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Delayed leaf green-up is associated with fine
particulate air pollution in China

Wendi Qu1,2,9, Hao Hua 1,2,9, Ting Yang3,9, Constantin M. Zohner 4,
Josep Peñuelas 5,6, Jing Wei7, Le Yu 8 & Chaoyang Wu 1,2

Climate warming has led to earlier leaf green-up dates (GUD) with a greening
trend of land surfaces in spring, yet the influence of multi-source particle
pollution is not well understood. Using ground records and satellite obser-
vations of green-up date and fine particulate matter below 2.5 μm (PM2.5) over
the last two decades in China, here we show that PM2.5 pollution is associated
with reduced plant carbon uptake and delayed green-up dates. These effects
offset climate-driven spring greening and reduce subsequent photosynthesis
in China. We find that pollution-associated delays in green-up date are pri-
marily linked to increased chilling demands and higher heat requirements.
PM2.5-associated decreases in photosynthetically active radiation and max-
imum rate of carboxylation could also weaken plant photosynthetic capacity.
Finally, whenwe incorporate a PM2.5 effect, phenological models predict up to
a one-week delay in green-up date by the year 2060 compared to previous
predictions. Negative feedbacks between anthropogenic pollution and ter-
restrial carbon uptake suggest unexpected uncertainty of China’s carbon
neutral targets resulting from air pollution, with far-reaching implications for
both ecosystem health and policy-making.

With a 12% increase in global atmospheric CO2 concentration since
20001, understanding the effects of climate change on photosynthetic
processes is essential for comprehending and forecasting the
upcoming carbon cycle. The carbon uptake of terrestrial ecosystems
has increased due to elevated CO2 levels, climate warming2–4, land-use
management practices5,6, and climate-driven advances in spring leaf
green-up dates (GUD) across local, regional, and continental scales7–11.
However, certain complex mechanisms, which are not yet fully com-
prehended, have the potential to negate the advanced GUD and
enhanced plant photosynthesis, including factors like air pollution.
This complexity presents considerable difficulties when attempting to
predict the future potential of carbon uptake.

China has played a significant role in the global effort to conserve
and restore forests, contributing to a greening of the terrestrial
surface5. Together with natural greening processes due to climate
change2,3, these initiatives have led to an increase in the carbon sink of
China’s terrestrial ecosystems, aiding in reducing atmospheric CO2

levels. However, China is also facing a major challenge with air pollu-
tion, particularly in its rapidly growing cities, where emissions of fine
particulate matter (PM2.5) are of high record12. This pollution nega-
tively impacts human health13–15, however, its effects on GUD and car-
bon uptake remain poorly understood.

Although the considerable influence of human activities on eco-
system functions is widely acknowledged16, the effects of PM2.5
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pollution in China over the past 20 years on plant activity have not yet
been determined. PM2.5 pollution could change the transmission of
visible light and substantially decrease atmospheric clarity17, poten-
tially regulating spring vegetation growth by altering microclimate
(temperature and radiation)18 and plant activities (leaf gas exchange
and photosynthesis)19–21. For example, particulate pollution on week-
days could inhibit satellite-detected photosynthesis by reducing light
availability in Europe, suggesting the regulation of human activities on
ecosystem carbon dynamics22. Aiming at a broader view of PM2.5 pol-
lution impacts on GUD and carbon uptake, we utilized satellite-driven
PM2.5 data records23, together with a ground monitoring network of
GUD with 1030 site-species time series24 (Supplementary Fig. 1), and
satellite-derived GUD25 and solar-induced fluorescence (SIF, a proxy of
plant photosynthesis)26 since the 2000s for terrestrial ecosystems in
China (Supplementary Table 1). We investigated the responses of
spring GUD and SIF to PM2.5 pollution from site to regional scales. We
also explored potential biogeochemical and biogeophysical mechan-
isms under the PM2.5-GUD relationship, considering the pollution-
driven alterations in winter chilling accumulation (CA), heat require-
ment (HR), and photosynthetic rate. As a last step, we incorporated
PM2.5 pollution into phenological models and predicted future pro-
jections of spring GUD under different emission scenarios that are
central to China’s efforts to realize carbon-neutral targets.

Results
Earlier GUD is associated with alleviated PM2.5 pollution
Through a comprehensive evaluation of GUD from both ground and
satellite observations, we explored the impacts of PM2.5 pollution and
climate on GUD and SIF (Methods). We found highly consistent tem-
poral patterns between variations of the anomaly of spring PM2.5

(March-May) and ground GUD from 2003 to 2018 for each site and
each species (site-species-independent time series, n = 1030) (Fig. 1A).
A further partial correlation analysis, excluding effects of temperature,
precipitation, and radiation, showed that spring GUD delayed sig-
nificantly with increased PM2.5. The proportions of significant positive
(delaying effects) and negative (advancing effects) GUD-PM2.5 corre-
lations were 11.8% and 5.0, respectively (p <0.05) (Fig. 1B). Further
analysis of sensitivity, using ridge regression to mitigate potential
multicollinearity between PM2.5 and climatic factors (Methods),
revealed that the advancement of GUD due to spring temperature was
significantly offset by PM2.5 pollution. For example, ground GUD had a
sensitivity of –0.47 (advanced GUD, unitless) for temperature, but
PM2.5 delayed GUD with a sensitivity of 0.11 (unitless). Using satellite
GUD provides similar results, only differing in the magnitudes. The
sensitivities of GUD and SIF to PM2.5 weremuch stronger than those to
precipitation and radiation. Grouping PM2.5 sensitivities into different
plant species (Supplementary Fig. 2) and vegetation types (Supple-
mentary Fig. 3) confirms the widespread adverse effects of PM2.5 on
spring vegetation activities. The spatial analysis of nine regions across
China showed consistent impacts of PM2.5 pollution on spring GUD
and SIF (Fig. 1D–L). Specifically, higher PM2.5 pollution consistently led
to delays in GUD (Supplementary Fig. 4), especially for relatively dry
and cold regions (Supplementary Fig. 5). These findings reveal that
PM2.5 pollution offsets the ongoing earlier trends in spring phenology
in China.

Potential mechanisms under PM2.5-GUD relationships
Mechanisms through both biogeophysical and biogeochemical paths
may underlay the response of spring GUD to PM2.5 pollution. First, we
investigated the impacts of PM2.5 pollution on the chilling accumula-
tion (CA, the chilling demand for plants during endodormancy) and
the heat requirement (HR, the accumulated forcing temperature
required for a phenological event), simulated by 11 CAmodels and five
HR models (see “Methods”). We found that higher PM2.5 caused a
significant increase in CA after removing the effects of temperature

variations during CA periods (Fig. 2A). Because CA and GUD were also
positively correlated, increased PM2.5 led to delayed GUD. In addition,
higher PM2.5 also slightly increasedHR, as evidencedby positive partial
correlations between PM2.5 and HR, after excluding the effects of
preceding CA and temperature variations during HR periods. PM2.5-
induced increases in HR contributed to a later GUD accordingly, with
strong and positive partial correlations between HR and GUD (Fig. 2B).
Analyses on ground GUD were consistent for these correlations
(Fig. 2C). Biogeochemically, an increase in PM2.5 significantly
decreased the maximum rate of carboxylation (VCmax), an indicator of
leaf photosynthetic capacity, with 26.9% (out of 84.4%) negative cor-
relations compared with only 0.7% (out of 15.6%) of positive correla-
tions (p < 0.05) (Fig. 2D). Since VCmax positively correlated with SIF,
higher PM2.5 negated spring plant growth consequently (Fig. 2E). A
negative correlation between PM2.5 pollution and photosynthetically
active radiation (PAR) confirmed the PM2.5-induced decreases in light
availability (Fig. 2F). Lower PAR greatly reduced the rate of photo-
synthesis, declining the potential of spring greening under climate
change. PM2.5-induced increase in diffuse PAR was limited, showing
minor effects on plant productivity (Supplementary Fig. 6). Structural
equation modeling (SEM) generally supported our hypothesis that
PM2.5 increased chilling accumulation, decreased VCmax, and delayed
GUD accordingly, further regulating spring SIF (Fig. 2G).

GUD model improvements and future projections
Wedeveloped a series of new spring GUDmodels by incorporating the
effects of PM2.5 using several algorithms, including one-phase algo-
rithms (growing degree days and spring warming) and two-phase
algorithms (sequential model and parallel model). Our findings
revealed that models incorporating PM2.5 resulted in significantly
better estimates of GUD, as evidenced by the higher percentages of
pixels with significant correlations between model estimates and
satellite observations, a higher average correlation coefficient (R), a
lower average root mean square error, and a higher Kling-Gupta effi-
ciency (Fig. 3). Besides, two-phase (chilling and forcing) algorithms
showed better performances when PM2.5 adjusted both phases. Using
ground GUD, we confirmed the improvement of GUD models by
incorporating PM2.5 effects (Supplementary Fig. 7).

Among these GUD models, the sequential model incorporating
PM2.5 effects into chilling and forcing phases performed the best in
modeling GUD with the lowest RMSE and highest KGE. Hence, we
employed this model to predict GUD for China and compared its
estimates with current temperature-driven sequential model under
three future emission scenarios based on the Dynamic Projection
Model for Emissions in China (DPEC v1.1): a best-health-effect scenario
(SSP1-Neutrality-BHE), an enhanced-control-policy scenario (SSP2-45-
ECP), and a business-as-usual scenario (SSP4-60-BAU) (Methods,
Fig. 4). The difference in GUDs modeled with and without accounting
for PM2.5 using the sequential model was more pronounced in sce-
narios predicting higher pollution levels. Notably, the greatest GUD
difference occurred under the high-emission SSP4 scenario. However,
this difference is expected to decrease over time, as PM2.5 pollution is
projected to decline across all scenarios. We also tested for spatial
differences in GUD projections with different levels of PM2.5 and found
that GUDwas typicallymore delayed in areaswith high PM2.5 pollution,
such as northern China and central China, especially under the high-
emission scenario (Fig. 4B, C). The one-phase GUD model (i.e., spring
warming) projections also supported these results for all emission
scenarios (Supplementary Fig. 8).

Discussion
Using multiple ground and satellite observations, we found that
ambient PM2.5 pollution in China has reduced carbon uptakemainly by
offsetting climate-induced earlier GUD. These results enhance our
understanding of how human activities, including economic and social
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development, influence regional ecosystem functioning and con-
tribute to climate change. Given the strong association between high
PM2.5 pollution, industrialization, andurbanization13, these results hold
key environmental implications for the disparities across population
and income groups27. They also underscore the urgent need to reduce
air pollution to mitigate the environmental consequences of human
activity.

We identified specific mechanisms that explain how PM2.5 con-
tamination leads to a later spring GUD. High concentrations of PM2.5

significantly increase chilling demands in winter and early spring,
which may cause insufficient chilling for spring leaf unfolding28.
Insufficient chilling causes a higher heat requirement for spring leaf
unfolding, resulting in delayed GUD29. Such results were supported by
the SEM analysis, which shows that the regulation of chilling
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Fig. 1 | The effects of PM2.5 pollution on spring green-up date (GUD) and solar-
induced fluorescence (SIF). A Variations of the anomaly of spring PM2.5 (March-
May) and ground GUD from 2003 to 2018. The bold lines represent the trends of
yearly mean values of the anomaly of spring PM2.5 and GUD across all sites and
species smoothed by an adjacent averaging method. B The distribution of partial
correlation coefficient (R) between PM2.5 and ground GUD. The effects of climatic
factors (i.e., temperature, precipitation, and radiation) were removed for partial
correlation analysis. The values in brackets represent frequencies of sites with
significantly positive and negative partial correlations, respectively (p <0.05). A

two-sided t-test was used to assess the significance of the partial correlation ana-
lysis. C Sensitivities of GUD and SIF to PM2.5 pollution and climatic factors for
ground- and satellite-based analyses using ridge regression (unitless).D–LRegional
results for northeastern China, Inner Mongolia, northwestern China, northern
China, central China, the Tibetan Plateau, southeastern China, southern China, and
southwestern China, respectively. Data are presented as mean values ± 95% CIs of
sensitivities for C–L. The numbers in brackets represent the number of sites or
pixels in the corresponding region. Source data are provided as a Source Data file.
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accumulation appears to have much larger path effects than other
paths. Of comparable importance to CA, the adverse effects of PM2.5

on VCmax, which is one of the most important drivers of leaf photo-
synthetic capacity, explains the decline in spring SIF under high PM2.5

pollution.

The Chinese government’s Air Pollution Prevention and Control
Action Plan (APPCAP) from 2013-2017 represents the most significant
effort to combat air pollution in China to date, as it covers more than
300 cities and involves multiple sectors, including energy, industry,
transport, legal, and regulatory sectors30. Our study predicts that

VCmax vs. SIF
P: 90.9% (60.4%)
N: 9.1% (0.5%)

FECA model C
A1

0

A
R

0.6

0.8

0.4

0.2

1

0

C
A1

C
A2

C
A3

C
A4

C
A5

C
A6

C
A7

C
A8

C
A9

C
A1

1

PM2.5 vs. CA CA vs. GUD

HR model

B

R

0.6

0.8

0.4

0.2

1

0

PM2.5 vs. HR HR vs. GUD

H
R

1

H
R

2

H
R

3

H
R

4

H
R

5

GUD

SIF

PM2.5

–0.42 0.007

–0.19 0.006

0.25 0.006

0.04 0.005 0.74 0.008

0.71 0.007
–0

.2
7

0.
00

7

0.45 0.009

0.05 0.005

–0.03 0.003

A2: PM2.5—CA—GUD

B2: PM2.5—HR—GUD

C2: PM2.5—PAR—GUD

D2: PM2.5—CA—HR—GUD

TE2: Total effect

A1: PM2.5—PAR—SIF

B1: PM2.5—VCmax—SIF

C1: PM2.5—GUD—SIF

D1: PM2.5—PAR—VCmax—SIF

TE1: Total effect

G

C

R

0.6

0.9

0.3

0

–0.3

D

–0.8 –0.4 0 0.4 0.8

Chi-squared = 8.44 2.99, P = 0.52 0.23, CFI = 0.99 0.01, GFI = 0.91 0.03, SRMR = 0.09 0.03, RMSEA = 0.04 0.06

PM2.5 vs. PAR
P: 26.9% (2.2%)
N: 73.1% (17.6%)

PM2.5 vs. VCmax
P: 13.5% (0.7%)
N: 86.5% (34.7%)

R

(n = 7494) (n = 7494)

(n = 11) (n = 11) (n = 5) (n = 5)

CA

HR

VCmax

PAR

Fig. 2 | Potential mechanisms underlying the correlation between spring
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(CA), heat requirement (HR), and green-up date (GUD). The CA and HR were
simulated by 11 CA models and five HR models (Methods). A, B represent
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brackets represent the number of pixels (n).C Represents associations for ground-
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earlier spring GUD will be hindered in the future if PM2.5 pollution is
not properly addressed, resulting in a less green China than current
expectations. This finding is particularly important as China, the lar-
gest emitter of CO2 in the world, has set ambitious goals to achieve
peak CO2 emissions by 2030 and carbon neutrality by 206031,32. The
success of these goals will be supported by an alleviated offset in
spring greening due to air pollution control, which is crucial for
reducing CO2 emissions via photosynthesis processes. Our findings
have far-reaching implications for policy design and implementation,
emphasizing the synergies and trade-offs among multiple policies
aimed at achieving sustainable development amid social and climate
change. Beyond this, this study underscores the regulation of PM2.5 on
C cycling, highlighting the potential uncertainties of future climate
projections33,34. In conclusion, our findings are of significant value as
they identify the crucial role of atmospheric pollution on spring GUD
and productivity, providing essential insights for promoting compre-
hensive and sustainable development in China and the world.

Methods
In situ GUD records
We gathered and utilized all available in situ records for ground GUD
(also known as leaf unfolding date) in China from the Chinese Phe-
nological Observation Network (CPON)24, which has compiled phe-
nological data since 1963 for 112 plant species across 145 sites
nationwide. In CPON, spring GUD is defined as the date when leaves
begin to unfold.

To detect and eliminate possible outliers of ground GUD, we
applied the median absolute deviation (MAD) method, which is more
resilient to outliers in a data set than the standard deviation. For each

site and species, MAD of GUD dataset (GUD1, GUD2,…, GUDi) can be
expressed as:

MAD = medianðjGUDi � medianðGUDÞjÞ ð1Þ

For each site and species, any data record with more than 2.5
times MAD was removed as an outlier10. We also excluded all GUD
records that were shorter than 15 years to make temporal analyses
more reliable. In this way, we used a total of 1030 time series from
35 sites and 505 species for 2003-2018. The distribution and descrip-
tions of the in situ data are detailed in Supplementary Fig. 1 and
Table 2.

Satellite-derived GUD observations
We applied satellite-derived spring GUD from 2001 to 2021, obtained
from the Terra and Aqua combined Moderate Resolution Imaging
Spectroradiometer (MODIS) Land Cover Dynamics (MCD12Q2) Ver-
sion 6.1 data product25 (Supplementary Table 1). This product uses the
two-band Enhanced Vegetation Index (EVI2) to provide yearly metrics
of global terrestrial surface phenology with an initial spatial resolution
of 500 × 500m. For each pixel, satellite GUD was defined as the date
when EVI2 first crossed 15% of the segment EVI2 amplitude. We
implementedquality controlmeasures to reduceuncertainties, andwe
removed GUD dates before 1 February or later than 30 June35. We
downloaded, processed, and resampled the satellite GUD data into
0.05 ×0.05 degree at the Google Earth Engine platform.
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Satellite-derived SIF observations
We used the long-term contiguous SIF (LCSIF) dataset
(2001–2021)26. The dataset is accessible at a bi-monthly temporal
resolution, accompanied by a spatial resolution of 0.05 × 0.05
degree (Supplementary Table 1). The LCSIF showed strong correla-
tions with satellite-based SIF observations from the Orbiting Carbon
Observatory-2 (OCO-2) and ground-based estimates of gross pri-
mary productivity across different vegetation types, demonstrating
its ability to accurately represent terrestrial photosynthesis. To
examine PM2.5-induced SIF signal attenuation, we calculated relative
SIF, which refers to SIF normalized by the continuum-level NIR-
reflected radiance, to check the response of SIF to PM2.5 pollution.
We found overall consistent patterns of both PM2.5 and temperature
sensitivities of SIF and relative SIF (Supplementary Fig. 9). These
results indicated that the widespread decreases in spring SIF
under PM2.5 pollution are primarily attributed to the biophysical
effects of PM2.5 pollution rather than being influenced by signal
attenuation22.

Satellite-driven PM2.5 data and evaluation
Daily and monthly satellite-driven PM2.5 data was obtained from the
China High Air Pollutants (CHAP, version 4) dataset, covering the
period 2001 to 2021, with a spatial resolution of 1 × 1 km23. The CHAP
data was derived by combining the MODIS Collection 6 MAIAC AOD
product (MCD19A2) with information on meteorology, surface con-
ditions, pollutant emission, and population distribution using the
Space-Time Extra-Trees model. To evaluate the satellite-driven PM2.5

data, we used a groundmonitoring network of PM2.5 observationswith
1599 sites (at least 5-year records) in China from 2013 to 2021 (Sup-
plementary Fig. 1). We evaluated the satellite-based spring and winter
averaged PM2.5 concentrations using all collected sitemonitoring data,
with R2 of 0.85 and 0.82 and RMSE of 6.89 and 11.74μgm−³ for spring
and winter, respectively (Supplementary Fig. 10). The high accuracy of
satellite-based PM2.5 data allows us to examine the response of spring
vegetation activity to PM2.5 pollution. To match the spatial resolution
of satellite GUD and SIF, we resampled satellite-driven PM2.5 data into
0.05 ×0.05 degree.
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Fig. 4 | Projections of spring green-up dates (GUD) under future emission and
climate scenarios. A Variations of the differences of the projected GUD using
PM2.5-weighted sequentialmodel (SMPM) and original sequential model (SM) under
different emission scenarios over 2025–2060. SSP1-Neutrality-BHE, SSP2-45-ECP,
and SSP4-60-BAU represent scenarios of the neutral (the lowest), the current goal
(middle), and a baseline goal (the highest) of PM2.5 pollution, respectively. BMulti-
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spring PM2.5 under different scenarios for the ninemain regions in China.C The left
map shows the spatial pattern of multi-year averaged PM2.5 for winter and spring
under the SSP4-60-BAU scenario. The right trends indicate the differences in pro-
jected GUD (SMPMminus SM) across various emission scenarios from 2025 to 2060
for ninemajor regions inChina. The legend in (A) applies to (C). Data are presented
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provided as a Source Data file.
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Future PM2.5 simulations
We simulated future PM2.5 data from 2025 to 2060 at 5-year intervals
under three emission scenarios: SSP1-Neutrality-BHE (best-health-
effect scenario), SSP2-45-ECP (enhanced-control-policy scenario), and
SSP4-60-BAU (business-as-usual scenario), using theNestedAirQuality
Prediction Modeling System (NAQPMS)36 (Supplementary Fig. 11). The
PM2.5 output has a horizontal resolution of 45 km and a temporal
resolution of 6 h. Future emission inventories under the three sce-
narios were obtained from the Dynamic Projection Model for Emis-
sions in China (DPEC v1.0, http://meicmodel.org/)37. Meteorological
fields were provided by the Weather Research and Forecasting Model
(WRF, version 3.6.1, available at https://www.mmm.ucar.edu/weather-
research-and-forecasting-model). Initial and boundary conditions for
four future climate scenarios (SSP1-19, SSP1-26, RCP4.5, and RCP6.0)
were provided by Phases 5 and 6 of the Coupled Model Inter-
comparison Project (CMIP5 and CMIP6). A summary of the future
emissions and climate scenarios is provided in Supplementary Table 3.

Climatic data and ancillary data
Monthly meteorological data at a 1/24 degree resolution, including
mean temperature and total precipitation, were obtained from
TerraClimate38 for 2001-2021. Since spring vegetation activity could be
positively regulated by solar radiation and PM2.5 could directly reduce
the radiation, herewe used cloudiness (0–100%) data derived from the
Climate Research Unit (CRU TS v4.07) to represent the level of radia-
tion (SupplementaryTable 1)39. In our analyses,wenegated the valueof
cloudiness sensitivity as radiation sensitivity (multiplied by −1) tomake
it more understandable. We obtained CN05.1 gridded daily mean
temperature with a spatial resolution of 0.25°, derived from the
National Meteorological Information Center of China, to calculate CA
and HR, and to build and improve GUD models40. To exclude the
impact of human activity on agricultural ecosystems, we removed all
cropland areas using the MCD12Q1 MODIS land-cover product (col-
lection 6) (Supplementary Fig. 1).

Chilling models and forcing models
We used 11 chilling models (C1–C11) and five forcing models (F1–F5) to
quantify CA and HR, respectively26. Models C1–C6 were developed
based on various combinations of the upper and lower temperature
limits. The equations for Models C1–C6 are as follows:

CU1 =
1 T ≤ 5

0 T > 5

�
ð2Þ

CU2 =
1 �10 ≤ T ≤ 5

0 T> 5orT < � 10

�
ð3Þ

CU3 =
1 0≤T ≤ 5

0 T > 5orT <0

�
ð4Þ

CU4 =
1 T ≤ 7

0 T > 7

�
ð5Þ

CU5 =
1 �10≤T ≤ 7

0 T>7orT < � 10

�
ð6Þ

CU6 =
1 0 ≤T ≤ 7

0 T > 7orT <0

�
ð7Þ

where CUi is the rate of chilling for Model Ci, and T is the daily mean
temperature (°C).

Models C7 and C8 were designed by assigning different weights to
different ranges of temperatures41. Models C9–C11 have triangular
forms designed for multiple plant species42. The equations for Models
C7–C11 are as follows:

CU7 =

0 T ≤ 1:4

0:5 1:4 <T ≤ 2:4

1 2:4<T ≤9:1

0:5 9:1 <T ≤ 12:4

0 12:4<T ≤ 15:9

�0:5 15:9<T ≤ 18

�1 T > 18

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

CU8 =

0 T ≤ 1:4

0:5 1:4 < T ≤ 2:4

1 2:4<T ≤9:1

0:5 9:1 <T ≤ 12:4

0 T > 12:4

8>>>>>><
>>>>>>:

ð9Þ

CU9 =

1 2:5 <T < 7:4

0 T < � 4:7 orT > 16

3:13 × ðT +4:66
10:93 Þ2:10 × e�ðT +4:66

10:93 Þ3:10 else

8><
>: ð10Þ

CU10 =

0 T ≤ � 3:4orT ≥ 10:4
T + 3:4
5 + 3:4 �3:4<T < 5
T�10:4
5�10:4 5 <T < 10:4

8><
>: ð11Þ

CU11 =

0 T ≤ � 6:5orT ≥6:9
T +6:5
6:9�0:2 �6:5 <T ≤ 0:2
6:9�T
6:9�0:2 0:2 <T <6:9

8><
>: ð12Þ

where CUi is the rate of chilling for Model Ci, anT is the daily mean
temperature (°C).

We used five widely used forcing models to measure the HR
of GUD29,42. The growing degree days (GDD) model is the most
commonly used forcing model, which assumes that the rate of for-
cing is linearly correlated with temperature if the temperature is
above a particular threshold. The equations for models F1-F5 are as
follows:

FU1 = maxðT , 0Þ ð13Þ

FU2 = maxðT� 5, 0Þ ð14Þ

FU3 =
28:4

1 + e�0:185 × ðT�18:5Þ T >0

0 else

(
ð15Þ

FU4 =
1

1 + e�0:47×T +6:49
ð16Þ

FU5 =

0 T <TL orT >Tc
Tu�TL

2 × ð1 + cosðπ+π× T�TL
Tu�TL

ÞÞ TL ≥T ≥Tu

ðTu � TLÞ× ð1 + cosðπ2 + π
2 × T�Tu

Tc�Tu
ÞÞ Tu <T ≤Tc

8>><
>>:

ð17Þ

where FUi is the rate of forcing for Model Fi, and T is the daily mean
temperature (°C). TL = 4, Tu = 25, and Tc = 36.
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Spring phenological models
In this study, we used four spring phenological models: the GDD and
spring warming (SW) models (one-phase models), and the sequential
model (SM) and parallel model (PM) (two-phase models)43. In all
models, GUD was simulated as the date when the state of forcing (Sf)
reached its critical value (Fcrit). The primary differences among the
models lay in the calculation of the daily rate of forcing (Rf) and the
conditions required for the accumulation to start.

Sf =
Xt

t0

Rf ð18Þ

GUD= t, if Sf ≥ Fcrit ð19Þ

The one-phase models solely accounted for the influence of for-
cing and calculated Rf starting from 1 January of the current year (t0)
(Eq. 18). The date when Sf exceeds Fcrit is regarded as the GUD.

The GDD model begins to accumulate Rf when the temperature
reaches a baseline threshold (Tbaseline):

Rf =
0 T ≤Tbaseline

T T >Tbaseline

�
ð20Þ

The SW model calculates the Rf based on a logistic function:

Rf =
Af

1 + ealphaðT�betaÞ ð21Þ

where Af, alpha and beta are process-specific parameters to be
determined.

The two-phase SM and PM, in contrast to the one-phase models,
assume that the accumulation of forcing cannot begin until a critical
threshold (Ccrit) of the chilling state (Sc, a daily sum of chilling rates) is
reached. A triangle function (Eq. 22) was used to describe the daily rate
of chilling (Rc), and Sc began to accumulate after 1 September of the
preceding year (tc) (Eq. 23):

Rc =

0, T ≤Ta
T�Ta
Tb�Ta

, Ta <T ≤Tb

T�Tc
Tb�Tc

, Tb <T <Tc

0, T ≥Tc

8>>>><
>>>>:

ð22Þ

Sc =
Xt

tc

Rc ð23Þ

where Ta, Tb and Tc are the threshold temperatures at which the state
of Rc changes during the chilling accumulation process.

The forcing phase of the SM was similar to that of the SW model
using Rf, but with an adjustment factor, K, to ensure that the accu-
mulation of forcing occurs after the chilling state (Ccrit) is fulfilled
(Eq. 24). Like theGDDmodel, the SMalsouses a temperature threshold
(Td) to establish the requirement for beginning the accumulation of
forcing (Eq. 8) and meeting Ccrit.

K =
0 Sc <Ccrit

1 Sc ≥Ccrit

�
ð24Þ

Rf =
0 T ≤Td

K× Af
1 + ealpha× ðT�betaÞ T >Td

(
ð25Þ

The PM is a modified version of the SM that assumes that the
accumulation of forcing is not strictly zero before Ccrit is achieved. The
only difference between the parameters of the SM and the PM is howK
is calculated (Eq. 26). The PM adds a new parameter (Kmin), which
calculates the minimal potential of a bud that has not been chilled to
react to the forcing temperature39,40.

K =
Kmin +

1�Kmin
Ccrit

× Sc Sc <Ccrit

1 Sc ≥ Ccrit

(
ð26Þ

The improved models were developed by incorporating the daily
PM2.5 data into the abovemodels, i.e., GDD, SW, SM, andPM.We added
two new parameters (Kchiling, Kforcing), together with the normalized
difference of daily PM2.5 concentration (NDPM, Eq. 27), to these new
models tomodify the Rc and Rf using an exponential function (Eqs. 28,
29), accounting for the processes of how PM2.5 regulates CA and HR
before the leaf green-up. For one-phasemodels (i.e., GDD and SW), we
modified the daily rate of forcing. For two-phase models (i.e., SM and
PM), we modified rates of chilling and forcing.

NDPMti
=

PM25ti � minðPM25Þ
maxðPM25Þ � minðPM25Þ ð27Þ

SPM25�c =
Xt

t0

RPM25�c =
Xt

t0

Rc × FPM25�c =
Xt

t0

Rc × e
Kchilling ×NDPMt ð28Þ

SPM25�f =
Xt

t0

RPM25�f =
Xt

t0

Rf × FPM25�f =
Xt

t0

Rf × e
Kforcing ×NDPMt ð29Þ

where PM25 represents daily PM2.5 concentration, NDPMti
represents

the normalized difference of daily PM2.5 concentration of ti. SPM�c and
SPM�f represent the PM2.5-adjusted Sc and Sf , respectively. t0 and
t represent the start and end days of chilling (Eq. 28) and forcing
(Eq. 29), respectively.

We implemented the Particle Swarm Optimization (PSO) algo-
rithm at each pixel or site to iteratively calculate a set of optimalmodel
parameters for each spring phenology model, using satellite and
ground GUD data and daily air temperature. The nature-based PSO
algorithm is one of the most widely used swarm intelligence algo-
rithms, in which individuals are referred to as particles and seek the
search space for the global optimal position that minimizes (or max-
imizes) a given problem44,45. The set of optimal parameters was selec-
ted when RMSE between themodeled and observedGUDwas lowest43.
We further checked thepatterns of PM2.5-weightedparameters (Kchilling

and Kforcing). We found that Kchilling was positive at 54.6% of the area,
nearly five times the negative value (Supplementary Fig. 12), confirm-
ing that PM2.5 pollution reduced the efficiency of CA.

To evaluate the GUD models, we calculated the frequency of
pixels with significant correlations between model estimates and
observations, the correlation coefficient (R), the root mean square
error (RMSE), and the Kling-Gupta efficiency (KGE) using both ground
and satellite GUD.

Analyses
Response of spring GUD and SIF to PM2.5 pollution. We conducted
site-level and grid-level analyses for ground and satellite observations.
For site-level analyses, we used ground GUD derived from the CPON
and PM2.5 and climatic data for the same location extracted from
gridded products. We also extracted satellite SIF for all GUD sites to
determine site-level climatic and PM2.5 sensitivities. For grid-level
analyses, we used satellite GUD, SIF, and gridded climatic and PM2.5

data with a consistent spatial resolution (0.05 × 0.05 degree) resam-
pled by the bilinear interpolation method. We applied the Theil-Sen
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slope estimator to analyze the temporal patterns of spring GUD, SIF,
and PM2.5, evaluated by the Mann–Kendall trend test at a significance
level of 0.05. We found overall advancing trends of GUD, increasing
trends of SIF, and decreasing trends of PM2.5 concentration (Supple-
mentary Fig. 13) for 2001-2021, indicating the synergistic changes in
PM2.5 pollution and spring vegetation activities and their potential
interplays.

To avoid potential multicollinearity between climatic factors and
PM2.5 concentration,we applied ridge regression,which incorporates a
penalty parameter to reduce the variance of regression coefficients.
This approach was used to determine the sensitivities of GUD and SIF
to PM2.5 pollution and climatic factors (i.e., temperature, precipitation,
and radiation). To isolate the effects of PM2.5 and climatic factors on
GUD, we first conducted partial correlation analyses to calculate the
optimal length of preseason of each factor for each site or pixel. For
each factor, the optimal preseason was defined as the period before
the GUD with the highest absolute partial correlation coefficient
betweenGUDand corresponding factors.We then calculated the PM2.5

and climatic sensitivities as the coefficients of the ridge regression
between the GUD and the averaged PM2.5, temperature, radiation, and
accumulated precipitation during the preseason periods for corre-
sponding driving factors10. It should be noted that ridge-regression-
based sensitivities are unitless since we used normalized anomalies of
all variables mentioned above. Positive sensitivities indicate delayed
GUD, while negative sensitivities suggest advanced GUD.

To determine the environmental responses of spring SIF, we
applied the ridge regression method, with spring mean SIF as the
response variable and spring averaged PM2.5, temperature, radiation,
and accumulated precipitation as predictors. It should be noted that
cloudiness (the proxy of radiation) could be potentially impacted by
heavy PM2.5 pollution due to aerosol-cloud interactions46, further
influencing precipitation and even temperature. We used partial cor-
relation analyses and ridge regression methods to minimize the
potential multicollinearity between climatic factors and PM2.5 con-
centration and to focus on the PM2.5 effects on spring vegetation
activity. Future investigations on the interactive effects of climate
change and PM2.5 pollution are potentially needed. Here, we also
examined the impact of PM2.5 on near-surface temperature using
weather station records from 633 sites (Supplementary Table 1). We
found that PM2.5 had varying impacts on daily mean, maximum, and
minimum temperatures in spring: while it slightly increaseddailymean
and maximum temperatures, it did not affect daily minimum tem-
perature (Supplementary Fig. 14). These results indicate a limited
regulatory role of PM2.5 on temperature.

Potential mechanisms under PM2.5 effects. We investigated the
biogeochemical and biogeophysical mechanisms underlying the
effects of PM2.5. We first checked the impacts of PM2.5 on the CA
derived from 11 models and HR derived from five models. Given that
CA may be influenced by temperature variations, we conducted
partial correlation analyses to examine the relationship between
PM2.5 and CA while controlling for temperature effects during CA
periods. Previous studies have shown a negative correlation
between CA and HR28,47, which aligns with our SEM analysis results
(Fig. 2G). To assess the impact of PM2.5 on HR, we also performed
partial correlation analyses, controlling for temperature effects
during HR periods and preceding CA. Since CA and HR jointly and
interactively influence GUD, we used partial correlation analyses to
explore the CA-GUD and HR-GUD relationships, excluding the
effects of HR and CA, respectively.

We introduced PAR48 and VCmax
49, together with GUD, to explain

PM2.5’s effects on SIF. We used partial correlation analyses to examine
associations between PM2.5 and PAR and VCmax, as well as between
VCmax and SIF (Fig. 2D–F). The data description of PAR and VCmax can
be seen in Supplementary Table 1. We also considered PM2.5 effects on

diffuse PAR48, and its association with SIF (Supplementary Fig. 6). It
should be noted that the modeled VCmax we used has been evaluated
using measurements of leaf chlorophyll and VCmax across different
species and vegetation types50,51. In the last step, we applied Structural
Equation Models (SEM) to investigate the biogeophysical (through CA
andHR) and biogeochemical (through VCmax and PAR) effects of PM2.5

pollution on spring GUD and SIF (Fig. 3C–H). The SEM allows us to
quantify both direct and indirect causal relationships among multiple
driving factors. Utilizing multiple gridded variables, our SEM eluci-
dated the mechanisms of distinct negative influences of PM2.5 pollu-
tion on spring greening. All variables were standardized before
analyses, and maximum-likelihood estimation was used to calculate
the path coefficients. We used the standard criteria to assess the
validity of our SEM, including the χ2 test (p >0.05), the comparative fit
index (CFI > 0.9), the Standardized Root Mean Square Residual
(SRMR<0.08), the goodness of fit index (GFI > 0.95), and the Root
Mean Square Error of Approximation (RMSEA<0.08). We conducted
SEM for each pixel, and the SEM was considered valid if at least three
out of five criteria were met52. SEMs were constructed using the
“lavaan” package in R53. To better disentangle the effects of PM2.5 and
understand the underlying mechanisms, future investigations, espe-
cially simulation experiments that measure plant physiology and
hormones under different levels of PM2.5 pollution, are essential.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are freely available from the following
sources: Ground-based PM2.5 data are available from CNEMC, while
satellite-derived PM2.5 data can be accessed from CHAP v4 (https://
zenodo.org/record/6398971). Future PM2.5 input data were gener-
ated based on the climate projections from CMIP5 and CMIP6 future
scenarios (https://esgf-node.llnl.gov/projects/esgf-llnl/). Ground-
based GUD data are provided by the China Phenological Observa-
tion Network (CPON, http://www.cpon.ac.cn/), and satellite-based
GUD data can be obtained from MCD12Q2 v6.1 (https://lpdaac.usgs.
gov/products/mcd12q2v061/). SIF data are available from https://
zenodo.org/records/14568491. Ground temperature data and CN05.1
data are accessible from http://data.cma.cn/en. The TerraClimate
data can be accessed from https://climate.northwestknowledge.net/
TERRACLIMATE/index_animations.php/. The CRU data can be
accessed from https://crudata.uea.ac.uk/cru/data//hrg/. VCmax data
are accessible from https://www.nesdc.org.cn/sdo/detail?id=
612f42ee7e28172cbed3d80f. PAR and PARdiff data can be obtained
from https://www.environment.snu.ac.kr/bess-rad. Source data are
provided with this paper.

Code availability
All data analyses and modeling were performed using R 4.3.1.
The code is stored in a publicly available Zenodo repository
https://zenodo.org/records/14826584.
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