Variance in biomass-allocation fractions is explained by distribution in European trees

xxxxxxxxxxxxxxxxxxxxxxxx Tree_Pixabay_Feb2019 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Plant morphology traits, as the size of individual plants, has high functional importance. In a new study in the journal New Phytologist authors analyse the ability of 80 species of European trees species to modify its architecture in response to changes in the environment. Figure: Pixabay

 

Plant morphology has been described as an equilibrium between constraints to plant growth and exogenous environmental stressors. Intraspecific variability in ecological traits confers the ability of a species to adapt to an ever-changing environment.

Fractions of biomass allocation in plants (BAFs) defined as the ratio of plant biomass of organs (the stem, branches, leaves and roots) to total plant biomass, and represent both ecological traits and direct expressions of investment strategies and so have important implications on plant fitness, particularly under current global change.

In a new study in the journal New Phytologist authors combined data on BAFs of trees in > 10 000 forest plots with their distributions in Europe. The study aimed to test whether plant species with wider distributions have more or less variable intraspecific variance of the BAFs foliage–woody biomass and shoot–root ratios than species with limited distribution.

Authors show that a combination of 36% tree genetic diversity and 64% environmental variability explains variance in BAFs and implies that changes in genetic diversity occur quickly. “Genetic diversity should thus play a key role in regulating species responses to future climate change. Loss of habitat, even if transient, could induce a loss of genetic diversity and hinder species survival”, explains Dr. Stavros D. Veresoglou from the Institut fur Biologie, Plant Ecology, Freie Universitat Berlin, Germany and the Faculty of Agriculture, Aristotle University of Thessaloniki, Greece.

In summary, the study indicates that BAFs were more variable in trees with extensive distributions. Most notably, authors made the point that it was a higher genetic variability that resulted in more variable BAFs for tree species with extensive distributions. “We thus present evidence that the loss of habitat for tree species through rapid loss of genetic diversity could lower the ability of the species to modify its architecture (BAFs) in response to changes in the environment. It is thus likely that any loss of habitat may not be as reversible as many believe”, says Prof. Josep Peñuelas from CREAF-CSIC.

 

Reference: Veresoglou, S.D., Peñuelas, J. 2019. Variance in biomass-allocation fractions is explained by distribution in European trees. New Phytologist, doi: 10.1111/nph.15686.