Quines normes segueixen les plantes que viuen i creixen en els extrems?

El CREAF participa en un estudi internacional a la tundra àrtica liderat per iDiV i descobreixen que les plantes de la tundra tenen una varietat de mecanismes molt més diversa del que es pensava anteriorment per fer front als climes freds. Igualment, comproven que en aquestes ambients extrems es mantenen les mateixes normes que en altres llocs del món: la mida de la planta i l’economia dels recursos expliquen la diversitat de la vida vegetal.

Les flors de campana blanca del bruc àrtic són adaptacions a la vida als extrems freds del bioma de la tundra. (Imatge: Elise Gallois)

Les flors de campana blanca del bruc àrtic són adaptacions a la vida als extrems freds del bioma de la tundra. (Imatge: Elise Gallois)

Les plantes de la tundra àrtica usen una àmplia varietat d’estratègies per sobreviure a uns estius molt curts i a uns hiverns llargs i durs. Aquesta troballa, publicada a Nature Communication i liderat pel Centre Alemany per a la Investigació Integrativa de la Biodiversitat (iDiv), en col·laboració amb altres centres de recerca com el CREAF, indica que les plantes de la tundra tenen una varietat de mecanismes molt més diversa del que es pensava anteriorment per fer front a aquests climes freds. En un món que s’escalfa progressivament, aquestes plantes es beneficiaran el tenir una àmplia gamma de formes d’adaptar-se al clima canviant. A més l’estudi confirma que aquestes plantes que viuen en ambients extrems també es regeixen pels patrons generals que expliquen la biodiversitat de plantes sobre la terra: la mida i l’economia dels recursos .

Traducció al català de l’article divulgatiu escrit per Haydn Thomas l’investigador principal de l’article

A l’extrem nord-oest del Canadà, més enllà de les muntanyes cobertes de glaceres, al llarg del delta del Mackenzie i a l’altre costat de la Mar Àrtic, un científic està ajupit sobre una petita branqueta de bruc àrtic. S’ha passat tot el dia buscant les típiques taques de flors blanques característiques de la tundra que s’eleven en petits cúmuls. Amb el calibrador i el bloc de notes, les mans ara entumides, pren algunes mesures finals abans d’afanyar-se a tornar a la calor de la seva cabana. Les flors es gronxen alegrement a la brisa, el bruc àrtic roman molt còmode a l’extrem fred de la vida a la Terra.

La vida de les plantes àrtiques es troba als extrems del clima fred del planeta. (Imatge: Sandra Angers-Blondin)

La vida de les plantes àrtiques es troba als extrems del clima fred del planeta. (Imatge: Sandra Angers-Blondin)

Aquest científic, com era d’esperar, era jo. I les meves mans gairebé s’han recuperat. Per alguns pot ser sorprenent pensar que vaig passar la major part del meu temps en aquest entorn increïblement bell mirant el terra (escanejant periòdicament que no hi hagués ossos) i prenent mesures complexes de plantes àrtiques. No obstant això, les característiques de les plantes, poden dir-nos molt sobre les seves estratègies de vida i sobre com poden respondre a el canvi climàtic. A la tundra, que actualment s’està escalfant més del doble de ràpid que el planeta en el seu conjunt, poder vincular com l’augment de les temperatures modifica aquestes característiques (com ara l’alçada de les plantes) és extremadament valuós per comprendre com poden canviar els ecosistemes. Per descomptat, això només funciona si les plantes de tundra segueixen unes regles concretes.

Per a nosaltres, les persones que fem ciència, la idea que les plantes segueixen regles generals a l’hora de desenvolupar-se o de fer certes funcions és extremadament atractiva. Cercar patrons simples que expliquin la gran diversitat de vida vegetal a la Terra és una tasca que està en marxa des de fa més d’un segle, i potser des de les exploracions de Humboldt fa més de 200 anys. A més, sabem que si els patrons que observem es poguessin relacionar amb els canvis en el medi ambient o amb la coexistència d’espècies, podem revolucionar la nostra comprensió de l’ecologia de les plantes, segons alguns, el “Sant Grial” de l’ecologia.

Cottongrass es beneficia de l'escalfament del clima àrtic. (Imatge: Jeffrey Kerby / National Geographic Society)

Cottongrass es beneficia de l’escalfament del clima àrtic. (Imatge: Jeffrey Kerby / National Geographic Society)

Al 2016, un estudi dirigit per Sandra Díaz va donar un gran pas endavant. Els autors van descobrir que només dues dimensions: la mida de la planta (gran i llenyosa versus petita i no llenyosa) i l’economia dels recursos (adquisitiva versus conservadora) explicaven la majoria de les variacions de les plantes. En les seves paraules, “l’espectre global de la forma i funció de la planta és, en cert sentit, un pla galàctic dins el qual podem posar qualsevol planta, des del anís estrellat fins al gira-sol, en funció dels seus trets”.I què hi ha de les altres plantes de la tundra? Són una constel·lació molt unida, o una dispersió d’estrelles en tota la galàxia?

Ara tornem al nostre bruc àrtic. Amb fulles duradores i perennes, de la meitat de la mida d’un gra d’arròs, una estructura llenyosa que abraça el sòl i llavors gairebé massa petites per veure a simple vista, aquest arbust nan segurament ha d’ocupar els llocs més gelats i distants dins d’aquest pla galàctic de què parlava Díaz. I què hi ha de les altres plantes de la tundra? Són una constel·lació molt unida, o una dispersió d’estrelles en tota la galàxia? Dins d’una petita habitació que intentava captar els últims centelleigs d’una tardor escocès, els cervells brunzien.

La majoria de les dades de característiques de plantes del món s’obtenen de les regions temperades i dels tròpics. Hi ha molt poques dades disponibles de les plantes de la tundra. Això no seria un problema si volguéssim dibuixar patrons a tot el planeta en el seu conjunt, però volíem entendre les regles subjacents que s’amaguen en les condicions extremes en la tundra. Per això, la major barrera davant nostre radicava en les dades.

Les plantes àrtiques tenen una varietat i formes sorprenentment àmplies. (Imatge: Sandra Angers-Blondin)

Les plantes àrtiques tenen una varietat i formes sorprenentment àmplies. (Imatge: Sandra Angers-Blondin)

Per solucionar-ho, vaig intensificar el poder de la col·laboració. Afortunadament, estava lluny de ser l’únic científic ajupit sobre una branqueta de bruc. Un equip de científics i científiques van ajudar-me a recopilar la informació que necessitàvem per comprendre la variació dels trets a la tundra. Amb l’ajuda de més de 100 contribuents, vam sumar més de 50,000 nous registres de característiques, i teníem les dades que necessitàvem per provar si les dues dimensions que afirmava Díaz en 2016 es mantenien igual a la tundra.Amb l’ajuda de més de 100 contribuents, vam sumar més de 50,000 nous registres de característiques de plantes.

En resum, la resposta és que les plantes de la tundra s’agrupen i ocupen un rang sorprenentment ampli de trets globals. Tot i que es troben en un extrem de la vida vegetal a la Terra, tenen estratègies notablement variades per capturar recursos i fer front a les condicions climàtiques extremes i a les estacions de creixement increïblement curtes de la tundra. Potser encara més sorprenent, les regles globals es mantenen extremadament bé en la tundra: les mateixes dues dimensions expliquen la majoria de la variació de característiques.

On ens deixa això? El nostre estudi suggereix que les relacions entre les característiques de les plantes i els canvis ambientals van més enllà de les dades globals i es compleixen també en cada bioma. Així, des de l’altíssim arbre de la sequoia fins al petit bruc àrtic, semblen sotmetre les mateixes relacions on la mida de la planta i l’economia dels recursos expliquen la majoria de les variacions de la vida vegetal a la Terra. El Sant Grial de l’ecologia vegetal pot estar a l’abast.El nostre estudi suggereix que les relacions entre les característiques de les plantes i els canvis ambientals van més enllà de les dades globals i es compleixen també en cada bioma.

Press release source:
http://blog.creaf.cat/noticies/quines-normes-segueixen-les-plantes-que-viuen-creixen-en-els-extrems/

Article original:

Thomas, H.J.D., Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J.H.C., Forbes, B.C., Henry, G.H.R., Hollister, R.D., Normand, S., Prevéy, J.S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W.K., Beck, P.S.A., Georges, D., Goetz, S.J., Guay, K.C., Rüger, N., Soudzilovskaia, N.A., Spasojevic, M.J., Alatalo, J.M., Alexander, H.D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L.T., Bjork, R.G., Buchwal, A., Buras, A., Carbognani, M., Christie, K.S., Collier, L.S., Cooper, E.J., Elberling, B., Eskelinen, A., Frei, E.R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M.M.P.D., Hermanutz, L., Hudson, J.M.G., Johnstone, J.F., Hülber, K., Iturrate-Garcia, M., Iversen, C.M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L.J., Lantz, T., Lévesque, E., Little, C.J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S.S., Ninot, J.M., Oberbauer, S.F., Olofsson, J., Onipchenko, V.G., Petraglia, A., Rumpf, S.B., Shetti, R., Speed, J.D.M., Suding, K.N., Tape, K.D., Tomaselli, M., Trant, A.J., Treier, U.A., Tremblay, M., Venn, S.E., Vowles, T., Weijers, S., Wookey, P.A., Zamin, T.J., Bahn, M., Blonder, B., van Bodegom, P.M., Bond-Lamberty, B., Campetella, G., Cerabolini, B.E.L., Chapin, F.S. III, Craine, J.M., Dainese, M., Green, W.A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W.A., Peñuelas, J., Poschlod, P., Reich, P.B., Sandel, B., Schamp, B.S., Sheremetiev, S.N., de Vries, F.T. (2020). Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications 11, 1351. DOI: 10.1038/s41467-020-15014-4

Plant life on the edge

RIn the far north-west of Canada, beyond the glacier-capped mountains, out along the Mackenzie delta and across the Arctic Sea, a scientist is crouched over a tiny sprig of Arctic heather. He has spent all day on the lookout for the patch of characteristic white flowers, rising just a few centimetres above the tundra. With caliper and notepad, hands now numb, he takes a few final measurements before hurrying back to the warmth of his cabin. The Arctic heather remains, flowers bobbing merrily in the breeze, quite at home at the cold edge of life on Earth.

The white bell flowers of the Arctic heather. Photo credit Elise Gallois

That scientist, unsurprisingly, was me. And my hands have almost recovered. It can come as a bit of a surprise to some that I spent the majority of my time in this breathtakingly beautiful environment staring at the ground (with periodic scans for bears) taking intricate measurements of Arctic plants. However, the characteristics of plants, known as plant traits, can tell us a huge amount about their life strategies and how they might respond to climate change. In the tundra, which is currently warming more than twice as fast as the planet as a whole, being able to link rising temperatures to traits such as plant height is extremely valuable in understanding how whole ecosystems might change. Of course, that only works if tundra plants follow the rules.

The idea that plants follow general rules relating to their form and function is extremely appealing. The search for simple patterns underpinning the vast diversity of plant life on Earth has been on the go for at least a century, and perhaps as far back as Humboldt’s explorations over 200 years ago . What is more, if patterns in plant traits could be linked to environment or to species co-existence, we could see a revolution in our understanding of plant ecology – the “holy grail” of ecology according to some.

Measuring the characteristics of plants, known as plant traits, can help us understand how they might respond to climate change. Photo credit Team Shrub

 In 2016, a study led by Sandra Díaz provided a major step forward. The authors found that just two dimensions – plant size (large and woody vs small and non woody) and resource economics (acquisitive vs conservative) – explained the majority of variation in six fundamental plant traits across global plant species. In their words, “the global spectrum of plant form and function is thus, in a sense, a galactic plane within which we can position any plant—from star anise to sunflower—based on its traits.”

 Now let’s return to our Arctic heather. With hardy evergreen leaves half the size of a grain of rice, a ground-hugging woody structure, and seeds almost too small to see, this dwarf shrub must surely occupy the most icy and distant of outposts within this galactic plane. And what about other tundra plants? Are they a close-knit constellation, or a scattering of stars throughout the galaxy? Inside a small room attempting to catch the last glimmers of a Scottish autumn, brains were whirring.

Arctic plant life on the edge. Photo credit Sandra Angers-Blondin

The greatest barrier before us lay in the data. The majority of the world’s plant trait data is collected from temperate regions and the tropics. Very little data was available for tundra plants. That might be appropriate to draw out patterns across the planet as a whole, but we wanted to understand if apparently underlying rules applied within the whole, in the extreme conditions in the tundra. 

Step up the power of collaboration. Thankfully, I was far from the only scientist crouched over a sprig of heather. The “Tundra Trait Team”, led by Dr. Anne Bjorkman and Dr. Isla Myers-Smith and funded by the iDiv German Centre for Integrative Biodiversity Research and the Natural Environment Research Council of the UK, had been compiling just the information we needed to understand trait variation in the tundra. With help from well over 100 contributors, together adding over 50,000 new trait records, we now had the data we needed to test whether the two dimensions that framed the global spectrum of plant form and function held up in the tundra.

Cottongrass is benefiting from the warming Arctic climate. Photo credit Jeffrey Kerby, National Geographic Society

The answer in short, is that tundra plants occupy half of global trait space. The slightly longer answer is that although tundra plants do cluster together, they occupy a surprisingly wide range of global trait space. Although they are at the small end of plant life on Earth (as you might have expected), they still have remarkably varied strategies for capturing resources and coping with the extreme climatic conditions and incredibly short growing seasons of the tundra biome. Perhaps even more surprisingly, global rules hold up extremely well in the tundra: the same two dimensions explain the majority of trait variation.

 For an even longer answer, you’ll have to read the paper: Global plant trait relationships extend to the climatic extremes of the tundra biome, out now in Nature.

Global plant trait relationships apply even at the cold extremes of life on Earth. Photo credit Sandra Angers-Blondin

Where does this leave us? Our study suggests that trait relationships are not simply emergent properties from global plant trait data, but say something fundamental about the rules that underpin evolution, community assembly, and ecosystem response to environmental change. So from the towering redwood tree to the tiny Arctic heather, global plant trait relationships really do seem to apply across the broad spectrum of plant life on Earth. The holy grail of plant ecology may indeed be within reach.

Author: Haydin Thomas. Researcher, University of Edinburgh

Source:
https://natureecoevocommunity.nature.com/users/348986-haydn-thomas/posts/61579-plant-life-on-the-edge