosystems.

In this work, by analyzing in situ observations across 380 woody
species, encompassing 22,780 site-year DFS records, along with
satellite-based DFS estimates from Global Inventory Modeling and
Mapping Studies (GIMMS, 1982–2020) and Moderate Resolution
Imaging Spectroradiometer (MODIS, 2001–2020) (Supplementary
Fig. 1, Table 1), we show that elevated Ndeposition tends to delay DFS
across site-to-region scales for woody species in China. The spatial
variability of Ndeposition effects is likely driven by differences in plant N
resorption and use efficiency. Finally, we establish potential linkages
between Ndeposition and DFS through foliar development, photosynth-
esis and evapotranspiration processes.

Results
Responses of DFS trends to Ndeposition variations
Touncover causal relationships in the time series data ofNdeposition and
DFS, we used a causal structure learning method, i.e., Peter–Clark
Momentary Conditional Independence Plus (PCMCI + ), to address
issues like temporal autocorrelation, indirect links and effects of cli-
matic drivers (Methods, Fig. 1a, b). We identified directional causality
from Ndeposition to DFS in 77.3, 71.9, and 63.6% of the time series for
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Fig. 1 | Causality and correlation between nitrogen deposition (Ndeposition) and
date of foliar senescence (DFS) at site and regional scales. a,bThe framework of
casual analysis using the PCMCI+ method (Methods). Data input includes site-
species-specific or pixel-level time series of Ndeposition, temperature (Temp.), pre-
cipitation (Prec.), shortwave radiation (Srad.), and DFS. c The frequencies of the
time series with causality from climatic drivers and Ndeposition to DFS for in situ,

GIMMS, and MODIS-based analyses. d The distribution of the time series with
significantlypositive, significantly negative, and non-significant partial correlations
between Ndeposition and DFS, after excluding the effects of climate change. Sig-
nificance was set at p <0.05. A two-sided t-test was used to assess the significance
of the partial correlation analysis. Source data are provided as a Source Data file.
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in situ (site-species-specific), GIMMS, andMODIS (pixel-level) analyses,
respectively, which are comparable with climatic drivers, i.e., tem-
perature, precipitation, and shortwave radiation (Fig. 1c). For in situ-
based analysis, 66.5% (24.7%, p < 0.05) of the DFS time series exhibited
positive partial correlations with Ndeposition, while only 33.5% (5.4%,
p <0.05) showed negative partial correlations. Satellite-based DFS
analyses yielded similar results: 54.7% (26.1%, p < 0.05) and 51.3%
(16.7%, p < 0.05) of pixels demonstrated positive correlations, while
45.3% (12.4%, p <0.05) and 48.7% (7.4%, p < 0.05) exhibited negative
correlations for GIMMS and MODIS, respectively (Fig. 1d). Grouping
vegetation into forest and shrub generates similar results at site-to-
region scales (Supplementary Fig. 2). Fieldmeasurements ofNdeposition,
includingwet and dry deposition (NHx andNOy), also showed positive
correlations with DFS, further confirming the delaying effects of
Ndeposition on DFS (Supplementary Fig. 3).

We further assessed the spatial consistency between directions of
DFS trends (advance or delay) and actual effects of each driver. For
each time series, the actual effects of each driver were determined
based on the sign of the product between the driver’s trend and the
partial correlation coefficient with DFS, where a positive sign indicates
delay and a negative sign indicates advance (Methods). Our analysis
found that 82% of the site-species-specific time series exhibited spatial
consistency between the directions of DFS trends and the actual effect
of Ndeposition, while only 52%, 52%, and 50% of the time series showed
spatial consistency for temperature, precipitation, and shortwave
radiation, respectively (Fig. 2a). Similar patterns were observed in the
GIMMS and MODIS analyses (Fig. 2b, c), with only minor variations in
these proportions. Additionally, GIMMS and MODIS analyses showed
comparable spatial consistency, with 68.3% of areas displaying con-
sistently matched directions for Ndeposition (Fig. 2d).

Spatial attribution analysis of Ndeposition effects
We ranked the relative importance of various biotic and abiotic factors
in explaining the spatial variability of Ndeposition effects, here Ndeposition

effects were determined as the partial correlation coefficients between
Ndeposition and DFS, using a random forest model with the Shapley
Additive Explanations (SHAP) analysis (Methods). Among all factors,
plant N resorption and use efficiency, along with climate conditions
(i.e., multi-year mean shortwave radiation and temperature), were the
most influential, together accounting for the spatial variability of
Ndeposition effects in forest plants (Fig. 3a, Supplementary Fig. 4a).
Grouping all factors into four catergories indicates that N-related
factorsweremore important than climate, vegetation, and soil factors.
Additionally, the SHAP values of the random forest model revealed
that areas with higher N resorption efficiency or lower N use efficiency
often exhibited a positive correlation between DFS and Ndeposition, as
confirmed by the variations in SHAP values along plant N resorption
and use efficiency (Fig. 3b, c, Supplementary Fig. 4b, d). Notably, areas
with better plant conditions, indicated by higher above-ground bio-
mass, vegetation optical depth (a proxy of canopy biomass and water
content), species richness, and forest age, tended to show negative
correlations betweenDFS andNdeposition (Fig. 3a). Similar patternswere
observed for shrub plants, where N availability, temperature, and N
resorption efficiency predominantly explained the spatial variability of
Ndeposition-DFS correlations (Supplementary Figs. 5 and 6).

Potential mediating processes underlying Ndeposition-DFS
relationship
We tested three hypotheses to explain the temporal linkage between
Ndeposition and DFS: (H1) elevated Ndeposition expands foliar area and
slows chlorophyll degradation during the growing season, thereby
delaying DFS12,24; (H2) if the growing season’s duration is constrained
by the C sink capacity of trees, increased productivity due to Ndeposition

should lead to earlier DFS31; and (H3) Ndeposition could increase

evapotranspiration (ET) rates and accelerate soil and plant water loss,
resulting in earlier DFS22.

To test these hypotheses, we performed partial correlation ana-
lyses and structural equation modeling (SEM) using three mediators
during the growing season: leaf area index (LAI), solar-induced chlor-
ophyll fluorescence (SIF, a satellite-based proxy for photosynthesis),
and ET (Methods). All three mediators exhibited predominantly posi-
tive partial correlations with Ndeposition, suggesting that Ndeposition sti-
mulates plant growth and productivity and associated water loss
during the growing season (Fig. 4a). An increase in LAI was associated
with delayed DFS, as indicated by predominantly positive correlations
(16.5% positive vs. 8.2% negative; p < 0.05). Increased SIF during the
growing season showed positive correlations with DFS in 20.1% of the
areas, nearly twice the percentage of regions with negative correla-
tions (10.9%) (p < 0.05). ET exhibited divergent effects on DFS with no
dominant pattern (11.3% positive vs. 10.6% negative; p <0.05) (Fig. 4b),
and positive ET effects were found in regions with relatively high soil
moisture (Supplementary Fig. 7).

We further categorized regions into two groups based on the
correlation between Ndeposition and DFS: (G1) pixels with significantly
positive correlations, and (G2) pixels with significantly negative cor-
relations (p <0.05). Separate SEManalyses for the twogroups revealed
distinct pathway effects. Elevated Ndeposition increased LAI, SIF, and ET
in both groups. In regions with positive correlations (G1), three
potential mediators contributed to a delay in DFS to varying extents
(Fig. 4c). Conversely, in regions with negative correlations (G2),
increased LAI marginally delayed DFS, but higher SIF and ET were
associatedwith earlier DFS, collectively leading to earlier DFS (Fig. 4d).
In situ- and MODIS-based analyses generated similar results (Supple-
mentary Figs. 8 and 9), confirming that Ndeposition-driven foliar
expansion, increased productivity, and accelerated ET during the
growing season collectively and variably influenceDFS trends. Overall,
these findings support hypothesis H1, while refuting H2 and H3.
Because the cumulative productivity during the growing season pre-
dominantly exhibited delaying effects on DFS, with no consistent
delaying or advancing effects of ET on DFS.

Discussion
Understanding the ecological consequences of elevated Ndeposition is
pivotal for unraveling the complex interplay between vegetation and
climate, which are essential for projecting future C cycles in terrestrial
ecosystems4. As a key determinant of Rubisco and chlorophyll synth-
esis, plant leaf N that affected by Ndeposition rates could influence
photosynthetic capacity, chloroplast degradation, and foliar senes-
cence accordingly25,29. Using in situ records and satellite-based mea-
sures of DFS for woody species in China, we identified a notable
delaying effect of Ndeposition on DFS, consistent with findings from
previous N addition experiments12,24. The prevalence of the delaying
effect was more pronounced at the site scale (in situ) than at the
regional scale (e.g., GIMMS and MODIS), likely due to pixel mixing
effects caused by coarse spatial resolutions (Fig. 1c). Causal analyses
incorporating temporal variations of climatic factors and Ndeposition

confirmed the notable influence of Ndeposition on DFS variations for
woody species, which could be comparable to, or even stronger than,
the effects of climate change (Fig. 1c).

High spatial variability in Ndeposition effects indicates non-uniform
responses of DFS, likely mediated by local plant traits, climatic con-
ditions, and soil properties27. For example, plants with high N resorp-
tion efficiency or low N use efficiency, particularly in nutrient-poor
environments, exhibited positive response of DFS to Ndeposition (Fig. 3,
Supplementary Figs. 4–6). This response may reflect an ecologically
important strategy for woody species to conserve, restore, and relo-
cate nutrients for subsequent growth and fitness32,33. In N-limited
regions, delayed DFS combined with high leaf N resorption efficiency
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helps plants to meet their N demands24. Additionally, the relationship
between Ndeposition and DFS may be influenced by above-ground bio-
mass, species richness, and forest age (Fig. 3a, Supplementary Fig. 4a),
underscoring the importance of plant characteristics, species com-
position, and community assemblage in regulating Ndeposition effects. A
recent study emphasized the role of Ndeposition in driving westward
shifts of European forestplants, linked to recovery frompast acidifying
deposition34, suggesting the interactive effects of Ndeposition and soil
acid stress on vegetation dynamics. Similarly, we observed that
Ndeposition tends to accelerate foliar senescence in low-pH regions,
indicating a dependence of Ndeposition effects on soil pH conditions
(Fig. 3a, Supplementary Fig. 10).

Exploring the temporal linkage between Ndeposition and DFS pre-
sents additional challenges. We tested three hypotheses regarding
Ndeposition-induced foliar expansion, productivity enhancement, and
water loss. Our findings suggest that increases in LAI can slow chlor-
ophyll degradation, thereby delaying DFS.While previous studies have
suggested a negative relationship between growing-season pro-
ductivity and DFS29—attributed to sink limitations in plants and the
premise that the growing season’s duration is constrainedby theC sink
capacity of trees—our results contrast with this view. Using SIF as a
proxy for productivity, we identified a predominantly positive corre-
lation between growing-seasonproductivity andDFS (Fig. 4b), aligning
with evidence from eddy-covariance flux measurements35 and free-air
CO2 enrichment (FACE) experiments36. Currently, uncertainties remain
regarding whether woody plants experience sink limitations under
real-world conditions37 and whether Ndeposition influences sink activity
and capacity, particularly in N-limited regions38. Given these ongoing
debates, future research should prioritize process- and mechanism-
based investigations of the sink regulation of photosynthesis and
productivity-DFS relationship, accounting for temporal dynamics and
spatial scales. Additionally, while some studies have linked ET-induced

water loss with accelerated DFS22,30, our results suggest that this effect
varies with regional water availability. Enhanced ET, driven by higher
photosynthetic activity, may delay DFS in water-sufficient regions39,
whereas limited soil water availability can advance DFS due to ET-
induced water stress (Supplementary Fig. 7). The intermediary roles of
LAI, SIF, and ET provide a more nuanced understanding of the
Ndeposition-DFS relationship. Nonetheless, further studies, including
N-control experiments measuring plant C/N metabolism, nutrient
remobilization, abscisic acid accumulation, and chlorophyll degrada-
tion, are essential to elucidate the mechanisms underlying Ndeposition-
DFS relationship. Beyond this, excessive Ndeposition could lead to the
limitation of other nutrients, particularly phosphorus. This shift from
N-limited to phosphorus-limited conditions may impair plant growth
and functions6, further regulating the timing and speed of foliar
senescence.

Given China’s rapid industrialization and urbanization, elevated
Ndeposition and its ecological consequences are likely to become major
drivers of ecosystem dynamics4,5. Our findings underscore the reg-
ulatory role of Ndeposition in shaping divergent DFS trends and the
underlying linkages for woody species, highlighting the importance of
incorporating Ndeposition effects into existing phenological models that
solely driven by climate change. This study provides valuable insights
into the phenological regulation of vegetation feedbacks to the cli-
mate system under future Ndeposition scenarios.

Methods
In situ records of DFS
In this study,we compiled all available in situ records of DFS forwoody
species since the 1980s from the Chinese Phenological Observation
Network (CPON)40. To identify and exclude potential outliers, we
applied the median absolute deviation (MAD) method, which is less
sensitive to outliers than the standard deviation. Specifically, the MAD
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for a site-species-specificDFSdataset (DFS1, DFS2,…, DFSi) is calculated
as:

MAD=median jDFSi �medianðDFSÞj� � ð1Þ

For each species at a given site, any DFS record exceeding
2.5 times the MAD was considered an outlier41. To ensure robust ana-
lyses with sufficient observations, we excluded site-species-specific
DFS time series with fewer than 10 years of data. This resulted in a total
of 1400 time series from46 sites and 380woody species (including 211
forest and 169 shrub species) for the period 1982–2018. Detailed
information on the distribution and descriptions of the in situ sites can
be found in Supplementary Fig. 1 and Supplementary Data 1.

Satellite remote sensing-based measures of DFS
We used Normalized Difference Vegetation Index (NDVI) data derived
from GIMMS 3 g+ (1982–2020, 1/12°) and MODIS (MOD13C2, 2001-
2020, 0.05°) to determine satellite-based proxies for DFS. Both data-
sets have beenwidely employed to estimateDFS based on the seasonal
dynamics of vegetation greenness22,39. To mitigate the influence of
snow, NDVI values affected by snow were replaced with average NDVI
values from snow-free periods during winter (December-February)
over multiple years42. A modified Savitzky-Golay filter was applied to
remove anomalous values and reconstruct the NDVI time series43.
Regions with an average annual NDVI below 0.1 were excluded to
eliminate areas with sparse vegetation. To reduce uncertainties asso-
ciated with a single approach, we calculated DFS using two distinct
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methods: the dynamic-threshold approach44 and the double-logistic
function22.

For each pixel, we calculated annual NDVI ratios using the fol-
lowing formula:

NDVIratio =
NDVI� NDVImin

NDVImax � NDVImin
ð2Þ

where NDVI represents the daily NDVI value, and NDVImin and NDVImax

are the annualminimum andmaximumNDVI values, respectively. The
DFS was defined as the day of the year when the NDVIratio
declined to 0.5.

To segment the annualNDVI curve into twosections,we identified
the peak NDVI value and applied a piecewise logistic function to fit
each segment:

y tð Þ= a1 + a2 � a7t
� � 1

1 + e a3�tð Þ=a4 �
1

1 + e a5�tð Þ=a6

� �
ð3Þ

where t is time in days, yðtÞ is the NDVI at time t. a1 - a7 are fitting
parameters: background NDVI (a1), the difference between the back-
ground and the late summer/autumn plateau amplitude (a2), the
midpoints for green-up (a3) and senescence/abscission (a5), transition
curvature parameters (a4 and a6), and the summer green-down

parameter (a7). The DFS was identified as the local extrema in the
rate of change within the second segment of the curve.

Note that satellite-based DFS estimates are derived from seasonal
variations in vegetation greenness (i.e., NDVI), which may introduce
biases when compared to in situ DFS measurements, particularly due
to spatial scale mismatches and the pixel-mixing effects. To mitigate
these biases, we conducted independent analyses for each dataset
(in situ records and the two satellite-based DFS data) rather than
directly integrating or comparing them41.

Ndeposition, climatic, and other ancillary data
We used an observation-based Ndeposition product originally spanning
from 1982–201245. More than 500 observational records of Ndeposition

from 163 sites, along with county-level N fertilizer data and province-
level energy consumption data across China, were utilized to enhance
and generate theNdeposition data. To extend theNdeposition data to 2020,
we applied an autoregressive integrated moving average (ARIMA)
model, which is widely used to predict future values based solely on
past observations, particularly for relatively small datasets. We first
tested the stationarity of the Ndeposition data using the Augmented
Dickey-Fuller (ADF) test. We then used data from 1982-2005 as the
historical training set and data from 2006-2012 as the test set for each
pixel. The overall relative RMSE was 7.3 ± 4.4%, demonstrating the
applicability and reliability of ARIMA in predicting Ndeposition. Finally,

Fig. 4 | Temporal linkage between nitrogen deposition (Ndeposition) and date of
foliar senescence (DFS) driven by potential mediators. a, b The frequencies of
pixels with significantly positive, significantly negative, and non-significant partial
correlations betweenNdeposition andmediators (a) and betweenmediatiors andDFS
(b), after controlling the effects of temperature, precipitation, and shortwave
radiation. Mediators include growing-season leaf area index (LAI), solar-induced
chlorophyll fluorescence (SIF), and evapotranspiration (ET). Significance was set at
p <0.05. A two-sided t-test was used to assess the significance of the partial

correlation analysis. c, d The SEMs describing the positive (n = 5287) (c) and
negative (n = 1598) (d) relationships between Ndeposition and GIMMS-based DFS
considering the effects of mediators. Percentages close to variables refer to the
mean variance accounted for by the model (R2). Numbers on the arrows indicate
the mean and standard deviation of standardized path coefficients, respectively.
Arrow widths reflect the magnitudes of the coefficients. The lower subplots show
the direct, intermediary (LAI, SIF, and ET) and total effects of Ndeposition on DFS.
Source data are provided as a Source Data file.
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we applied the ARIMAmodel to estimate Ndeposition for 2013–2020.We
also collected field measurements of Ndeposition data from published
papers46, with a total of 6934 site-year records. The field data includes
wet deposition (NH4 and NO3) and dry deposition (NH3, NH4 + , NO2,
NO3, and HNO3).

The monthly climatic data, including temperature, precipitation,
and shortwave radiation, were obtained from CN05.147. We used the
mean temperature, total precipitation, and shortwave radiation from
July to September to represent the climate drivers of DFS. A high-
resolution China Land Cover Dataset (CLCD v1.1, 30m)48 was used to
define the spatial extent of woody species, including forests and
shrubs. Tominimize the effects of land cover changes in our analyses,
we identified and excluded all pixels with land cover changes from
1980 to 2020 using the CLCD product.

For the spatial analysis of the Ndeposition-DFS relationship, we used
multipleN-related and vegetation factors, including plant N resorption
efficiency, plant N use efficiency, plant N uptake49, above- and below-
ground biomass50, species richness51, forest age52, tree density53, and
maximum root length54. Additionally, several soil properties, including
soil pH, cation exchange capacity, N content, and organic C, were
sourced from the SoilGrid 2.055. We determined depth-weighted
(0–200 cm) average value for each soil property. The Ku-band vege-
tation optical depth was derived from a long-term microwave Vege-
tation Optical Depth Climate Archive (VODCA)56. For the temporal
analyses, we used time series data of LAI57, SIF58, and ET59 as mediators
to link Ndeposition and DFS. Detailed information regarding data
description, spatial and temporal resolution, temporal coverage, and
data source of all datasets we used can be found in Supplementary
Table 1.

Temporal trend analyses
Weapplied theTheil-Sen slope estimator to assess the temporal trends
of DFS, Ndeposition, and climatic factors at site-to-region scales. This
slope estimator is a non-parametricmethod and ensures that the slope
estimate is not unduly influenced by extreme data points, making it
especially suitable for small datasets. Additionally, we evaluated the
trends using the Mann-Kendall trend test at a significance level of
0.0522,41. We found predominantly delaying trends in in-situ DFS, with
29.5%of the time series showingdelaying trends,while only 6.5%of the
time series showing advancing trends (Supplementary Fig. 11).
Satellite-based DFS showed more divergent patterns of temporal
trends, with 34.5% (25.7%) and 11.1% (6.8%) of pixels showing delaying
(advancing) trends for GIMMS (1982-2020) and MODIS (2001-2020),
respectively (Supplementary Fig. 12a, b).We also compared the spatial
consistency of DFS trends for GIMMS and MODIS for overlapped
period (2001-2020), and found similar spatial patterns of DFS shifting
directions (Supplementary Fig. 12c, d).

Analyses of the relationship between Ndeposition and DFS
To support the causal claim that changes in Ndeposition influence
interannual variations in DFS, we employed a causal inference method
known as PCMCI+ to determine the direction of causality. The PCMCI
causal discovery framework integrates the PC algorithm (a causal
discovery method based on conditional independence) with the
Momentary Conditional Independence (MCI) test, designed to address
the autocorrelation commonly present in time series data60,61. We used
an extended version of this framework, PCMCI + , which can identify
both lagged and contemporaneous causal links62. Time series data of
DFS and potential drivers (i.e., Ndeposition, temperature, precipitation,
and shortwave radiation) obtained fromgridded data served as inputs.
Focusing on linear dependencies, we applied linear partial correlation
as the conditional independence test (Fig. 1a, b). The PCMCI+ para-
meters were set as follows: the minimum time lag was set to 0 to
capture contemporaneous relationships, and the maximum time lag
was set to 5 to account for dependencies spanning up to 5 years

between DFS and Ndeposition. The significance level was set to 0.1 for all
tests. The strength of causal links was measured by the MCI partial
correlation value, and the identified cause-effect relationships were
represented in causal graphs. The causal discovery methods used in
this study are implemented in the Python package Tigramite, available
at https://github.com/jakobrunge/tigramite. Overall, the PCMCI+
results indicated that Ndeposition influences DFS across site-to-region
scales (Fig. 1c).

After establishing the causal relationship between Ndeposition and
DFS, we conducted partial correlation analyses to investigate how DFS
responds to changes in Ndeposition and climatic drivers. In calculating
the partial correlation coefficients between DFS and each driver, the
effects of other factors were controlled. We also applied partial cor-
relation analysis to quantify the responses of DFS to field measure-
ments of Ndeposition for each deposition type, including wet deposition
(NH4 and NO3) and dry deposition (NH3, NH4

+, NO2, NO3, and HNO3).
For the spatial analysis, we compiled site-specific average Ndeposition,
temporal trends of DFS (from GIMMS), and climatic factors (tem-
perature, precipitation, and shortwave radiation). We then calculated
the partial correlation coefficient between Ndeposition and DFS trends,
excluding the effects of climatic trends (Supplementary Fig. 3a). For
the temporal analysis, we calculated the temporal anomalies of
Ndeposition, DFS, and climatic factors (at least 5 years) and pooled these
anomalies to determine the partial correlation between Ndeposition and
DFS, controlling the effects of climatic anomalies (Supplemen-
tary Fig. 3b).

For each driver, we also identified the direction of actual effect on
DFS (DoAE, advance or delay) by analyzing the sign of the product of
its temporal trend and the partial correlation coefficient between DFS
and that driver for each time series.

DoAEd =Sign ParCord ×Trd
� � ð4Þ

where d represents a driver, ParCor and Tr denote the partial corre-
lation coefficient between DFS and the driver, and the temporal trend
of the driver, respectively. For each time series, a positive DoAE indi-
cates a delay, and a negative DoAE represents an advance.

We then compared the spatial consistency between the direction
of DFS and theDoAE for each driver. For each site-species-specific time
series (in situ) or pixel (GIMMS and MODIS), if the DoAE of a driver
aligns with the direction of DFS, we defined the actual effect of this
factor as “matched”; otherwise, it was considered “unmatched” (Fig. 2).
We also compared the agreements of matched and unmatched for
GIMMS and MODIS results. To match the spatial resolution, MODIS
data was resampled to 1/12° before analysis.

Spatial attribution analysis of Ndeposition-DFS relationship
We utilized explainable machine learning with SHapley Additive
exPlanations (SHAP) to identify the key drivers of the spatial dis-
tribution of Ndeposition effects. Various biotic and abiotic factors were
grouped into four categories: (1) N-related factors, includingNdeposition,
plant N resorption efficiency, N use efficiency, and N uptake; (2) cli-
mate factors, including temperature, precipitation, and shortwave
radiation; (3) vegetation factors, such as above- and below-ground
biomass, Ku-band vegetation optical depth (a proxy of water content/
biomass of the canopy), species richness, forest age, tree density, and
root length; and (4) soil factors, including soil pH, cation exchange
capacity, bulk density, and soil organic C. For multi-year Ndeposition and
climate variables, both mean values and trends were calculated.
Detailed descriptions of all variables are provided in Supplementary
Table 1.

We developed Random Forest (RF) models using these factors as
predictors. RF, a data-drivenmachine learning algorithm, is well-suited
for analyzing large datasets due to its ability to handle complex rela-
tionshipswithout requiring statistical assumptions about predictors or

Article https://doi.org/10.1038/s41467-025-59000-0

Nature Communications |         (2025) 16:3668 7

https://github.com/jakobrunge/tigramite
www.nature.com/naturecommunications


target variables63. To interpret RF results, SHAP was used to quantify
the marginal contributions of each predictor to the target variable.
Variable importance was assessed using absolute SHAP values, calcu-
lated as the absolute weighted average of marginal contributions, to
rank predictors64 and identify dominant factors influencing the spatial
variability of Ndeposition effects. The RF models were implemented
using the “ranger” package65, and SHAP values were extracted using
the “treeshap” package in R66.

Exploration of the mediators to link Ndeposition with DFS
We performed pixel-level partial correlation analyses to examine the
intermediary roles of growing-season LAI, SIF, and ET in linking
Ndeposition to DFS, while controlling effects of climatic drivers. Statis-
tical significance was determined at p <0.05. To further explore these
relationships, we applied structural equation modeling (SEM) to
quantify both direct and indirect causal pathways between Ndeposition

and DFS, accounting for changes in LAI, SIF, and ET. Regions were
categorized into two groups based on the correlation between
Ndeposition and satellite-based DFS: (G1) records or pixels with sig-
nificantly positive correlations and (G2) records or pixels with sig-
nificantly negative correlations (p < 0.05). For each group, we analyzed
three key pathways linking Ndeposition to DFS: foliar expansion (via LAI),
increased productivity (via SIF), and accelerated water dynamics (via
ET). For in situ-based analyses, before conducting SEM,we determined
species-combined average DFS for each site (n = 46), and extracted
site-level Ndeposition, LAI, SIF, and ET.

All variables were standardized prior to analysis, and path coeffi-
cients were estimated using maximum-likelihood estimation. Path
effects were computed as the product of standardized coefficients
along each pathway, while the total effect of a variablewas determined
by summing all path effects involving that variable. The validity of the
SEM was assessed using standard fit criteria: the χ² test (p >0.05),
comparative fit index (CFI > 0.9), standardized root mean square
residual (SRMR<0.08), goodness of fit index (GFI > 0.95), and root
mean square error of approximation (RMSEA<0.08). A model was
considered valid if it met at least three of these five criteria67. SEMs
were constructed and analyzed using the “lavaan” package in R68.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are freely available from the following
sources: In situ DFS data are provided by the China Phenological
ObservationNetwork (CPON, http://www.cpon.ac.cn/). GIMMSNDVI is
available from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2187.
MODIS NDVI is available from https://lpdaac.usgs.gov/products/
mod13c2v061/. SIF is available from https://zenodo.org/records/
14586458. Ku-band VOD is available from https://zenodo.org/
records/2575599. GIMMS LAI is available from https://zenodo.org/
records/8281930. CN05.1 monthly climatic data is available from
https://ccrc.iap.ac.cn/resource/detail?id=228. Plant N uptake, N use
efficiency, N resorption efficiency are available from https://doi.org/
10.5281/zenodo.8182205. GLEAM data is available from https://www.
gleam.eu/. Species richness is available from https://science-i.org/
gfb2-co-limitation/. Tree density is available from https://elischolar.
library.yale.edu/yale_fes_data/1/. Forest age is available from https://
www.bgc-jena.mpg.de/geodb/projects/FileDetails.php. Above- and
below-ground biomass are available from https://zenodo.org/records/
13331493. Maximum root depth is available from https://wci.
earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html. Soil-
Grids 2.0 data is available from https://files.isric.org/soilgrids/latest/.
CLCD data is available from https://doi.org/10.5281/zenodo.4417810.

Fieldmeasurements of Ndeposition are available from https://doi.org/10.
6084/m9.figshare.26778574. Source data are providedwith this paper.

Code availability
All data analyses and modeling were performed using R (v4.3.1) or
Python (v3.12). The code is stored in a publicly available Zenodo
repository https://zenodo.org/records/14588235.
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